/* $Id: shade.c,v 1.10 1997/12/18 02:54:48 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 2.6 * Copyright (C) 1995-1997 Brian Paul * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * $Log: shade.c,v $ * Revision 1.10 1997/12/18 02:54:48 brianp * now using FloatToInt() macro for better performance on x86 * * Revision 1.9 1997/07/24 01:21:56 brianp * changed precompiled header symbol from PCH to PC_HEADER * * Revision 1.8 1997/07/09 03:04:44 brianp * fixed bug in gl_color_shade_vertices() with GL_COLOR_MATERIAL * * Revision 1.7 1997/07/05 16:24:26 brianp * fixed FP underflow problem in pow(). Renamed h[xyz] to h_[xyz]. * * Revision 1.6 1997/06/20 04:15:43 brianp * optimized changing of SHININESS (Henk Kok) * * Revision 1.5 1997/06/20 02:28:40 brianp * changed color components from GLfixed to GLubyte * * Revision 1.4 1997/05/28 03:26:29 brianp * added precompiled header (PCH) support * * Revision 1.3 1997/05/23 03:01:18 brianp * commented out a few const keywords because IRIX cc chokes on them * * Revision 1.2 1997/05/09 02:41:08 brianp * call GL_SQRT() instead of sqrt() * * Revision 1.1 1997/04/01 04:11:04 brianp * Initial revision * */ #ifdef PC_HEADER #include "all.h" #else #include #include "macros.h" #include "mmath.h" #include "shade.h" #include "types.h" #endif /* * Return x^y. */ static GLfloat gl_pow( GLfloat x, GLfloat y ) { GLdouble z = pow(x, y); if (z<1.0e-10) return 0.0F; else return (GLfloat) z; } /* * Use current lighting/material settings to compute the RGBA colors of * an array of vertexes. * Input: side - 0=use front material, 1=use back material * n - number of vertexes to process * vertex - array of vertex positions in eye coordinates * normal - array of surface normal vectors * Output: color - array of resulting colors */ void gl_color_shade_vertices( GLcontext *ctx, GLuint side, GLuint n, /*const*/ GLfloat vertex[][4], /*const*/ GLfloat normal[][3], GLubyte color[][4] ) { GLint j; GLfloat rscale, gscale, bscale, ascale; GLfloat baseR, baseG, baseB, baseA; GLint sumA; struct gl_light *light; struct gl_material *mat; /* Compute scale factor to go from floats in [0,1] to integers or fixed * point values: */ rscale = ctx->Visual->RedScale; gscale = ctx->Visual->GreenScale; bscale = ctx->Visual->BlueScale; ascale = ctx->Visual->AlphaScale; mat = &ctx->Light.Material[side]; /*** Compute color contribution from global lighting ***/ baseR = mat->Emission[0] + ctx->Light.Model.Ambient[0] * mat->Ambient[0]; baseG = mat->Emission[1] + ctx->Light.Model.Ambient[1] * mat->Ambient[1]; baseB = mat->Emission[2] + ctx->Light.Model.Ambient[2] * mat->Ambient[2]; baseA = mat->Diffuse[3]; /* Alpha is simple, same for all vertices */ sumA = (GLint) (CLAMP( baseA, 0.0F, 1.0F ) * ascale); for (j=0;jLight.FirstEnabled; light; light=light->NextEnabled) { GLfloat ambientR, ambientG, ambientB; GLfloat attenuation, spot; GLfloat VPx, VPy, VPz; /* unit vector from vertex to light */ GLfloat n_dot_VP; /* n dot VP */ /* compute VP and attenuation */ if (light->Position[3]==0.0) { /* directional light */ VPx = light->VP_inf_norm[0]; VPy = light->VP_inf_norm[1]; VPz = light->VP_inf_norm[2]; attenuation = 1.0F; } else { /* positional light */ GLfloat d; /* distance from vertex to light */ VPx = light->Position[0] - vertex[j][0]; VPy = light->Position[1] - vertex[j][1]; VPz = light->Position[2] - vertex[j][2]; d = (GLfloat) GL_SQRT( VPx*VPx + VPy*VPy + VPz*VPz ); if (d>0.001F) { GLfloat invd = 1.0F / d; VPx *= invd; VPy *= invd; VPz *= invd; } attenuation = 1.0F / (light->ConstantAttenuation + d * (light->LinearAttenuation + d * light->QuadraticAttenuation)); } /* spotlight factor */ if (light->SpotCutoff==180.0F) { /* not a spot light */ spot = 1.0F; } else { GLfloat PVx, PVy, PVz, PV_dot_dir; PVx = -VPx; PVy = -VPy; PVz = -VPz; PV_dot_dir = PVx*light->NormDirection[0] + PVy*light->NormDirection[1] + PVz*light->NormDirection[2]; if (PV_dot_dir<=0.0F || PV_dot_dirCosCutoff) { /* outside of cone */ spot = 0.0F; } else { double x = PV_dot_dir * (EXP_TABLE_SIZE-1); int k = (int) x; spot = light->SpotExpTable[k][0] + (x-k)*light->SpotExpTable[k][1]; } } ambientR = mat->Ambient[0] * light->Ambient[0]; ambientG = mat->Ambient[1] * light->Ambient[1]; ambientB = mat->Ambient[2] * light->Ambient[2]; /* Compute dot product or normal and vector from V to light pos */ n_dot_VP = nx * VPx + ny * VPy + nz * VPz; /* diffuse and specular terms */ if (n_dot_VP<=0.0F) { /* surface face away from light, no diffuse or specular */ GLfloat t = attenuation * spot; sumR += t * ambientR; sumG += t * ambientG; sumB += t * ambientB; /* done with this light */ } else { GLfloat diffuseR, diffuseG, diffuseB; GLfloat specularR, specularG, specularB; GLfloat h_x, h_y, h_z, n_dot_h, t; /* diffuse term */ diffuseR = n_dot_VP * mat->Diffuse[0] * light->Diffuse[0]; diffuseG = n_dot_VP * mat->Diffuse[1] * light->Diffuse[1]; diffuseB = n_dot_VP * mat->Diffuse[2] * light->Diffuse[2]; /* specular term */ if (ctx->Light.Model.LocalViewer) { GLfloat vx, vy, vz, vlen; vx = vertex[j][0]; vy = vertex[j][1]; vz = vertex[j][2]; vlen = GL_SQRT( vx*vx + vy*vy + vz*vz ); if (vlen>0.0001F) { GLfloat invlen = 1.0F / vlen; vx *= invlen; vy *= invlen; vz *= invlen; } /* h = VP + VPe */ h_x = VPx - vx; h_y = VPy - vy; h_z = VPz - vz; } else { /* h = VP + <0,0,1> */ h_x = VPx; h_y = VPy; h_z = VPz + 1.0F; } /* attention: h is not normalized, done later if needed */ n_dot_h = nx*h_x + ny*h_y + nz*h_z; if (n_dot_h<=0.0F) { specularR = 0.0F; specularG = 0.0F; specularB = 0.0F; } else { GLfloat spec_coef; /* now `correct' the dot product */ n_dot_h = n_dot_h / GL_SQRT( h_x*h_x + h_y*h_y + h_z*h_z ); if (n_dot_h>1.0F) { /* only happens if normal vector length > 1.0 */ spec_coef = pow( n_dot_h, mat->Shininess ); } else { /* use table lookup approximation */ int k = (int) (n_dot_h * (GLfloat) (SHINE_TABLE_SIZE-1)); if (mat->ShineTable[k] < 0.0F) mat->ShineTable[k] = gl_pow( n_dot_h, mat->Shininess ); spec_coef = mat->ShineTable[k]; } if (spec_coef<1.0e-10) { specularR = 0.0F; specularG = 0.0F; specularB = 0.0F; } else { specularR = spec_coef * mat->Specular[0]*light->Specular[0]; specularG = spec_coef * mat->Specular[1]*light->Specular[1]; specularB = spec_coef * mat->Specular[2]*light->Specular[2]; } } t = attenuation * spot; sumR += t * (ambientR + diffuseR + specularR); sumG += t * (ambientG + diffuseG + specularG); sumB += t * (ambientB + diffuseB + specularB); } } /*loop over lights*/ /* clamp and convert to integer or fixed point */ color[j][0] = FloatToInt(CLAMP( sumR, 0.0F, 1.0F ) * rscale); color[j][1] = FloatToInt(CLAMP( sumG, 0.0F, 1.0F ) * gscale); color[j][2] = FloatToInt(CLAMP( sumB, 0.0F, 1.0F ) * bscale); color[j][3] = sumA; } /*loop over vertices*/ } /* * This is an optimized version of the above function. */ void gl_color_shade_vertices_fast( GLcontext *ctx, GLuint side, GLuint n, /*const*/ GLfloat normal[][3], GLubyte color[][4] ) { GLint j; GLfloat rscale, gscale, bscale, ascale; GLint sumA; GLfloat *baseColor = ctx->Light.BaseColor[side]; /* Compute scale factor to go from floats in [0,1] to integers or fixed * point values: */ rscale = ctx->Visual->RedScale; gscale = ctx->Visual->GreenScale; bscale = ctx->Visual->BlueScale; ascale = ctx->Visual->AlphaScale; /* Alpha is easy to compute, same for all vertices */ sumA = (GLint) (baseColor[3] * ascale); /* Loop over vertices */ for (j=0;jLight.FirstEnabled; light; light=light->NextEnabled) { GLfloat n_dot_VP; /* n dot VP */ n_dot_VP = nx * light->VP_inf_norm[0] + ny * light->VP_inf_norm[1] + nz * light->VP_inf_norm[2]; /* diffuse and specular terms */ if (n_dot_VP>0.0F) { GLfloat n_dot_h; GLfloat *lightMatDiffuse = light->MatDiffuse[side]; /** add diffuse term **/ sumR += n_dot_VP * lightMatDiffuse[0]; sumG += n_dot_VP * lightMatDiffuse[1]; sumB += n_dot_VP * lightMatDiffuse[2]; /** specular term **/ /* dot product of n and h_inf_norm */ n_dot_h = nx * light->h_inf_norm[0] + ny * light->h_inf_norm[1] + nz * light->h_inf_norm[2]; if (n_dot_h>0.0F) { if (n_dot_h>1.0F) { /* only happens if Magnitude(n) > 1.0 */ GLfloat spec_coef = pow( n_dot_h, ctx->Light.Material[side].Shininess ); if (spec_coef>1.0e-10F) { sumR += spec_coef * light->MatSpecular[side][0]; sumG += spec_coef * light->MatSpecular[side][1]; sumB += spec_coef * light->MatSpecular[side][2]; } } else { /* use table lookup approximation */ int k = (int) (n_dot_h * (GLfloat) (SHINE_TABLE_SIZE-1)); struct gl_material *m = &ctx->Light.Material[side]; GLfloat spec_coef; if (m->ShineTable[k] < 0.0F) m->ShineTable[k] = gl_pow( n_dot_h, m->Shininess ); spec_coef = m->ShineTable[k]; sumR += spec_coef * light->MatSpecular[side][0]; sumG += spec_coef * light->MatSpecular[side][1]; sumB += spec_coef * light->MatSpecular[side][2]; } } } } /*loop over lights*/ /* clamp and convert to integer or fixed point */ color[j][0] = FloatToInt(MIN2( sumR, 1.0F ) * rscale); color[j][1] = FloatToInt(MIN2( sumG, 1.0F ) * gscale); color[j][2] = FloatToInt(MIN2( sumB, 1.0F ) * bscale); color[j][3] = sumA; } /*loop over vertices*/ } /* * Use current lighting/material settings to compute the color indexes * for an array of vertices. * Input: n - number of vertices to shade * side - 0=use front material, 1=use back material * vertex - array of [n] vertex position in eye coordinates * normal - array of [n] surface normal vector * Output: indexResult - resulting array of [n] color indexes */ void gl_index_shade_vertices( GLcontext *ctx, GLuint side, GLuint n, GLfloat vertex[][4], GLfloat normal[][3], GLuint indexResult[] ) { struct gl_material *mat = &ctx->Light.Material[side]; GLint j; /* loop over vertices */ for (j=0;jLight.FirstEnabled; light; light=light->NextEnabled) { GLfloat attenuation; GLfloat lx, ly, lz; /* unit vector from vertex to light */ GLfloat l_dot_norm; /* dot product of l and n */ /* compute l and attenuation */ if (light->Position[3]==0.0) { /* directional light */ /* Effectively, l is a vector from the origin to the light. */ lx = light->VP_inf_norm[0]; ly = light->VP_inf_norm[1]; lz = light->VP_inf_norm[2]; attenuation = 1.0F; } else { /* positional light */ GLfloat d; /* distance from vertex to light */ lx = light->Position[0] - vertex[j][0]; ly = light->Position[1] - vertex[j][1]; lz = light->Position[2] - vertex[j][2]; d = (GLfloat) GL_SQRT( lx*lx + ly*ly + lz*lz ); if (d>0.001F) { GLfloat invd = 1.0F / d; lx *= invd; ly *= invd; lz *= invd; } attenuation = 1.0F / (light->ConstantAttenuation + d * (light->LinearAttenuation + d * light->QuadraticAttenuation)); } l_dot_norm = lx*nx + ly*ny + lz*nz; if (l_dot_norm>0.0F) { GLfloat spot_times_atten; /* spotlight factor */ if (light->SpotCutoff==180.0F) { /* not a spot light */ spot_times_atten = attenuation; } else { GLfloat v[3], dot; v[0] = -lx; /* v points from light to vertex */ v[1] = -ly; v[2] = -lz; dot = DOT3( v, light->NormDirection ); if (dot<=0.0F || dotCosCutoff) { /* outside of cone */ spot_times_atten = 0.0F; } else { double x = dot * (EXP_TABLE_SIZE-1); int k = (int) x; GLfloat spot = light->SpotExpTable[k][0] + (x-k)*light->SpotExpTable[k][1]; spot_times_atten = spot * attenuation; } } /* accumulate diffuse term */ diffuse += l_dot_norm * light->dli * spot_times_atten; /* accumulate specular term */ { GLfloat h_x, h_y, h_z, n_dot_h, spec_coef; /* specular term */ if (ctx->Light.Model.LocalViewer) { GLfloat vx, vy, vz, vlen; vx = vertex[j][0]; vy = vertex[j][1]; vz = vertex[j][2]; vlen = GL_SQRT( vx*vx + vy*vy + vz*vz ); if (vlen>0.0001F) { GLfloat invlen = 1.0F / vlen; vx *= invlen; vy *= invlen; vz *= invlen; } h_x = lx - vx; h_y = ly - vy; h_z = lz - vz; } else { h_x = lx; h_y = ly; h_z = lz + 1.0F; } /* attention: s is not normalized, done later if necessary */ n_dot_h = h_x*nx + h_y*ny + h_z*nz; if (n_dot_h <= 0.0F) { spec_coef = 0.0F; } else { /* now `correct' the dot product */ n_dot_h = n_dot_h / GL_SQRT(h_x*h_x + h_y*h_y + h_z*h_z); if (n_dot_h>1.0F) { spec_coef = pow( n_dot_h, mat->Shininess ); } else { int k = (int) (n_dot_h * (GLfloat)(SHINE_TABLE_SIZE-1)); if (mat->ShineTable[k] < 0.0F) mat->ShineTable[k] = gl_pow( n_dot_h, mat->Shininess ); spec_coef = mat->ShineTable[k]; } } specular += spec_coef * light->sli * spot_times_atten; } } } /*loop over lights*/ /* Now compute final color index */ if (specular>1.0F) { index = mat->SpecularIndex; } else { GLfloat d_a, s_a; d_a = mat->DiffuseIndex - mat->AmbientIndex; s_a = mat->SpecularIndex - mat->AmbientIndex; index = mat->AmbientIndex + diffuse * (1.0F-specular) * d_a + specular * s_a; if (index>mat->SpecularIndex) { index = mat->SpecularIndex; } } indexResult[j] = (GLuint) (GLint) index; } /*for vertex*/ }