reactos/sdk/lib/crt/math/libm_sse2/tanh.c
2022-12-01 15:21:59 +02:00

139 lines
4.3 KiB
C

/*******************************************************************************
MIT License
-----------
Copyright (c) 2002-2019 Advanced Micro Devices, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this Software and associated documentaon files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*******************************************************************************/
#include "libm.h"
#include "libm_util.h"
#define USE_HANDLE_ERROR
#define USE_SPLITEXP
#define USE_SCALEDOUBLE_2
#define USE_VAL_WITH_FLAGS
#include "libm_inlines.h"
#undef USE_SPLITEXP
#undef USE_SCALEDOUBLE_2
#undef USE_VAL_WITH_FLAGS
#undef USE_HANDLE_ERROR
#include "libm_errno.h"
#ifdef _MSC_VER
#pragma function(tanh)
#endif
double tanh(double x)
{
/*
The definition of tanh(x) is sinh(x)/cosh(x), which is also equivalent
to the following three formulae:
1. (exp(x) - exp(-x))/(exp(x) + exp(-x))
2. (1 - (2/(exp(2*x) + 1 )))
3. (exp(2*x) - 1)/(exp(2*x) + 1)
but computationally, some formulae are better on some ranges.
*/
static const double
thirtytwo_by_log2 = 4.61662413084468283841e+01, /* 0x40471547652b82fe */
log2_by_32_lead = 2.16608493356034159660e-02, /* 0x3f962e42fe000000 */
log2_by_32_tail = 5.68948749532545630390e-11, /* 0x3dcf473de6af278e */
large_threshold = 20.0; /* 0x4034000000000000 */
unsigned long long ux, aux, xneg;
double y, z, p, z1, z2;
int m;
/* Special cases */
GET_BITS_DP64(x, ux);
aux = ux & ~SIGNBIT_DP64;
if (aux < 0x3e30000000000000) /* |x| small enough that tanh(x) = x */
{
if (aux == 0)
return x; /* with no inexact */
else
return val_with_flags(x, AMD_F_INEXACT);
}
else if (aux > 0x7ff0000000000000) /* |x| is NaN */
return _handle_error("tanh", OP_TANH, ux|0x0008000000000000, _DOMAIN,
0, EDOM, x, 0.0, 1);
// return x + x;
xneg = (aux != ux);
y = x;
if (xneg) y = -x;
if (y > large_threshold)
{
/* If x is large then exp(-x) is negligible and
formula 1 reduces to plus or minus 1.0 */
z = 1.0;
}
else if (y <= 1.0)
{
double y2;
y2 = y*y;
if (y < 0.9)
{
/* Use a [3,3] Remez approximation on [0,0.9]. */
z = y + y*y2*
(-0.274030424656179760118928e0 +
(-0.176016349003044679402273e-1 +
(-0.200047621071909498730453e-3 -
0.142077926378834722618091e-7*y2)*y2)*y2)/
(0.822091273968539282568011e0 +
(0.381641414288328849317962e0 +
(0.201562166026937652780575e-1 +
0.2091140262529164482568557e-3*y2)*y2)*y2);
}
else
{
/* Use a [3,3] Remez approximation on [0.9,1]. */
z = y + y*y2*
(-0.227793870659088295252442e0 +
(-0.146173047288731678404066e-1 +
(-0.165597043903549960486816e-3 -
0.115475878996143396378318e-7*y2)*y2)*y2)/
(0.683381611977295894959554e0 +
(0.317204558977294374244770e0 +
(0.167358775461896562588695e-1 +
0.173076050126225961768710e-3*y2)*y2)*y2);
}
}
else
{
/* Compute p = exp(2*y) + 1. The code is basically inlined
from exp_amd. */
splitexp(2*y, 1.0, thirtytwo_by_log2, log2_by_32_lead,
log2_by_32_tail, &m, &z1, &z2);
p = scaleDouble_2(z1 + z2, m) + 1.0;
/* Now reconstruct tanh from p. */
z = (1.0 - 2.0/p);
}
if (xneg) z = - z;
return z;
}