/* * COPYRIGHT: See COPYING in the top level directory * PROJECT: ReactOS kernel * FILE: ntoskrnl/mm/freelist.c * PURPOSE: Handle the list of free physical pages * * PROGRAMMERS: David Welch (welch@cwcom.net) * Robert Bergkvist */ /* INCLUDES ****************************************************************/ #include #define NDEBUG #include #if defined (ALLOC_PRAGMA) #pragma alloc_text(INIT, MmInitializePageList) #endif #define MODULE_INVOLVED_IN_ARM3 #include "ARM3/miarm.h" /* GLOBALS ****************************************************************/ // // // ReactOS to NT Physical Page Descriptor Entry Legacy Mapping Definitions // // REACTOS NT // #define RmapListHead AweReferenceCount #define PHYSICAL_PAGE MMPFN #define PPHYSICAL_PAGE PMMPFN PPHYSICAL_PAGE MmPfnDatabase; PFN_NUMBER MmAvailablePages; PFN_NUMBER MmResidentAvailablePages; PFN_NUMBER MmResidentAvailableAtInit; SIZE_T MmTotalCommitLimit; SIZE_T MmTotalCommittedPages; SIZE_T MmSharedCommit; SIZE_T MmDriverCommit; SIZE_T MmProcessCommit; SIZE_T MmPagedPoolCommit; SIZE_T MmPeakCommitment; SIZE_T MmtotalCommitLimitMaximum; KEVENT ZeroPageThreadEvent; static BOOLEAN ZeroPageThreadShouldTerminate = FALSE; static RTL_BITMAP MiUserPfnBitMap; /* FUNCTIONS *************************************************************/ VOID NTAPI MiInitializeUserPfnBitmap(VOID) { PVOID Bitmap; /* Allocate enough buffer for the PFN bitmap and align it on 32-bits */ Bitmap = ExAllocatePoolWithTag(NonPagedPool, (((MmHighestPhysicalPage + 1) + 31) / 32) * 4, ' mM'); ASSERT(Bitmap); /* Initialize it and clear all the bits to begin with */ RtlInitializeBitMap(&MiUserPfnBitMap, Bitmap, MmHighestPhysicalPage + 1); RtlClearAllBits(&MiUserPfnBitMap); } PFN_NUMBER NTAPI MmGetLRUFirstUserPage(VOID) { ULONG Position; KIRQL OldIrql; /* Find the first user page */ OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); Position = RtlFindSetBits(&MiUserPfnBitMap, 1, 0); KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql); if (Position == 0xFFFFFFFF) return 0; /* Return it */ return Position; } VOID NTAPI MmInsertLRULastUserPage(PFN_NUMBER Pfn) { KIRQL OldIrql; /* Set the page as a user page */ OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); RtlSetBit(&MiUserPfnBitMap, Pfn); KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql); } PFN_NUMBER NTAPI MmGetLRUNextUserPage(PFN_NUMBER PreviousPfn) { ULONG Position; KIRQL OldIrql; /* Find the next user page */ OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); Position = RtlFindSetBits(&MiUserPfnBitMap, 1, PreviousPfn + 1); KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql); if (Position == 0xFFFFFFFF) return 0; /* Return it */ return Position; } VOID NTAPI MmRemoveLRUUserPage(PFN_NUMBER Page) { /* Unset the page as a user page */ RtlClearBit(&MiUserPfnBitMap, Page); } BOOLEAN NTAPI MiIsPfnFree(IN PMMPFN Pfn1) { /* Must be a free or zero page, with no references, linked */ return ((Pfn1->u3.e1.PageLocation <= StandbyPageList) && (Pfn1->u1.Flink) && (Pfn1->u2.Blink) && !(Pfn1->u3.e2.ReferenceCount)); } BOOLEAN NTAPI MiIsPfnInUse(IN PMMPFN Pfn1) { /* Standby list or higher, unlinked, and with references */ return !MiIsPfnFree(Pfn1); } PMDL NTAPI MiAllocatePagesForMdl(IN PHYSICAL_ADDRESS LowAddress, IN PHYSICAL_ADDRESS HighAddress, IN PHYSICAL_ADDRESS SkipBytes, IN SIZE_T TotalBytes, IN MI_PFN_CACHE_ATTRIBUTE CacheAttribute, IN ULONG MdlFlags) { PMDL Mdl; PFN_NUMBER PageCount, LowPage, HighPage, SkipPages, PagesFound = 0, Page; PPFN_NUMBER MdlPage, LastMdlPage; KIRQL OldIrql; PPHYSICAL_PAGE Pfn1; INT LookForZeroedPages; ASSERT (KeGetCurrentIrql() <= APC_LEVEL); // // Convert the low address into a PFN // LowPage = (PFN_NUMBER)(LowAddress.QuadPart >> PAGE_SHIFT); // // Convert, and normalize, the high address into a PFN // HighPage = (PFN_NUMBER)(HighAddress.QuadPart >> PAGE_SHIFT); if (HighPage > MmHighestPhysicalPage) HighPage = MmHighestPhysicalPage; // // Validate skipbytes and convert them into pages // if (BYTE_OFFSET(SkipBytes.LowPart)) return NULL; SkipPages = (PFN_NUMBER)(SkipBytes.QuadPart >> PAGE_SHIFT); /* This isn't supported at all */ if (SkipPages) DPRINT1("WARNING: Caller requesting SkipBytes, MDL might be mismatched\n"); // // Now compute the number of pages the MDL will cover // PageCount = (PFN_NUMBER)ADDRESS_AND_SIZE_TO_SPAN_PAGES(0, TotalBytes); do { // // Try creating an MDL for these many pages // Mdl = MmCreateMdl(NULL, NULL, PageCount << PAGE_SHIFT); if (Mdl) break; // // This function is not required to return the amount of pages requested // In fact, it can return as little as 1 page, and callers are supposed // to deal with this scenario. So re-attempt the allocation with less // pages than before, and see if it worked this time. // PageCount -= (PageCount >> 4); } while (PageCount); // // Wow, not even a single page was around! // if (!Mdl) return NULL; // // This is where the page array starts.... // MdlPage = (PPFN_NUMBER)(Mdl + 1); // // Lock the PFN database // OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); // // Are we looking for any pages, without discriminating? // if ((LowPage == 0) && (HighPage == MmHighestPhysicalPage)) { // // Well then, let's go shopping // while (PagesFound < PageCount) { // // Do we have zeroed pages? // if (MmZeroedPageListHead.Total) { // // Grab a zero page // Pfn1 = MiRemoveHeadList(&MmZeroedPageListHead); } else if (MmFreePageListHead.Total) { // // Nope, grab an unzeroed page // Pfn1 = MiRemoveHeadList(&MmFreePageListHead); } else { // // This is not good... hopefully we have at least SOME pages // ASSERT(PagesFound); break; } // // Make sure it's really free // ASSERT(Pfn1->u3.e2.ReferenceCount == 0); // // Allocate it and mark it // Pfn1->u3.e1.StartOfAllocation = 1; Pfn1->u3.e1.EndOfAllocation = 1; Pfn1->u3.e2.ReferenceCount = 1; // // Decrease available pages // MmAvailablePages--; // // Save it into the MDL // *MdlPage++ = MiGetPfnEntryIndex(Pfn1); PagesFound++; } } else { // // You want specific range of pages. We'll do this in two runs // for (LookForZeroedPages = 1; LookForZeroedPages >= 0; LookForZeroedPages--) { // // Scan the range you specified // for (Page = LowPage; Page < HighPage; Page++) { // // Get the PFN entry for this page // Pfn1 = MiGetPfnEntry(Page); ASSERT(Pfn1); // // Make sure it's free and if this is our first pass, zeroed // if (MiIsPfnInUse(Pfn1)) continue; if ((Pfn1->u3.e1.PageLocation == ZeroedPageList) != LookForZeroedPages) continue; // // Sanity checks // ASSERT(Pfn1->u3.e2.ReferenceCount == 0); // // Now setup the page and mark it // Pfn1->u3.e2.ReferenceCount = 1; Pfn1->u3.e1.StartOfAllocation = 1; Pfn1->u3.e1.EndOfAllocation = 1; // // Decrease available pages // MmAvailablePages--; // // Save this page into the MDL // *MdlPage++ = Page; if (++PagesFound == PageCount) break; } // // If the first pass was enough, don't keep going, otherwise, go again // if (PagesFound == PageCount) break; } } // // Now release the PFN count // KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql); // // We might've found less pages, but not more ;-) // if (PagesFound != PageCount) ASSERT(PagesFound < PageCount); if (!PagesFound) { // // If we didn' tfind any pages at all, fail // DPRINT1("NO MDL PAGES!\n"); ExFreePool(Mdl); return NULL; } // // Write out how many pages we found // Mdl->ByteCount = (ULONG)(PagesFound << PAGE_SHIFT); // // Terminate the MDL array if there's certain missing pages // if (PagesFound != PageCount) *MdlPage = -1; // // Now go back and loop over all the MDL pages // MdlPage = (PPFN_NUMBER)(Mdl + 1); LastMdlPage = MdlPage + PagesFound; while (MdlPage < LastMdlPage) { // // Check if we've reached the end // Page = *MdlPage++; if (Page == (PFN_NUMBER)-1) break; // // Get the PFN entry for the page and check if we should zero it out // Pfn1 = MiGetPfnEntry(Page); ASSERT(Pfn1); if (Pfn1->u3.e1.PageLocation != ZeroedPageList) MiZeroPage(Page); Pfn1->u3.e1.PageLocation = ActiveAndValid; } // // We're done, mark the pages as locked (should we lock them, though???) // Mdl->Process = NULL; Mdl->MdlFlags |= MDL_PAGES_LOCKED; return Mdl; } VOID NTAPI MmDumpPfnDatabase(VOID) { ULONG i; PPHYSICAL_PAGE Pfn1; PCHAR State = "????", Type = "Unknown"; KIRQL OldIrql; ULONG Totals[5] = {0}, FreePages = 0; KeRaiseIrql(HIGH_LEVEL, &OldIrql); // // Loop the PFN database // for (i = 0; i <= MmHighestPhysicalPage; i++) { Pfn1 = MiGetPfnEntry(i); if (!Pfn1) continue; // // Get the type // if (MiIsPfnInUse(Pfn1)) { State = "Used"; } else { State = "Free"; Type = "Free"; FreePages++; break; } // // Pretty-print the page // DbgPrint("0x%08p:\t%04s\t%20s\t(%02d) [%08p])\n", i << PAGE_SHIFT, State, Type, Pfn1->u3.e2.ReferenceCount, Pfn1->RmapListHead); } DbgPrint("Nonpaged Pool: %d pages\t[%d KB]\n", Totals[MC_NPPOOL], (Totals[MC_NPPOOL] << PAGE_SHIFT) / 1024); DbgPrint("Paged Pool: %d pages\t[%d KB]\n", Totals[MC_PPOOL], (Totals[MC_PPOOL] << PAGE_SHIFT) / 1024); DbgPrint("File System Cache: %d pages\t[%d KB]\n", Totals[MC_CACHE], (Totals[MC_CACHE] << PAGE_SHIFT) / 1024); DbgPrint("Process Working Set: %d pages\t[%d KB]\n", Totals[MC_USER], (Totals[MC_USER] << PAGE_SHIFT) / 1024); DbgPrint("System: %d pages\t[%d KB]\n", Totals[MC_SYSTEM], (Totals[MC_SYSTEM] << PAGE_SHIFT) / 1024); DbgPrint("Free: %d pages\t[%d KB]\n", FreePages, (FreePages << PAGE_SHIFT) / 1024); KeLowerIrql(OldIrql); } VOID NTAPI MmSetRmapListHeadPage(PFN_NUMBER Pfn, struct _MM_RMAP_ENTRY* ListHead) { KIRQL oldIrql; oldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); MiGetPfnEntry(Pfn)->RmapListHead = (LONG)ListHead; KeReleaseQueuedSpinLock(LockQueuePfnLock, oldIrql); } struct _MM_RMAP_ENTRY* NTAPI MmGetRmapListHeadPage(PFN_NUMBER Pfn) { KIRQL oldIrql; struct _MM_RMAP_ENTRY* ListHead; oldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); ListHead = (struct _MM_RMAP_ENTRY*)MiGetPfnEntry(Pfn)->RmapListHead; KeReleaseQueuedSpinLock(LockQueuePfnLock, oldIrql); return(ListHead); } VOID NTAPI MmSetSavedSwapEntryPage(PFN_NUMBER Pfn, SWAPENTRY SwapEntry) { KIRQL oldIrql; oldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); MiGetPfnEntry(Pfn)->u1.WsIndex = SwapEntry; KeReleaseQueuedSpinLock(LockQueuePfnLock, oldIrql); } SWAPENTRY NTAPI MmGetSavedSwapEntryPage(PFN_NUMBER Pfn) { SWAPENTRY SwapEntry; KIRQL oldIrql; oldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); SwapEntry = MiGetPfnEntry(Pfn)->u1.WsIndex; KeReleaseQueuedSpinLock(LockQueuePfnLock, oldIrql); return(SwapEntry); } VOID NTAPI MmReferencePage(PFN_NUMBER Pfn) { PPHYSICAL_PAGE Page; DPRINT("MmReferencePage(PysicalAddress %x)\n", Pfn << PAGE_SHIFT); if (Pfn == 0 || Pfn > MmHighestPhysicalPage) { return; } Page = MiGetPfnEntry(Pfn); ASSERT(Page); Page->u3.e2.ReferenceCount++; } ULONG NTAPI MmGetReferenceCountPage(PFN_NUMBER Pfn) { KIRQL oldIrql; ULONG RCount; PPHYSICAL_PAGE Page; DPRINT("MmGetReferenceCountPage(PhysicalAddress %x)\n", Pfn << PAGE_SHIFT); oldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); Page = MiGetPfnEntry(Pfn); ASSERT(Page); RCount = Page->u3.e2.ReferenceCount; KeReleaseQueuedSpinLock(LockQueuePfnLock, oldIrql); return(RCount); } BOOLEAN NTAPI MmIsPageInUse(PFN_NUMBER Pfn) { return MiIsPfnInUse(MiGetPfnEntry(Pfn)); } VOID NTAPI MiSetConsumer(IN PFN_NUMBER Pfn, IN ULONG Type) { MiGetPfnEntry(Pfn)->u3.e1.PageLocation = ActiveAndValid; } VOID NTAPI MmDereferencePage(PFN_NUMBER Pfn) { PPHYSICAL_PAGE Page; DPRINT("MmDereferencePage(PhysicalAddress %x)\n", Pfn << PAGE_SHIFT); Page = MiGetPfnEntry(Pfn); ASSERT(Page); Page->u3.e2.ReferenceCount--; if (Page->u3.e2.ReferenceCount == 0) { MmAvailablePages++; Page->u3.e1.PageLocation = FreePageList; MiInsertInListTail(&MmFreePageListHead, Page); if (MmFreePageListHead.Total > 8 && 0 == KeReadStateEvent(&ZeroPageThreadEvent)) { KeSetEvent(&ZeroPageThreadEvent, IO_NO_INCREMENT, FALSE); } } } PFN_NUMBER NTAPI MmAllocPage(ULONG Type) { PFN_NUMBER PfnOffset; PPHYSICAL_PAGE PageDescriptor; BOOLEAN NeedClear = FALSE; DPRINT("MmAllocPage()\n"); if (MmZeroedPageListHead.Total == 0) { if (MmFreePageListHead.Total == 0) { /* Check if this allocation is for the PFN DB itself */ if (MmNumberOfPhysicalPages == 0) { ASSERT(FALSE); } DPRINT1("MmAllocPage(): Out of memory\n"); return 0; } PageDescriptor = MiRemoveHeadList(&MmFreePageListHead); NeedClear = TRUE; } else { PageDescriptor = MiRemoveHeadList(&MmZeroedPageListHead); } PageDescriptor->u3.e2.ReferenceCount = 1; MmAvailablePages--; PfnOffset = MiGetPfnEntryIndex(PageDescriptor); if ((NeedClear) && (Type != MC_SYSTEM)) { MiZeroPage(PfnOffset); } PageDescriptor->u3.e1.PageLocation = ActiveAndValid; return PfnOffset; } NTSTATUS NTAPI MiZeroPage(PFN_NUMBER Page) { KIRQL Irql; PVOID TempAddress; Irql = KeRaiseIrqlToDpcLevel(); TempAddress = MiMapPageToZeroInHyperSpace(Page); if (TempAddress == NULL) { return(STATUS_NO_MEMORY); } memset(TempAddress, 0, PAGE_SIZE); MiUnmapPagesInZeroSpace(TempAddress, 1); KeLowerIrql(Irql); return(STATUS_SUCCESS); } NTSTATUS NTAPI MmZeroPageThreadMain(PVOID Ignored) { NTSTATUS Status; KIRQL oldIrql; PPHYSICAL_PAGE PageDescriptor; PFN_NUMBER Pfn; ULONG Count; /* Free initial kernel memory */ //MiFreeInitMemory(); /* Set our priority to 0 */ KeGetCurrentThread()->BasePriority = 0; KeSetPriorityThread(KeGetCurrentThread(), 0); while(1) { Status = KeWaitForSingleObject(&ZeroPageThreadEvent, 0, KernelMode, FALSE, NULL); if (ZeroPageThreadShouldTerminate) { DPRINT1("ZeroPageThread: Terminating\n"); return STATUS_SUCCESS; } Count = 0; oldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); while (MmFreePageListHead.Total) { PageDescriptor = MiRemoveHeadList(&MmFreePageListHead); /* We set the page to used, because MmCreateVirtualMapping failed with unused pages */ KeReleaseQueuedSpinLock(LockQueuePfnLock, oldIrql); Pfn = MiGetPfnEntryIndex(PageDescriptor); Status = MiZeroPage(Pfn); oldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); if (NT_SUCCESS(Status)) { MiInsertZeroListAtBack(Pfn); Count++; } else { MiInsertInListTail(&MmFreePageListHead, PageDescriptor); PageDescriptor->u3.e1.PageLocation = FreePageList; } } DPRINT("Zeroed %d pages.\n", Count); KeResetEvent(&ZeroPageThreadEvent); KeReleaseQueuedSpinLock(LockQueuePfnLock, oldIrql); } return STATUS_SUCCESS; } /* EOF */