reactos/drivers/bus/acpi/busmgr/system.c
2021-06-11 15:33:08 +03:00

420 lines
10 KiB
C

/*
* acpi_system.c - ACPI System Driver ($Revision: 57 $)
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
/* Modified for ReactOS and latest ACPICA
* Copyright (C)2009 Samuel Serapion
*/
#include <precomp.h>
#define NDEBUG
#include <debug.h>
ACPI_STATUS acpi_system_save_state(UINT32);
#define _COMPONENT ACPI_SYSTEM_COMPONENT
ACPI_MODULE_NAME ("acpi_system")
#define PREFIX "ACPI: "
static int acpi_system_add (struct acpi_device *device);
static int acpi_system_remove (struct acpi_device *device, int type);
ACPI_STATUS acpi_suspend (UINT32 state);
static struct acpi_driver acpi_system_driver = {
{0,0},
ACPI_SYSTEM_DRIVER_NAME,
ACPI_SYSTEM_CLASS,
0,
0,
ACPI_SYSTEM_HID,
{acpi_system_add, acpi_system_remove}
};
struct acpi_system
{
ACPI_HANDLE handle;
UINT8 states[ACPI_S_STATE_COUNT];
};
static int
acpi_system_add (
struct acpi_device *device)
{
ACPI_STATUS status = AE_OK;
struct acpi_system *system = NULL;
UINT8 i = 0;
ACPI_FUNCTION_TRACE("acpi_system_add");
if (!device)
return_VALUE(-1);
system = ExAllocatePoolWithTag(NonPagedPool,sizeof(struct acpi_system),'IPCA');
if (!system)
return_VALUE(-14);
memset(system, 0, sizeof(struct acpi_system));
system->handle = device->handle;
sprintf(acpi_device_name(device), "%s", ACPI_SYSTEM_DEVICE_NAME);
sprintf(acpi_device_class(device), "%s", ACPI_SYSTEM_CLASS);
acpi_driver_data(device) = system;
DPRINT("%s [%s] (supports",
acpi_device_name(device), acpi_device_bid(device));
for (i=0; i<ACPI_S_STATE_COUNT; i++) {
UINT8 type_a, type_b;
status = AcpiGetSleepTypeData(i, &type_a, &type_b);
switch (i) {
case ACPI_STATE_S4:
if (/*AcpiGbl_FACS->S4bios_f &&*/
0 != AcpiGbl_FADT.SmiCommand) {
DPRINT(" S4bios\n");
system->states[i] = 1;
}
/* no break */
default:
if (ACPI_SUCCESS(status)) {
system->states[i] = 1;
DPRINT(" S%d", i);
}
}
}
//#ifdef CONFIG_PM
// /* Install the soft-off (S5) handler. */
// if (system->states[ACPI_STATE_S5]) {
// pm_power_off = acpi_power_off;
// register_sysrq_key('o', &sysrq_acpi_poweroff_op);
// }
//#endif
return_VALUE(0);
}
static int
acpi_system_remove (
struct acpi_device *device,
int type)
{
struct acpi_system *system = NULL;
ACPI_FUNCTION_TRACE("acpi_system_remove");
if (!device || !acpi_driver_data(device))
return_VALUE(-1);
system = (struct acpi_system *) acpi_driver_data(device);
//#ifdef CONFIG_PM
// /* Remove the soft-off (S5) handler. */
// if (system->states[ACPI_STATE_S5]) {
// unregister_sysrq_key('o', &sysrq_acpi_poweroff_op);
// pm_power_off = NULL;
// }
//#endif
//
//
ExFreePoolWithTag(system, 'IPCA');
return 0;
}
/**
* acpi_system_restore_state - OS-specific restoration of state
* @state: sleep state we're exiting
*
* Note that if we're coming back from S4, the memory image should have
* already been loaded from the disk and is already in place. (Otherwise how
* else would we be here?).
*/
ACPI_STATUS
acpi_system_restore_state(
UINT32 state)
{
/*
* We should only be here if we're coming back from STR or STD.
* And, in the case of the latter, the memory image should have already
* been loaded from disk.
*/
if (state > ACPI_STATE_S1) {
//acpi_restore_state_mem();
/* Do _early_ resume for irqs. Required by
* ACPI specs.
*/
/* TBD: call arch dependant reinitialization of the
* interrupts.
*/
#ifdef _X86_
//init_8259A(0);
#endif
/* wait for power to come back */
KeStallExecutionProcessor(100);
}
/* Be really sure that irqs are disabled. */
//ACPI_DISABLE_IRQS();
/* Wait a little again, just in case... */
KeStallExecutionProcessor(10);
/* enable interrupts once again */
//ACPI_ENABLE_IRQS();
/* turn all the devices back on */
//if (state > ACPI_STATE_S1)
//pm_send_all(PM_RESUME, (void *)0);
return AE_OK;
}
/**
* acpi_system_save_state - save OS specific state and power down devices
* @state: sleep state we're entering.
*
* This handles saving all context to memory, and possibly disk.
* First, we call to the device driver layer to save device state.
* Once we have that, we save whatevery processor and kernel state we
* need to memory.
* If we're entering S4, we then write the memory image to disk.
*
* Only then it is safe for us to power down devices, since we may need
* the disks and upstream buses to write to.
*/
ACPI_STATUS
acpi_system_save_state(
UINT32 state)
{
int error = 0;
/* Send notification to devices that they will be suspended.
* If any device or driver cannot make the transition, either up
* or down, we'll get an error back.
*/
/*if (state > ACPI_STATE_S1) {
error = pm_send_all(PM_SAVE_STATE, (void *)3);
if (error)
return AE_ERROR;
}*/
//if (state <= ACPI_STATE_S5) {
// /* Tell devices to stop I/O and actually save their state.
// * It is theoretically possible that something could fail,
// * so handle that gracefully..
// */
// if (state > ACPI_STATE_S1 && state != ACPI_STATE_S5) {
// error = pm_send_all(PM_SUSPEND, (void *)3);
// if (error) {
// /* Tell devices to restore state if they have
// * it saved and to start taking I/O requests.
// */
// pm_send_all(PM_RESUME, (void *)0);
// return error;
// }
// }
/* flush caches */
ACPI_FLUSH_CPU_CACHE();
/* Do arch specific saving of state. */
if (state > ACPI_STATE_S1) {
error = 0;//acpi_save_state_mem();
/* TBD: if no s4bios, write codes for
* acpi_save_state_disk()...
*/
#if 0
if (!error && (state == ACPI_STATE_S4))
error = acpi_save_state_disk();
#endif
/*if (error) {
pm_send_all(PM_RESUME, (void *)0);
return error;
}*/
}
//}
/* disable interrupts
* Note that acpi_suspend -- our caller -- will do this once we return.
* But, we want it done early, so we don't get any surprises during
* the device suspend sequence.
*/
//ACPI_DISABLE_IRQS();
/* Unconditionally turn off devices.
* Obvious if we enter a sleep state.
* If entering S5 (soft off), this should put devices in a
* quiescent state.
*/
//if (state > ACPI_STATE_S1) {
// error = pm_send_all(PM_SUSPEND, (void *)3);
// /* We're pretty screwed if we got an error from this.
// * We try to recover by simply calling our own restore_state
// * function; see above for definition.
// *
// * If it's S5 though, go through with it anyway..
// */
// if (error && state != ACPI_STATE_S5)
// acpi_system_restore_state(state);
//}
return error ? AE_ERROR : AE_OK;
}
/****************************************************************************
*
* FUNCTION: acpi_system_suspend
*
* PARAMETERS: %state: Sleep state to enter.
*
* RETURN: ACPI_STATUS, whether or not we successfully entered and
* exited sleep.
*
* DESCRIPTION: Perform OS-specific action to enter sleep state.
* This is the final step in going to sleep, per spec. If we
* know we're coming back (i.e. not entering S5), we save the
* processor flags. [ We'll have to save and restore them anyway,
* so we use the arch-agnostic save_flags and restore_flags
* here.] We then set the place to return to in arch-specific
* globals using arch_set_return_point. Finally, we call the
* ACPI function to write the proper values to I/O ports.
*
****************************************************************************/
ACPI_STATUS
acpi_system_suspend(
UINT32 state)
{
ACPI_STATUS status = AE_ERROR;
//unsigned long flags = 0;
//local_irq_save(flags);
/* kernel_fpu_begin(); */
switch (state) {
case ACPI_STATE_S1:
case ACPI_STATE_S5:
//barrier();
status = AcpiEnterSleepState(state);
break;
case ACPI_STATE_S4:
//do_suspend_lowlevel_s4bios(0);
break;
}
/* kernel_fpu_end(); */
//local_irq_restore(flags);
return status;
}
/**
* acpi_suspend - OS-agnostic system suspend/resume support (S? states)
* @state: state we're entering
*
*/
ACPI_STATUS
acpi_suspend (
UINT32 state)
{
ACPI_STATUS status;
/* only support S1 and S5 on kernel 2.4 */
//if (state != ACPI_STATE_S1 && state != ACPI_STATE_S4
// && state != ACPI_STATE_S5)
// return AE_ERROR;
//if (ACPI_STATE_S4 == state) {
// /* For s4bios, we need a wakeup address. */
// if (1 == AcpiGbl_FACS->S4bios_f &&
// 0 != AcpiGbl_FADT->smi_cmd) {
// if (!acpi_wakeup_address)
// return AE_ERROR;
// AcpiSetFirmwareWakingVector((acpi_physical_address) acpi_wakeup_address);
// } else
// /* We don't support S4 under 2.4. Give up */
// return AE_ERROR;
//}
AcpiEnterSleepStatePrep(state);
status = AcpiEnterSleepState(state);
if (!ACPI_SUCCESS(status) && state != ACPI_STATE_S5)
return status;
/* disable interrupts and flush caches */
_disable();
ACPI_FLUSH_CPU_CACHE();
/* perform OS-specific sleep actions */
status = acpi_system_suspend(state);
/* Even if we failed to go to sleep, all of the devices are in an suspended
* mode. So, we run these unconditionally to make sure we have a usable system
* no matter what.
*/
AcpiLeaveSleepState(state);
acpi_system_restore_state(state);
/* make sure interrupts are enabled */
_enable();
/* reset firmware waking vector */
AcpiSetFirmwareWakingVector(0, 0);
return status;
}
int
acpi_system_init (void)
{
int result = 0;
ACPI_FUNCTION_TRACE("acpi_system_init");
result = acpi_bus_register_driver(&acpi_system_driver);
if (result < 0)
return_VALUE(AE_NOT_FOUND);
return_VALUE(0);
}
void
acpi_system_exit (void)
{
ACPI_FUNCTION_TRACE("acpi_system_exit");
acpi_bus_unregister_driver(&acpi_system_driver);
return_VOID;
}