/* COPYRIGHT: See COPYING in the top level directory * PROJECT: ReactOS system libraries * FILE: lib/rtl/image.c * PURPOSE: Image handling functions * PROGRAMMERS: Copyright 1996 Alexandre Julliard * Copyright 1998 Ulrich Weigand */ // // Note: This is a slightly modified implementation of WINE's. // // WINE's implementation is a hack based on Windows 95's heap implementation, // itself a hack of DOS memory management.It supports 3 out of the 18 possible // NT Heap Flags, does not support custom allocation/deallocation routines, // and is about 50-80x slower with fragmentation rates up to 500x higher when // compared to NT's LFH. WINE is lucky because the advanced NT Heap features are // used in kernel-mode usually, not in user-mode, and they are crossing their // fingers for this being the same. Note that several high-end SQL/Database // applications would significantly benefit from custom heap features provided // by NT. // // ROS's changes include: // - Using Zw instead of Nt calls, because this matters when in Kernel Mode // - Not using per-process heap lists while in Kernel Mode // - Using a macro to handle the Critical Section, because it's meaningless // in Kernel Mode. // - Crappy support for a custom Commit routine. // - Crappy support for User-defined flags and the User-defined value. // - Ripping out all the code for shared heaps, because those don't exist on NT. // // Be aware of these changes when you try to sync something back. // /* INCLUDES *****************************************************************/ #include #undef LIST_FOR_EACH #undef LIST_FOR_EACH_SAFE #include #define NDEBUG #include #define TRACE DPRINT #define WARN DPRINT1 #define ERR DPRINT1 #define DPRINTF DPRINT /* FUNCTIONS *****************************************************************/ #define WARN_ON(x) (1) #ifdef NDEBUG #define TRACE_ON(x) (0) #else #define TRACE_ON(x) (1) #endif /* Note: the heap data structures are based on what Pietrek describes in his * book 'Windows 95 System Programming Secrets'. The layout is not exactly * the same, but could be easily adapted if it turns out some programs * require it. */ /* FIXME: use SIZE_T for 'size' structure members, but we need to make sure * that there is no unaligned accesses to structure fields. */ typedef struct tagARENA_INUSE { SIZE_T size; /* Block size; must be the first field */ DWORD magic : 23; /* Magic number */ DWORD has_user_data : 1; /* There is user data associated with this block */ DWORD unused_bytes : 8; /* Number of bytes in the block not used by user data (max value is HEAP_MIN_DATA_SIZE+HEAP_MIN_SHRINK_SIZE) */ } ARENA_INUSE; typedef struct tagARENA_FREE { SIZE_T size; /* Block size; must be the first field */ DWORD magic; /* Magic number */ struct list entry; /* Entry in free list */ } ARENA_FREE; #define ARENA_FLAG_FREE 0x00000001 /* flags OR'ed with arena size */ #define ARENA_FLAG_PREV_FREE 0x00000002 #define ARENA_INUSE_MAGIC 0x455355 /* Value for arena 'magic' field */ #define ARENA_FREE_MAGIC 0x45455246 /* Value for arena 'magic' field */ #ifndef _WIN64 #define ARENA_SIZE_MASK (~3L) #else #define ARENA_SIZE_MASK (~7L) #endif #define ARENA_INUSE_FILLER 0x55 #define ARENA_FREE_FILLER 0xaa /* everything is aligned on 8 byte boundaries (16 for Win64)*/ #define ALIGNMENT (2*sizeof(void*)) #define ARENA_OFFSET (ALIGNMENT - sizeof(ARENA_INUSE)) #define ROUND_SIZE(size) ((((size) + ALIGNMENT - 1) & ~(ALIGNMENT-1)) + ARENA_OFFSET) #define QUIET 1 /* Suppress messages */ #define NOISY 0 /* Report all errors */ /* minimum data size (without arenas) of an allocated block */ #define HEAP_MIN_DATA_SIZE ROUND_SIZE(2 * sizeof(struct list)) /* minimum size that must remain to shrink an allocated block */ #define HEAP_MIN_SHRINK_SIZE (HEAP_MIN_DATA_SIZE+sizeof(ARENA_FREE)) #define HEAP_NB_FREE_LISTS 5 /* Number of free lists */ /* Max size of the blocks on the free lists */ static const DWORD HEAP_freeListSizes[HEAP_NB_FREE_LISTS] = { 0x10, 0x20, 0x80, 0x200, MAXULONG }; typedef union { ARENA_FREE arena; void *aligment[4]; } FREE_LIST_ENTRY; struct tagHEAP; typedef struct tagSUBHEAP { SIZE_T size; /* Size of the whole sub-heap */ SIZE_T commitSize; /* Committed size of the sub-heap */ DWORD headerSize; /* Size of the heap header */ struct tagSUBHEAP *next; /* Next sub-heap */ struct tagHEAP *heap; /* Main heap structure */ DWORD magic; /* Magic number */ } SUBHEAP; #define SUBHEAP_MAGIC ((DWORD)('S' | ('U'<<8) | ('B'<<16) | ('H'<<24))) typedef struct tagHEAP_USER_DATA { LIST_ENTRY ListEntry; PVOID BaseAddress; ULONG UserFlags; PVOID UserValue; } HEAP_USER_DATA, *PHEAP_USER_DATA; typedef struct tagHEAP { SUBHEAP subheap; /* First sub-heap */ struct list entry; /* Entry in process heap list */ RTL_CRITICAL_SECTION critSection; /* Critical section for serialization */ DECLSPEC_ALIGN(8) FREE_LIST_ENTRY freeList[HEAP_NB_FREE_LISTS]; /* Free lists */ DWORD flags; /* Heap flags */ DWORD magic; /* Magic number */ PRTL_HEAP_COMMIT_ROUTINE commitRoutine; LIST_ENTRY UserDataHead; } HEAP; #define HEAP_MAGIC ((DWORD)('H' | ('E'<<8) | ('A'<<16) | ('P'<<24))) #define HEAP_DEF_SIZE 0x110000 /* Default heap size = 1Mb + 64Kb */ #define COMMIT_MASK 0xffff /* bitmask for commit/decommit granularity */ static HEAP *processHeap; /* main process heap */ static BOOL HEAP_IsRealArena( HEAP *heapPtr, DWORD flags, LPCVOID block, BOOL quiet ); /* mark a block of memory as free for debugging purposes */ static __inline void mark_block_free( void *ptr, SIZE_T size ) { if (TRACE_ON(heap)) memset( ptr, ARENA_FREE_FILLER, size ); #ifdef VALGRIND_MAKE_NOACCESS VALGRIND_DISCARD( VALGRIND_MAKE_NOACCESS( ptr, size )); #endif } /* mark a block of memory as initialized for debugging purposes */ static __inline void mark_block_initialized( void *ptr, SIZE_T size ) { #ifdef VALGRIND_MAKE_READABLE VALGRIND_DISCARD( VALGRIND_MAKE_READABLE( ptr, size )); #endif } /* mark a block of memory as uninitialized for debugging purposes */ static __inline void mark_block_uninitialized( void *ptr, SIZE_T size ) { #ifdef VALGRIND_MAKE_WRITABLE VALGRIND_DISCARD( VALGRIND_MAKE_WRITABLE( ptr, size )); #endif if (TRACE_ON(heap)) { memset( ptr, ARENA_INUSE_FILLER, size ); #ifdef VALGRIND_MAKE_WRITABLE /* make it uninitialized to valgrind again */ VALGRIND_DISCARD( VALGRIND_MAKE_WRITABLE( ptr, size )); #endif } } /* clear contents of a block of memory */ static __inline void clear_block( void *ptr, SIZE_T size ) { mark_block_initialized( ptr, size ); memset( ptr, 0, size ); } /* locate a free list entry of the appropriate size */ /* size is the size of the whole block including the arena header */ static __inline unsigned int get_freelist_index( SIZE_T size ) { unsigned int i; size -= sizeof(ARENA_FREE); for (i = 0; i < HEAP_NB_FREE_LISTS - 1; i++) if (size <= HEAP_freeListSizes[i]) break; return i; } /* get the memory protection type to use for a given heap */ static inline ULONG get_protection_type( DWORD flags ) { return (flags & HEAP_CREATE_ENABLE_EXECUTE) ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; } static RTL_CRITICAL_SECTION_DEBUG process_heap_critsect_debug = { 0, 0, NULL, /* will be set later */ { &process_heap_critsect_debug.ProcessLocksList, &process_heap_critsect_debug.ProcessLocksList }, 0, 0, 0, 0, 0 }; /*********************************************************************** * HEAP_Dump */ static void HEAP_Dump( HEAP *heap ) { int i; SUBHEAP *subheap; char *ptr; DPRINTF( "Heap: %p\n", heap ); DPRINTF( "Next: %p Sub-heaps: %p", LIST_ENTRY( heap->entry.next, HEAP, entry ), &heap->subheap ); subheap = &heap->subheap; while (subheap->next) { DPRINTF( " -> %p", subheap->next ); subheap = subheap->next; } DPRINTF( "\nFree lists:\n Block Stat Size Id\n" ); for (i = 0; i < HEAP_NB_FREE_LISTS; i++) DPRINTF( "%p free %08lx prev=%p next=%p\n", &heap->freeList[i].arena, HEAP_freeListSizes[i], LIST_ENTRY( heap->freeList[i].arena.entry.prev, ARENA_FREE, entry ), LIST_ENTRY( heap->freeList[i].arena.entry.next, ARENA_FREE, entry )); subheap = &heap->subheap; while (subheap) { SIZE_T freeSize = 0, usedSize = 0, arenaSize = subheap->headerSize; DPRINTF( "\n\nSub-heap %p: size=%08lx committed=%08lx\n", subheap, subheap->size, subheap->commitSize ); DPRINTF( "\n Block Stat Size Id\n" ); ptr = (char*)subheap + subheap->headerSize; while (ptr < (char *)subheap + subheap->size) { if (*(DWORD *)ptr & ARENA_FLAG_FREE) { ARENA_FREE *pArena = (ARENA_FREE *)ptr; DPRINTF( "%p free %08lx prev=%p next=%p\n", pArena, pArena->size & ARENA_SIZE_MASK, LIST_ENTRY( pArena->entry.prev, ARENA_FREE, entry ), LIST_ENTRY( pArena->entry.next, ARENA_FREE, entry ) ); ptr += sizeof(*pArena) + (pArena->size & ARENA_SIZE_MASK); arenaSize += sizeof(ARENA_FREE); freeSize += pArena->size & ARENA_SIZE_MASK; } else if (*(DWORD *)ptr & ARENA_FLAG_PREV_FREE) { ARENA_INUSE *pArena = (ARENA_INUSE *)ptr; DPRINTF( "%p Used %08lx back=%p\n", pArena, pArena->size & ARENA_SIZE_MASK, *((ARENA_FREE **)pArena - 1) ); ptr += sizeof(*pArena) + (pArena->size & ARENA_SIZE_MASK); arenaSize += sizeof(ARENA_INUSE); usedSize += pArena->size & ARENA_SIZE_MASK; } else { ARENA_INUSE *pArena = (ARENA_INUSE *)ptr; DPRINTF( "%p used %08lx\n", pArena, pArena->size & ARENA_SIZE_MASK ); ptr += sizeof(*pArena) + (pArena->size & ARENA_SIZE_MASK); arenaSize += sizeof(ARENA_INUSE); usedSize += pArena->size & ARENA_SIZE_MASK; } } DPRINTF( "\nTotal: Size=%08lx Committed=%08lx Free=%08lx Used=%08lx Arenas=%08lx (%ld%%)\n\n", subheap->size, subheap->commitSize, freeSize, usedSize, arenaSize, (arenaSize * 100) / subheap->size ); subheap = subheap->next; } } #if 0 static void HEAP_DumpEntry( LPPROCESS_HEAP_ENTRY entry ) { WORD rem_flags; TRACE( "Dumping entry %p\n", entry ); TRACE( "lpData\t\t: %p\n", entry->lpData ); TRACE( "cbData\t\t: %08lx\n", entry->cbData); TRACE( "cbOverhead\t: %08x\n", entry->cbOverhead); TRACE( "iRegionIndex\t: %08x\n", entry->iRegionIndex); TRACE( "WFlags\t\t: "); if (entry->wFlags & PROCESS_HEAP_REGION) TRACE( "PROCESS_HEAP_REGION "); if (entry->wFlags & PROCESS_HEAP_UNCOMMITTED_RANGE) TRACE( "PROCESS_HEAP_UNCOMMITTED_RANGE "); if (entry->wFlags & PROCESS_HEAP_ENTRY_BUSY) TRACE( "PROCESS_HEAP_ENTRY_BUSY "); if (entry->wFlags & PROCESS_HEAP_ENTRY_MOVEABLE) TRACE( "PROCESS_HEAP_ENTRY_MOVEABLE "); if (entry->wFlags & PROCESS_HEAP_ENTRY_DDESHARE) TRACE( "PROCESS_HEAP_ENTRY_DDESHARE "); rem_flags = entry->wFlags & ~(PROCESS_HEAP_REGION | PROCESS_HEAP_UNCOMMITTED_RANGE | PROCESS_HEAP_ENTRY_BUSY | PROCESS_HEAP_ENTRY_MOVEABLE| PROCESS_HEAP_ENTRY_DDESHARE); if (rem_flags) TRACE( "Unknown %08x", rem_flags); TRACE( "\n"); if ((entry->wFlags & PROCESS_HEAP_ENTRY_BUSY ) && (entry->wFlags & PROCESS_HEAP_ENTRY_MOVEABLE)) { /* Treat as block */ TRACE( "BLOCK->hMem\t\t:%p\n", entry->Block.hMem); } if (entry->wFlags & PROCESS_HEAP_REGION) { TRACE( "Region.dwCommittedSize\t:%08lx\n",entry->Region.dwCommittedSize); TRACE( "Region.dwUnCommittedSize\t:%08lx\n",entry->Region.dwUnCommittedSize); TRACE( "Region.lpFirstBlock\t:%p\n",entry->Region.lpFirstBlock); TRACE( "Region.lpLastBlock\t:%p\n",entry->Region.lpLastBlock); } } #endif static PHEAP_USER_DATA HEAP_GetUserData(HEAP *heapPtr, PVOID BaseAddress) { PLIST_ENTRY CurrentEntry; PHEAP_USER_DATA udata; CurrentEntry = heapPtr->UserDataHead.Flink; while (CurrentEntry != &heapPtr->UserDataHead) { udata = CONTAINING_RECORD(CurrentEntry, HEAP_USER_DATA, ListEntry); if (udata->BaseAddress == BaseAddress) return udata; CurrentEntry = CurrentEntry->Flink; } return NULL; } static PHEAP_USER_DATA HEAP_AllocUserData(HEAP *heapPtr, PVOID BaseAddress) { /* Allocate user data entry */ ARENA_INUSE *pInUse; PHEAP_USER_DATA udata = RtlAllocateHeap(heapPtr, 0, sizeof(HEAP_USER_DATA)); if (!udata) return NULL; udata->BaseAddress = BaseAddress; InsertTailList(&heapPtr->UserDataHead, &udata->ListEntry); pInUse = (ARENA_INUSE *)BaseAddress - 1; pInUse->has_user_data = 1; return udata; } /*********************************************************************** * HEAP_GetPtr * RETURNS * Pointer to the heap * NULL: Failure */ static HEAP *HEAP_GetPtr( HANDLE heap /* [in] Handle to the heap */ ) { HEAP *heapPtr = (HEAP *)heap; if (!heapPtr || (heapPtr->magic != HEAP_MAGIC)) { if (heapPtr) ERR("Invalid heap %p, magic:%.4s!\n", heap, &heapPtr->magic ); else ERR("Invalid heap %p!\n", heap ); //KeDumpStackFrames(NULL); return NULL; } if (TRACE_ON(heap) && !HEAP_IsRealArena( heapPtr, 0, NULL, NOISY )) { HEAP_Dump( heapPtr ); assert( FALSE ); return NULL; } return heapPtr; } /*********************************************************************** * HEAP_InsertFreeBlock * * Insert a free block into the free list. */ static __inline void HEAP_InsertFreeBlock( HEAP *heap, ARENA_FREE *pArena, BOOL last ) { FREE_LIST_ENTRY *pEntry = heap->freeList + get_freelist_index( pArena->size + sizeof(*pArena) ); if (last) { /* insert at end of free list, i.e. before the next free list entry */ pEntry++; if (pEntry == &heap->freeList[HEAP_NB_FREE_LISTS]) pEntry = heap->freeList; list_add_before( &pEntry->arena.entry, &pArena->entry ); } else { /* insert at head of free list */ list_add_after( &pEntry->arena.entry, &pArena->entry ); } pArena->size |= ARENA_FLAG_FREE; } /*********************************************************************** * HEAP_FindSubHeap * Find the sub-heap containing a given address. * * RETURNS * Pointer: Success * NULL: Failure */ static SUBHEAP *HEAP_FindSubHeap( const HEAP *heap, /* [in] Heap pointer */ LPCVOID ptr /* [in] Address */ ) { const SUBHEAP *sub = &heap->subheap; while (sub) { if (((const char *)ptr >= (const char *)sub) && ((const char *)ptr < (const char *)sub + sub->size)) return (SUBHEAP*)sub; sub = sub->next; } return NULL; } /*********************************************************************** * HEAP_Commit * * Make sure the heap storage is committed for a given size in the specified arena. */ static __inline BOOL HEAP_Commit( SUBHEAP *subheap, ARENA_INUSE *pArena, SIZE_T data_size ) { NTSTATUS Status; void *ptr = (char *)(pArena + 1) + data_size + sizeof(ARENA_FREE); SIZE_T size = (char *)ptr - (char *)subheap; size = (size + COMMIT_MASK) & ~COMMIT_MASK; if (size > subheap->size) size = subheap->size; if (size <= subheap->commitSize) return TRUE; size -= subheap->commitSize; ptr = (char *)subheap + subheap->commitSize; if (subheap->heap->commitRoutine != NULL) { Status = subheap->heap->commitRoutine(subheap->heap, &ptr, &size); } else { Status = ZwAllocateVirtualMemory( NtCurrentProcess(), &ptr, 0, &size, MEM_COMMIT, get_protection_type(subheap->heap->flags) ); } if (!NT_SUCCESS(Status)) { WARN("Could not commit %08lx bytes at %p for heap %p\n", size, ptr, subheap->heap ); return FALSE; } subheap->commitSize += size; return TRUE; } #if 0 /*********************************************************************** * HEAP_Decommit * * If possible, decommit the heap storage from (including) 'ptr'. */ static inline BOOL HEAP_Decommit( SUBHEAP *subheap, void *ptr ) { void *addr; SIZE_T decommit_size; SIZE_T size = (char *)ptr - (char *)subheap; /* round to next block and add one full block */ size = ((size + COMMIT_MASK) & ~COMMIT_MASK) + COMMIT_MASK + 1; if (size >= subheap->commitSize) return TRUE; decommit_size = subheap->commitSize - size; addr = (char *)subheap + size; if (ZwFreeVirtualMemory( NtCurrentProcess(), &addr, &decommit_size, MEM_DECOMMIT )) { WARN("Could not decommit %08lx bytes at %p for heap %p\n", decommit_size, (char *)subheap + size, subheap->heap ); return FALSE; } subheap->commitSize -= decommit_size; return TRUE; } #endif /*********************************************************************** * HEAP_CreateFreeBlock * * Create a free block at a specified address. 'size' is the size of the * whole block, including the new arena. */ static void HEAP_CreateFreeBlock( SUBHEAP *subheap, void *ptr, SIZE_T size ) { ARENA_FREE *pFree; char *pEnd; BOOL last; /* Create a free arena */ mark_block_uninitialized( ptr, sizeof( ARENA_FREE ) ); pFree = (ARENA_FREE *)ptr; pFree->magic = ARENA_FREE_MAGIC; /* If debugging, erase the freed block content */ pEnd = (char *)ptr + size; if (pEnd > (char *)subheap + subheap->commitSize) pEnd = (char *)subheap + subheap->commitSize; if (pEnd > (char *)(pFree + 1)) mark_block_free( pFree + 1, pEnd - (char *)(pFree + 1) ); /* Check if next block is free also */ if (((char *)ptr + size < (char *)subheap + subheap->size) && (*(DWORD *)((char *)ptr + size) & ARENA_FLAG_FREE)) { /* Remove the next arena from the free list */ ARENA_FREE *pNext = (ARENA_FREE *)((char *)ptr + size); list_remove( &pNext->entry ); size += (pNext->size & ARENA_SIZE_MASK) + sizeof(*pNext); mark_block_free( pNext, sizeof(ARENA_FREE) ); } /* Set the next block PREV_FREE flag and pointer */ last = ((char *)ptr + size >= (char *)subheap + subheap->size); if (!last) { DWORD *pNext = (DWORD *)((char *)ptr + size); *pNext |= ARENA_FLAG_PREV_FREE; mark_block_initialized( pNext - 1, sizeof( ARENA_FREE * ) ); *((ARENA_FREE **)pNext - 1) = pFree; } /* Last, insert the new block into the free list */ pFree->size = size - sizeof(*pFree); HEAP_InsertFreeBlock( subheap->heap, pFree, last ); } /*********************************************************************** * HEAP_MakeInUseBlockFree * * Turn an in-use block into a free block. Can also decommit the end of * the heap, and possibly even free the sub-heap altogether. */ static void HEAP_MakeInUseBlockFree( SUBHEAP *subheap, ARENA_INUSE *pArena ) { ARENA_FREE *pFree; SIZE_T size = (pArena->size & ARENA_SIZE_MASK) + sizeof(*pArena); PHEAP_USER_DATA udata; /* Find and free user data */ if (pArena->has_user_data) { udata = HEAP_GetUserData(subheap->heap, pArena + 1); if (udata) { RemoveEntryList(&udata->ListEntry); RtlFreeHeap(subheap->heap, 0, udata); } } /* Check if we can merge with previous block */ if (pArena->size & ARENA_FLAG_PREV_FREE) { pFree = *((ARENA_FREE **)pArena - 1); size += (pFree->size & ARENA_SIZE_MASK) + sizeof(ARENA_FREE); /* Remove it from the free list */ list_remove( &pFree->entry ); } else pFree = (ARENA_FREE *)pArena; /* Create a free block */ HEAP_CreateFreeBlock( subheap, pFree, size ); size = (pFree->size & ARENA_SIZE_MASK) + sizeof(ARENA_FREE); if ((char *)pFree + size < (char *)subheap + subheap->size) return; /* Not the last block, so nothing more to do */ /* Free the whole sub-heap if it's empty and not the original one */ if (((char *)pFree == (char *)subheap + subheap->headerSize) && (subheap != &subheap->heap->subheap)) { SIZE_T size = 0; SUBHEAP *pPrev = &subheap->heap->subheap; /* Remove the free block from the list */ list_remove( &pFree->entry ); /* Remove the subheap from the list */ while (pPrev && (pPrev->next != subheap)) pPrev = pPrev->next; if (pPrev) pPrev->next = subheap->next; /* Free the memory */ subheap->magic = 0; ZwFreeVirtualMemory( NtCurrentProcess(), (void **)&subheap, &size, MEM_RELEASE ); return; } /* Decommit the end of the heap */ } /*********************************************************************** * HEAP_ShrinkBlock * * Shrink an in-use block. */ static void HEAP_ShrinkBlock(SUBHEAP *subheap, ARENA_INUSE *pArena, SIZE_T size) { if ((pArena->size & ARENA_SIZE_MASK) >= size + HEAP_MIN_SHRINK_SIZE) { HEAP_CreateFreeBlock( subheap, (char *)(pArena + 1) + size, (pArena->size & ARENA_SIZE_MASK) - size ); /* assign size plus previous arena flags */ pArena->size = size | (pArena->size & ~ARENA_SIZE_MASK); } else { /* Turn off PREV_FREE flag in next block */ char *pNext = (char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK); if (pNext < (char *)subheap + subheap->size) *(DWORD *)pNext &= ~ARENA_FLAG_PREV_FREE; } } /*********************************************************************** * HEAP_InitSubHeap */ static BOOL HEAP_InitSubHeap( HEAP *heap, LPVOID address, DWORD flags, SIZE_T commitSize, SIZE_T totalSize, PRTL_HEAP_PARAMETERS Parameters) { SUBHEAP *subheap; FREE_LIST_ENTRY *pEntry; int i; NTSTATUS Status; if (!address && ZwAllocateVirtualMemory( NtCurrentProcess(), &address, 0, &commitSize, MEM_COMMIT, get_protection_type(flags) )) { WARN("Could not commit %08lx bytes for sub-heap %p\n", commitSize, address ); return FALSE; } /* Fill the sub-heap structure */ subheap = (SUBHEAP *)address; subheap->heap = heap; subheap->size = totalSize; subheap->commitSize = commitSize; subheap->magic = SUBHEAP_MAGIC; if ( subheap != (SUBHEAP *)heap ) { /* If this is a secondary subheap, insert it into list */ subheap->headerSize = ROUND_SIZE( sizeof(SUBHEAP) ); subheap->next = heap->subheap.next; heap->subheap.next = subheap; } else { /* If this is a primary subheap, initialize main heap */ subheap->headerSize = ROUND_SIZE( sizeof(HEAP) ); subheap->next = NULL; heap->flags = flags; heap->magic = HEAP_MAGIC; if (Parameters) heap->commitRoutine = Parameters->CommitRoutine; else heap->commitRoutine = NULL; InitializeListHead(&heap->UserDataHead); /* Build the free lists */ list_init( &heap->freeList[0].arena.entry ); for (i = 0, pEntry = heap->freeList; i < HEAP_NB_FREE_LISTS; i++, pEntry++) { pEntry->arena.size = 0 | ARENA_FLAG_FREE; pEntry->arena.magic = ARENA_FREE_MAGIC; if (i) list_add_after( &pEntry[-1].arena.entry, &pEntry->arena.entry ); } /* Initialize critical section */ if (RtlpGetMode() == UserMode) { if (!processHeap) /* do it by hand to avoid memory allocations */ { heap->critSection.DebugInfo = &process_heap_critsect_debug; heap->critSection.LockCount = -1; heap->critSection.RecursionCount = 0; heap->critSection.OwningThread = 0; heap->critSection.LockSemaphore = 0; heap->critSection.SpinCount = 0; process_heap_critsect_debug.CriticalSection = &heap->critSection; } else RtlInitializeHeapLock( &heap->critSection ); } } /* Commit memory */ if (heap->commitRoutine) { if (subheap != (SUBHEAP *)heap) { Status = heap->commitRoutine(heap, &address, &commitSize); } else { /* the caller is responsible for committing the first page! */ Status = STATUS_SUCCESS; } } else { Status = ZwAllocateVirtualMemory(NtCurrentProcess(), &address, 0, &commitSize, MEM_COMMIT, get_protection_type(flags)); } if (!NT_SUCCESS(Status)) { DPRINT("Could not commit %08lx bytes for sub-heap %p\n", commitSize, address); return FALSE; } /* Create the first free block */ HEAP_CreateFreeBlock( subheap, (LPBYTE)subheap + subheap->headerSize, subheap->size - subheap->headerSize ); return TRUE; } /*********************************************************************** * HEAP_CreateSubHeap * * Create a sub-heap of the given size. * If heap == NULL, creates a main heap. */ static SUBHEAP *HEAP_CreateSubHeap( HEAP *heap, void *base, DWORD flags, SIZE_T commitSize, SIZE_T totalSize, IN PRTL_HEAP_PARAMETERS Parameters) { LPVOID address = base; /* round-up sizes on a 64K boundary */ totalSize = (totalSize + 0xffff) & 0xffff0000; commitSize = (commitSize + 0xffff) & 0xffff0000; if (!commitSize) commitSize = 0x10000; totalSize = min( totalSize, 0xffff0000 ); /* don't allow a heap larger than 4Gb */ if (totalSize < commitSize) totalSize = commitSize; if (!address) { /* allocate the memory block */ if (ZwAllocateVirtualMemory( NtCurrentProcess(), &address, 0, &totalSize, MEM_RESERVE | MEM_COMMIT, get_protection_type(flags) )) { WARN("Could not allocate %08lx bytes\n", totalSize ); return NULL; } } /* Initialize subheap */ if (!HEAP_InitSubHeap( heap ? heap : (HEAP *)address, address, flags, commitSize, totalSize, Parameters )) { SIZE_T size = 0; if (!base) ZwFreeVirtualMemory( NtCurrentProcess(), &address, &size, MEM_RELEASE ); return NULL; } return (SUBHEAP *)address; } /*********************************************************************** * HEAP_FindFreeBlock * * Find a free block at least as large as the requested size, and make sure * the requested size is committed. */ static ARENA_FREE *HEAP_FindFreeBlock( HEAP *heap, SIZE_T size, SUBHEAP **ppSubHeap ) { SUBHEAP *subheap; struct list *ptr; SIZE_T total_size; FREE_LIST_ENTRY *pEntry = heap->freeList + get_freelist_index( size + sizeof(ARENA_INUSE) ); /* Find a suitable free list, and in it find a block large enough */ ptr = &pEntry->arena.entry; while ((ptr = list_next( &heap->freeList[0].arena.entry, ptr ))) { ARENA_FREE *pArena = LIST_ENTRY( ptr, ARENA_FREE, entry ); SIZE_T arena_size = (pArena->size & ARENA_SIZE_MASK) + sizeof(ARENA_FREE) - sizeof(ARENA_INUSE); if (arena_size >= size) { subheap = HEAP_FindSubHeap( heap, pArena ); if (!HEAP_Commit( subheap, (ARENA_INUSE *)pArena, size )) return NULL; *ppSubHeap = subheap; return pArena; } } /* If no block was found, attempt to grow the heap */ if (!(heap->flags & HEAP_GROWABLE)) { ERR("Not enough space in heap %p for %08lx bytes\n", heap, size ); return NULL; } /* make sure that we have a big enough size *committed* to fit another * last free arena in ! * So just one heap struct, one first free arena which will eventually * get used, and a second free arena that might get assigned all remaining * free space in HEAP_ShrinkBlock() */ total_size = size + ROUND_SIZE(sizeof(SUBHEAP)) + sizeof(ARENA_INUSE) + sizeof(ARENA_FREE); if (total_size < size) return NULL; /* overflow */ if (!(subheap = HEAP_CreateSubHeap( heap, NULL, heap->flags, total_size, max( HEAP_DEF_SIZE, total_size ), NULL ))) return NULL; TRACE("created new sub-heap %p of %08lx bytes for heap %p\n", subheap, size, heap ); *ppSubHeap = subheap; return (ARENA_FREE *)(subheap + 1); } /*********************************************************************** * HEAP_IsValidArenaPtr * * Check that the pointer is inside the range possible for arenas. */ static BOOL HEAP_IsValidArenaPtr( const HEAP *heap, const void *ptr ) { int i; const SUBHEAP *subheap = HEAP_FindSubHeap( heap, ptr ); if (!subheap) return FALSE; if ((const char *)ptr >= (const char *)subheap + subheap->headerSize) return TRUE; if (subheap != &heap->subheap) return FALSE; for (i = 0; i < HEAP_NB_FREE_LISTS; i++) if (ptr == (const void *)&heap->freeList[i].arena) return TRUE; return FALSE; } /*********************************************************************** * HEAP_ValidateFreeArena */ static BOOL HEAP_ValidateFreeArena( SUBHEAP *subheap, ARENA_FREE *pArena ) { ARENA_FREE *prev, *next; char *heapEnd = (char *)subheap + subheap->size; /* Check for unaligned pointers */ if ( (ULONG_PTR)pArena % ALIGNMENT != ARENA_OFFSET ) { ERR("Heap %p: unaligned arena pointer %p\n", subheap->heap, pArena ); return FALSE; } /* Check magic number */ if (pArena->magic != ARENA_FREE_MAGIC) { ERR("Heap %p: invalid free arena magic for %p\n", subheap->heap, pArena ); return FALSE; } /* Check size flags */ if (!(pArena->size & ARENA_FLAG_FREE) || (pArena->size & ARENA_FLAG_PREV_FREE)) { ERR("Heap %p: bad flags %08lx for free arena %p\n", subheap->heap, pArena->size & ~ARENA_SIZE_MASK, pArena ); return FALSE; } /* Check arena size */ if ((char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK) > heapEnd) { ERR("Heap %p: bad size %08lx for free arena %p\n", subheap->heap, pArena->size & ARENA_SIZE_MASK, pArena ); return FALSE; } /* Check that next pointer is valid */ next = LIST_ENTRY( pArena->entry.next, ARENA_FREE, entry ); if (!HEAP_IsValidArenaPtr( subheap->heap, next )) { ERR("Heap %p: bad next ptr %p for arena %p\n", subheap->heap, next, pArena ); return FALSE; } /* Check that next arena is free */ if (!(next->size & ARENA_FLAG_FREE) || (next->magic != ARENA_FREE_MAGIC)) { ERR("Heap %p: next arena %p invalid for %p\n", subheap->heap, next, pArena ); return FALSE; } /* Check that prev pointer is valid */ prev = LIST_ENTRY( pArena->entry.prev, ARENA_FREE, entry ); if (!HEAP_IsValidArenaPtr( subheap->heap, prev )) { ERR("Heap %p: bad prev ptr %p for arena %p\n", subheap->heap, prev, pArena ); return FALSE; } /* Check that prev arena is free */ if (!(prev->size & ARENA_FLAG_FREE) || (prev->magic != ARENA_FREE_MAGIC)) { /* this often means that the prev arena got overwritten * by a memory write before that prev arena */ ERR("Heap %p: prev arena %p invalid for %p\n", subheap->heap, prev, pArena ); return FALSE; } /* Check that next block has PREV_FREE flag */ if ((char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK) < heapEnd) { if (!(*(DWORD *)((char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK)) & ARENA_FLAG_PREV_FREE)) { ERR("Heap %p: free arena %p next block has no PREV_FREE flag\n", subheap->heap, pArena ); return FALSE; } /* Check next block back pointer */ if (*((ARENA_FREE **)((char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK)) - 1) != pArena) { ERR("Heap %p: arena %p has wrong back ptr %p\n", subheap->heap, pArena, *((ARENA_FREE **)((char *)(pArena+1) + (pArena->size & ARENA_SIZE_MASK)) - 1)); return FALSE; } } return TRUE; } /*********************************************************************** * HEAP_ValidateInUseArena */ static BOOL HEAP_ValidateInUseArena( const SUBHEAP *subheap, const ARENA_INUSE *pArena, BOOL quiet ) { const char *heapEnd = (const char *)subheap + subheap->size; /* Check for unaligned pointers */ if ( (ULONG_PTR)pArena % ALIGNMENT != ARENA_OFFSET ) { if ( quiet == NOISY ) { ERR( "Heap %p: unaligned arena pointer %p\n", subheap->heap, pArena ); if ( TRACE_ON(heap) ) HEAP_Dump( subheap->heap ); } else if ( WARN_ON(heap) ) { WARN( "Heap %p: unaligned arena pointer %p\n", subheap->heap, pArena ); if ( TRACE_ON(heap) ) HEAP_Dump( subheap->heap ); } return FALSE; } /* Check magic number */ if (pArena->magic != ARENA_INUSE_MAGIC) { if (quiet == NOISY) { ERR("Heap %p: invalid in-use arena magic for %p\n", subheap->heap, pArena ); if (TRACE_ON(heap)) HEAP_Dump( subheap->heap ); } else if (WARN_ON(heap)) { WARN("Heap %p: invalid in-use arena magic for %p\n", subheap->heap, pArena ); if (TRACE_ON(heap)) HEAP_Dump( subheap->heap ); } return FALSE; } /* Check size flags */ if (pArena->size & ARENA_FLAG_FREE) { ERR("Heap %p: bad flags %08lx for in-use arena %p\n", subheap->heap, pArena->size & ~ARENA_SIZE_MASK, pArena ); return FALSE; } /* Check arena size */ if ((const char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK) > heapEnd) { ERR("Heap %p: bad size %08lx for in-use arena %p\n", subheap->heap, pArena->size & ARENA_SIZE_MASK, pArena ); return FALSE; } /* Check next arena PREV_FREE flag */ if (((const char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK) < heapEnd) && (*(const DWORD *)((const char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK)) & ARENA_FLAG_PREV_FREE)) { ERR("Heap %p: in-use arena %p next block has PREV_FREE flag\n", subheap->heap, pArena ); return FALSE; } /* Check prev free arena */ if (pArena->size & ARENA_FLAG_PREV_FREE) { const ARENA_FREE *pPrev = *((const ARENA_FREE * const*)pArena - 1); /* Check prev pointer */ if (!HEAP_IsValidArenaPtr( subheap->heap, pPrev )) { ERR("Heap %p: bad back ptr %p for arena %p\n", subheap->heap, pPrev, pArena ); return FALSE; } /* Check that prev arena is free */ if (!(pPrev->size & ARENA_FLAG_FREE) || (pPrev->magic != ARENA_FREE_MAGIC)) { ERR("Heap %p: prev arena %p invalid for in-use %p\n", subheap->heap, pPrev, pArena ); return FALSE; } /* Check that prev arena is really the previous block */ if ((const char *)(pPrev + 1) + (pPrev->size & ARENA_SIZE_MASK) != (const char *)pArena) { ERR("Heap %p: prev arena %p is not prev for in-use %p\n", subheap->heap, pPrev, pArena ); return FALSE; } } return TRUE; } /*********************************************************************** * HEAP_IsRealArena [Internal] * Validates a block is a valid arena. * * RETURNS * TRUE: Success * FALSE: Failure */ static BOOL HEAP_IsRealArena( HEAP *heapPtr, /* [in] ptr to the heap */ DWORD flags, /* [in] Bit flags that control access during operation */ LPCVOID block, /* [in] Optional pointer to memory block to validate */ BOOL quiet ) /* [in] Flag - if true, HEAP_ValidateInUseArena * does not complain */ { SUBHEAP *subheap; BOOL ret = TRUE; if (!heapPtr || (heapPtr->magic != HEAP_MAGIC)) { ERR("Invalid heap %p!\n", heapPtr ); return FALSE; } flags &= HEAP_NO_SERIALIZE; flags |= heapPtr->flags; /* calling HeapLock may result in infinite recursion, so do the critsect directly */ if (!(flags & HEAP_NO_SERIALIZE)) RtlEnterHeapLock( &heapPtr->critSection ); if (block) { /* Only check this single memory block */ if (!(subheap = HEAP_FindSubHeap( heapPtr, block )) || ((const char *)block < (char *)subheap + subheap->headerSize + sizeof(ARENA_INUSE))) { if (quiet == NOISY) ERR("Heap %p: block %p is not inside heap\n", heapPtr, block ); else if (WARN_ON(heap)) WARN("Heap %p: block %p is not inside heap\n", heapPtr, block ); ret = FALSE; } else ret = HEAP_ValidateInUseArena( subheap, (const ARENA_INUSE *)block - 1, quiet ); if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); return ret; } subheap = &heapPtr->subheap; while (subheap && ret) { char *ptr = (char *)subheap + subheap->headerSize; while (ptr < (char *)subheap + subheap->size) { if (*(DWORD *)ptr & ARENA_FLAG_FREE) { if (!HEAP_ValidateFreeArena( subheap, (ARENA_FREE *)ptr )) { ret = FALSE; break; } ptr += sizeof(ARENA_FREE) + (*(DWORD *)ptr & ARENA_SIZE_MASK); } else { if (!HEAP_ValidateInUseArena( subheap, (ARENA_INUSE *)ptr, NOISY )) { ret = FALSE; break; } ptr += sizeof(ARENA_INUSE) + (*(DWORD *)ptr & ARENA_SIZE_MASK); } } subheap = subheap->next; } if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); return ret; } /*********************************************************************** * HeapCreate (KERNEL32.336) * RETURNS * Handle of heap: Success * NULL: Failure * * @implemented */ HANDLE NTAPI RtlCreateHeap(ULONG flags, PVOID addr, SIZE_T totalSize, SIZE_T commitSize, PVOID Lock, PRTL_HEAP_PARAMETERS Parameters) { SUBHEAP *subheap; /* Allocate the heap block */ if (!totalSize) { totalSize = HEAP_DEF_SIZE; flags |= HEAP_GROWABLE; } if (!(subheap = HEAP_CreateSubHeap( NULL, addr, flags, commitSize, totalSize, Parameters ))) return 0; if (RtlpGetMode() == UserMode) { /* link it into the per-process heap list */ if (processHeap) { HEAP *heapPtr = subheap->heap; RtlEnterHeapLock( &processHeap->critSection ); list_add_head( &processHeap->entry, &heapPtr->entry ); RtlLeaveHeapLock( &processHeap->critSection ); } else { processHeap = subheap->heap; /* assume the first heap we create is the process main heap */ list_init( &processHeap->entry ); assert( (ULONG_PTR)processHeap->freeList % ALIGNMENT == ARENA_OFFSET ); } } return (HANDLE)subheap; } /*********************************************************************** * HeapDestroy (KERNEL32.337) * RETURNS * TRUE: Success * FALSE: Failure * * @implemented * * RETURNS * Success: A NULL HANDLE, if heap is NULL or it was destroyed * Failure: The Heap handle, if heap is the process heap. */ HANDLE NTAPI RtlDestroyHeap(HANDLE heap) /* [in] Handle of heap */ { HEAP *heapPtr = HEAP_GetPtr( heap ); SUBHEAP *subheap; DPRINT("%p\n", heap ); if (!heapPtr) return heap; if (RtlpGetMode() == UserMode) { if (heap == NtCurrentPeb()->ProcessHeap) return heap; /* cannot delete the main process heap */ /* remove it from the per-process list */ RtlEnterHeapLock( &processHeap->critSection ); list_remove( &heapPtr->entry ); RtlLeaveHeapLock( &processHeap->critSection ); } RtlDeleteHeapLock( &heapPtr->critSection ); subheap = &heapPtr->subheap; while (subheap) { SUBHEAP *next = subheap->next; SIZE_T size = 0; void *addr = subheap; ZwFreeVirtualMemory( NtCurrentProcess(), &addr, &size, MEM_RELEASE ); subheap = next; } return (HANDLE)NULL; } /*********************************************************************** * HeapAlloc (KERNEL32.334) * RETURNS * Pointer to allocated memory block * NULL: Failure * 0x7d030f60--invalid flags in RtlHeapAllocate * @implemented */ PVOID NTAPI RtlAllocateHeap(HANDLE heap, /* [in] Handle of private heap block */ ULONG flags, /* [in] Heap allocation control flags */ SIZE_T size) /* [in] Number of bytes to allocate */ { ARENA_FREE *pArena; ARENA_INUSE *pInUse; SUBHEAP *subheap; HEAP *heapPtr = HEAP_GetPtr( heap ); SIZE_T rounded_size; /* Validate the parameters */ if (!heapPtr) { if (flags & HEAP_GENERATE_EXCEPTIONS) RtlRaiseStatus( STATUS_NO_MEMORY ); return NULL; } //flags &= HEAP_GENERATE_EXCEPTIONS | HEAP_NO_SERIALIZE | HEAP_ZERO_MEMORY; flags |= heapPtr->flags; rounded_size = ROUND_SIZE(size); if (rounded_size < size) /* overflow */ { if (flags & HEAP_GENERATE_EXCEPTIONS) RtlRaiseStatus( STATUS_NO_MEMORY ); return NULL; } if (rounded_size < HEAP_MIN_DATA_SIZE) rounded_size = HEAP_MIN_DATA_SIZE; if (!(flags & HEAP_NO_SERIALIZE)) RtlEnterHeapLock( &heapPtr->critSection ); /* Locate a suitable free block */ if (!(pArena = HEAP_FindFreeBlock( heapPtr, rounded_size, &subheap ))) { TRACE("(%p,%08lx,%08lx): returning NULL\n", heap, flags, size ); if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); if (flags & HEAP_GENERATE_EXCEPTIONS) RtlRaiseStatus( STATUS_NO_MEMORY ); return NULL; } /* Remove the arena from the free list */ list_remove( &pArena->entry ); /* Build the in-use arena */ pInUse = (ARENA_INUSE *)pArena; /* in-use arena is smaller than free arena, * so we have to add the difference to the size */ pInUse->size = (pInUse->size & ~ARENA_FLAG_FREE) + sizeof(ARENA_FREE) - sizeof(ARENA_INUSE); pInUse->magic = ARENA_INUSE_MAGIC; pInUse->has_user_data = 0; /* Shrink the block */ HEAP_ShrinkBlock( subheap, pInUse, rounded_size ); pInUse->unused_bytes = (pInUse->size & ARENA_SIZE_MASK) - size; if (flags & HEAP_ZERO_MEMORY) { clear_block( pInUse + 1, size ); mark_block_uninitialized( (char *)(pInUse + 1) + size, pInUse->unused_bytes ); } else mark_block_uninitialized( pInUse + 1, pInUse->size & ARENA_SIZE_MASK ); if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); TRACE("(%p,%08lx,%08lx): returning %p\n", heap, flags, size, pInUse + 1 ); return (LPVOID)(pInUse + 1); } /*********************************************************************** * HeapFree (KERNEL32.338) * RETURNS * TRUE: Success * FALSE: Failure * * @implemented */ BOOLEAN NTAPI RtlFreeHeap( HANDLE heap, /* [in] Handle of heap */ ULONG flags, /* [in] Heap freeing flags */ PVOID ptr /* [in] Address of memory to free */ ) { ARENA_INUSE *pInUse; SUBHEAP *subheap; HEAP *heapPtr; /* Validate the parameters */ if (!ptr) return TRUE; /* freeing a NULL ptr isn't an error in Win2k */ heapPtr = HEAP_GetPtr( heap ); if (!heapPtr) { RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE ); return FALSE; } flags &= HEAP_NO_SERIALIZE; flags |= heapPtr->flags; if (!(flags & HEAP_NO_SERIALIZE)) RtlEnterHeapLock( &heapPtr->critSection ); if (!HEAP_IsRealArena( heapPtr, HEAP_NO_SERIALIZE, ptr, QUIET )) { if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_PARAMETER ); TRACE("(%p,%08lx,%p): returning FALSE\n", heap, flags, ptr ); return FALSE; } /* Some sanity checks */ pInUse = (ARENA_INUSE *)ptr - 1; subheap = HEAP_FindSubHeap( heapPtr, pInUse ); if ((char *)pInUse < (char *)subheap + subheap->headerSize) goto error; if (!HEAP_ValidateInUseArena( subheap, pInUse, QUIET )) goto error; /* Turn the block into a free block */ HEAP_MakeInUseBlockFree( subheap, pInUse ); if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); TRACE("(%p,%08lx,%p): returning TRUE\n", heap, flags, ptr ); return TRUE; error: if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_PARAMETER ); TRACE("(%p,%08x,%p): returning FALSE\n", heap, flags, ptr ); return FALSE; } /*********************************************************************** * RtlReAllocateHeap * PARAMS * Heap [in] Handle of heap block * Flags [in] Heap reallocation flags * Ptr, [in] Address of memory to reallocate * Size [in] Number of bytes to reallocate * * RETURNS * Pointer to reallocated memory block * NULL: Failure * 0x7d030f60--invalid flags in RtlHeapAllocate * @implemented */ PVOID NTAPI RtlReAllocateHeap( HANDLE heap, ULONG flags, PVOID ptr, SIZE_T size ) { ARENA_INUSE *pArena; HEAP *heapPtr; SUBHEAP *subheap; SIZE_T oldBlockSize, oldActualSize, rounded_size; if (!ptr) return NULL; if (!(heapPtr = HEAP_GetPtr( heap ))) { RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE ); return NULL; } /* Validate the parameters */ //Flags &= HEAP_GENERATE_EXCEPTIONS | HEAP_NO_SERIALIZE | HEAP_ZERO_MEMORY | // HEAP_REALLOC_IN_PLACE_ONLY; flags |= heapPtr->flags; if (!(flags & HEAP_NO_SERIALIZE)) RtlEnterHeapLock( &heapPtr->critSection ); rounded_size = ROUND_SIZE(size); if (rounded_size < size) goto oom; /* overflow */ if (rounded_size < HEAP_MIN_DATA_SIZE) rounded_size = HEAP_MIN_DATA_SIZE; pArena = (ARENA_INUSE *)ptr - 1; if(!(subheap = HEAP_FindSubHeap( heapPtr, pArena ))) goto done; if ((char *)pArena < (char *)subheap + subheap->headerSize) goto error; if (!HEAP_ValidateInUseArena( subheap, pArena, QUIET )) goto error; oldBlockSize = (pArena->size & ARENA_SIZE_MASK); oldActualSize = (pArena->size & ARENA_SIZE_MASK) - pArena->unused_bytes; if (rounded_size > oldBlockSize) { char *pNext = (char *)(pArena + 1) + oldBlockSize; if ((pNext < (char *)subheap + subheap->size) && (*(DWORD *)pNext & ARENA_FLAG_FREE) && (oldBlockSize + (*(DWORD *)pNext & ARENA_SIZE_MASK) + sizeof(ARENA_FREE) >= rounded_size)) { ARENA_FREE *pFree = (ARENA_FREE *)pNext; list_remove( &pFree->entry ); pArena->size += (pFree->size & ARENA_SIZE_MASK) + sizeof(*pFree); if (!HEAP_Commit( subheap, pArena, rounded_size )) goto oom; HEAP_ShrinkBlock( subheap, pArena, rounded_size ); mark_block_initialized( pArena + 1, oldActualSize ); } else /* Do it the hard way */ { ARENA_FREE *pNew; ARENA_INUSE *pInUse; SUBHEAP *newsubheap; if ((flags & HEAP_REALLOC_IN_PLACE_ONLY) || !(pNew = HEAP_FindFreeBlock( heapPtr, rounded_size, &newsubheap ))) goto oom; /* Build the in-use arena */ list_remove( &pNew->entry ); pInUse = (ARENA_INUSE *)pNew; pInUse->size = (pInUse->size & ~ARENA_FLAG_FREE) + sizeof(ARENA_FREE) - sizeof(ARENA_INUSE); pInUse->magic = ARENA_INUSE_MAGIC; HEAP_ShrinkBlock( newsubheap, pInUse, rounded_size ); mark_block_initialized( pInUse + 1, oldActualSize ); memcpy( pInUse + 1, pArena + 1, oldActualSize ); /* Free the previous block */ HEAP_MakeInUseBlockFree( subheap, pArena ); subheap = newsubheap; pArena = pInUse; } } else { HEAP_ShrinkBlock( subheap, pArena, rounded_size ); /* Shrink the block */ mark_block_initialized( pArena + 1, size ); } pArena->unused_bytes = (pArena->size & ARENA_SIZE_MASK) - size; /* Clear the extra bytes if needed */ if (size > oldActualSize) { if (flags & HEAP_ZERO_MEMORY) { clear_block( (char *)(pArena + 1) + oldActualSize, size - oldActualSize ); mark_block_uninitialized( (char *)(pArena + 1) + size, (pArena->size & ARENA_SIZE_MASK) - oldActualSize ); } else mark_block_uninitialized( (char *)(pArena + 1) + oldActualSize, (pArena->size & ARENA_SIZE_MASK) - oldActualSize ); } /* Return the new arena */ done: if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); TRACE("(%p,%08lx,%p,%08lx): returning %p\n", heap, flags, ptr, size, pArena + 1 ); return (LPVOID)(pArena + 1); oom: if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); if (flags & HEAP_GENERATE_EXCEPTIONS) RtlRaiseStatus( STATUS_NO_MEMORY ); RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_NO_MEMORY ); TRACE("(%p,%08x,%p,%08lx): returning oom\n", heap, flags, ptr, size ); return NULL; error: if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_PARAMETER ); TRACE("(%p,%08x,%p,%08lx): returning error\n", heap, flags, ptr, size ); return NULL; } /*********************************************************************** * RtlCompactHeap * * @unimplemented */ ULONG NTAPI RtlCompactHeap(HANDLE Heap, ULONG Flags) { UNIMPLEMENTED; return 0; } /*********************************************************************** * RtlLockHeap * Attempts to acquire the critical section object for a specified heap. * * PARAMS * Heap [in] Handle of heap to lock for exclusive access * * RETURNS * TRUE: Success * FALSE: Failure * * @implemented */ BOOLEAN NTAPI RtlLockHeap(IN HANDLE Heap) { HEAP *heapPtr = HEAP_GetPtr( Heap ); if (!heapPtr) return FALSE; RtlEnterHeapLock( &heapPtr->critSection ); return TRUE; } /*********************************************************************** * RtlUnlockHeap * Releases ownership of the critical section object. * * PARAMS * Heap [in] Handle to the heap to unlock * * RETURNS * TRUE: Success * FALSE: Failure * * @implemented */ BOOLEAN NTAPI RtlUnlockHeap(HANDLE Heap) { HEAP *heapPtr = HEAP_GetPtr( Heap ); if (!heapPtr) return FALSE; RtlLeaveHeapLock( &heapPtr->critSection ); return TRUE; } /*********************************************************************** * RtlSizeHeap * PARAMS * Heap [in] Handle of heap * Flags [in] Heap size control flags * Ptr [in] Address of memory to return size for * * RETURNS * Size in bytes of allocated memory * 0xffffffff: Failure * * @implemented */ SIZE_T NTAPI RtlSizeHeap( HANDLE heap, ULONG flags, PVOID ptr ) { SIZE_T ret; HEAP *heapPtr = HEAP_GetPtr( heap ); if (!heapPtr) { RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE ); return MAXULONG; } flags &= HEAP_NO_SERIALIZE; flags |= heapPtr->flags; if (!(flags & HEAP_NO_SERIALIZE)) RtlEnterHeapLock( &heapPtr->critSection ); if (!HEAP_IsRealArena( heapPtr, HEAP_NO_SERIALIZE, ptr, QUIET )) { RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_PARAMETER ); ret = MAXULONG; } else { const ARENA_INUSE *pArena = (const ARENA_INUSE *)ptr - 1; ret = (pArena->size & ARENA_SIZE_MASK) - pArena->unused_bytes; } if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection ); TRACE("(%p,%08lx,%p): returning %08lx\n", heap, flags, ptr, ret ); return ret; } /*********************************************************************** * RtlValidateHeap * Validates a specified heap. * * PARAMS * Heap [in] Handle to the heap * Flags [in] Bit flags that control access during operation * Block [in] Optional pointer to memory block to validate * * NOTES * Flags is ignored. * * RETURNS * TRUE: Success * FALSE: Failure * * @implemented */ BOOLEAN NTAPI RtlValidateHeap( HANDLE Heap, ULONG Flags, PVOID Block ) { HEAP *heapPtr = HEAP_GetPtr( Heap ); if (!heapPtr) return FALSE; return HEAP_IsRealArena( heapPtr, Flags, Block, QUIET ); } VOID RtlInitializeHeapManager(VOID) { PPEB Peb; Peb = NtCurrentPeb(); Peb->NumberOfHeaps = 0; Peb->MaximumNumberOfHeaps = -1; /* no limit */ Peb->ProcessHeaps = NULL; //RtlInitializeHeapLock(&RtlpProcessHeapsListLock); } /* * @implemented */ NTSTATUS NTAPI RtlEnumProcessHeaps(PHEAP_ENUMERATION_ROUTINE HeapEnumerationRoutine, PVOID lParam) { NTSTATUS Status = STATUS_SUCCESS; struct list *ptr=NULL; RtlEnterHeapLock(&processHeap->critSection); Status=HeapEnumerationRoutine(processHeap,lParam); LIST_FOR_EACH( ptr, &processHeap->entry ) { if (!NT_SUCCESS(Status)) break; Status = HeapEnumerationRoutine(ptr,lParam); } RtlLeaveHeapLock(&processHeap->critSection); return Status; } /* * @implemented */ ULONG NTAPI RtlGetProcessHeaps(ULONG count, HANDLE *heaps ) { ULONG total = 1; /* main heap */ struct list *ptr; ULONG i=0; RtlEnterHeapLock( &processHeap->critSection ); LIST_FOR_EACH( ptr, &processHeap->entry ) total++; //if (total <= count) { *(heaps++) = processHeap; i++; LIST_FOR_EACH( ptr, &processHeap->entry ) { if (i >= count) break; i++; *(heaps++) = LIST_ENTRY( ptr, HEAP, entry ); } } RtlLeaveHeapLock( &processHeap->critSection ); return i; } /* * @implemented */ BOOLEAN NTAPI RtlValidateProcessHeaps(VOID) { BOOLEAN Result = TRUE; HEAP ** pptr; RtlEnterHeapLock( &processHeap->critSection ); for (pptr = (HEAP**)&NtCurrentPeb()->ProcessHeaps; *pptr; pptr++) { if (!RtlValidateHeap(*pptr, 0, NULL)) { Result = FALSE; break; } } RtlLeaveHeapLock( &processHeap->critSection ); return Result; } /* * @unimplemented */ BOOLEAN NTAPI RtlZeroHeap( IN PVOID HeapHandle, IN ULONG Flags ) { UNIMPLEMENTED; return FALSE; } /* * @implemented */ BOOLEAN NTAPI RtlSetUserValueHeap(IN PVOID HeapHandle, IN ULONG Flags, IN PVOID BaseAddress, IN PVOID UserValue) { HEAP *heapPtr; PHEAP_USER_DATA udata; heapPtr = HEAP_GetPtr(HeapHandle); if (!heapPtr) { RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE ); return FALSE; } udata = HEAP_GetUserData(heapPtr, BaseAddress); if (!udata) { udata = HEAP_AllocUserData(heapPtr, BaseAddress); if (!udata) return FALSE; } udata->UserValue = UserValue; return TRUE; } /* * @implemented */ BOOLEAN NTAPI RtlSetUserFlagsHeap(IN PVOID HeapHandle, IN ULONG Flags, IN PVOID BaseAddress, IN ULONG UserFlags) { HEAP *heapPtr; PHEAP_USER_DATA udata; heapPtr = HEAP_GetPtr(HeapHandle); if (!heapPtr) { RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE ); return FALSE; } udata = HEAP_GetUserData(heapPtr, BaseAddress); if (!udata) { udata = HEAP_AllocUserData(heapPtr, BaseAddress); if (!udata) return FALSE; } udata->UserFlags = UserFlags & HEAP_SETTABLE_USER_FLAGS; return TRUE; } /* * @implemented */ BOOLEAN NTAPI RtlGetUserInfoHeap(IN PVOID HeapHandle, IN ULONG Flags, IN PVOID BaseAddress, OUT PVOID *UserValue, OUT PULONG UserFlags) { HEAP *heapPtr; PHEAP_USER_DATA udata; heapPtr = HEAP_GetPtr(HeapHandle); if (!heapPtr) { RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE ); return FALSE; } udata = HEAP_GetUserData(heapPtr, BaseAddress); if (!udata) { RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_PARAMETER ); return FALSE; } if (UserValue) *UserValue = udata->UserValue; if (UserFlags) *UserFlags = udata->UserFlags; return TRUE; } /* * @unimplemented */ NTSTATUS NTAPI RtlUsageHeap(IN HANDLE Heap, IN ULONG Flags, OUT PRTL_HEAP_USAGE Usage) { /* TODO */ UNIMPLEMENTED; return STATUS_NOT_IMPLEMENTED; } PWSTR NTAPI RtlQueryTagHeap(IN PVOID HeapHandle, IN ULONG Flags, IN USHORT TagIndex, IN BOOLEAN ResetCounters, OUT PRTL_HEAP_TAG_INFO HeapTagInfo) { /* TODO */ UNIMPLEMENTED; return NULL; } ULONG NTAPI RtlExtendHeap(IN HANDLE Heap, IN ULONG Flags, IN PVOID P, IN SIZE_T Size) { /* TODO */ UNIMPLEMENTED; return 0; } ULONG NTAPI RtlCreateTagHeap(IN HANDLE HeapHandle, IN ULONG Flags, IN PWSTR TagName, IN PWSTR TagSubName) { /* TODO */ UNIMPLEMENTED; return 0; } NTSTATUS NTAPI RtlWalkHeap(IN HANDLE HeapHandle, IN PVOID HeapEntry) { UNIMPLEMENTED; return STATUS_NOT_IMPLEMENTED; } PVOID NTAPI RtlProtectHeap(IN PVOID HeapHandle, IN BOOLEAN ReadOnly) { UNIMPLEMENTED; return NULL; } DWORD NTAPI RtlSetHeapInformation(IN HANDLE HeapHandle OPTIONAL, IN HEAP_INFORMATION_CLASS HeapInformationClass, IN PVOID HeapInformation, IN SIZE_T HeapInformationLength) { UNIMPLEMENTED; return 0; } DWORD NTAPI RtlQueryHeapInformation(HANDLE HeapHandle, HEAP_INFORMATION_CLASS HeapInformationClass, PVOID HeapInformation OPTIONAL, SIZE_T HeapInformationLength OPTIONAL, PSIZE_T ReturnLength OPTIONAL) { HEAP *heapPtr; heapPtr = HEAP_GetPtr(HeapHandle); if (!heapPtr) { RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE ); return FALSE; } UNIMPLEMENTED switch (HeapInformationClass) { case HeapCompatibilityInformation: if (ReturnLength) *ReturnLength = sizeof(ULONG); if (HeapInformationLength < sizeof(ULONG)) return STATUS_BUFFER_TOO_SMALL; *(ULONG *)HeapInformation = 0; /* standard heap */ return STATUS_SUCCESS; default: return STATUS_INVALID_INFO_CLASS; } } DWORD NTAPI RtlMultipleAllocateHeap(IN PVOID HeapHandle, IN DWORD Flags, IN SIZE_T Size, IN DWORD Count, OUT PVOID *Array) { UNIMPLEMENTED; return 0; } DWORD NTAPI RtlMultipleFreeHeap(IN PVOID HeapHandle, IN DWORD Flags, IN DWORD Count, OUT PVOID *Array) { UNIMPLEMENTED; return 0; }