/* ******************************************************************************* * * Copyright (C) 2004-2007, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: ucase.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2004aug30 * created by: Markus W. Scherer * * Low-level Unicode character/string case mapping code. * Much code moved here (and modified) from uchar.c. */ #include "unicode/utypes.h" #include "unicode/uset.h" #include "unicode/udata.h" /* UDataInfo */ #include "ucmndata.h" /* DataHeader */ #include "udatamem.h" #include "umutex.h" #include "uassert.h" #include "cmemory.h" #include "utrie.h" #include "ucase.h" #include "ucln_cmn.h" struct UCaseProps { UDataMemory *mem; const int32_t *indexes; const uint16_t *exceptions; const UChar *unfold; UTrie trie; uint8_t formatVersion[4]; }; /* data loading etc. -------------------------------------------------------- */ #define UCASE_HARDCODE_DATA 1 #if UCASE_HARDCODE_DATA /* ucase_props_data.c is machine-generated by gencase --csource */ #include "ucase_props_data.c" #else static UBool U_CALLCONV isAcceptable(void *context, const char *type, const char *name, const UDataInfo *pInfo) { if( pInfo->size>=20 && pInfo->isBigEndian==U_IS_BIG_ENDIAN && pInfo->charsetFamily==U_CHARSET_FAMILY && pInfo->dataFormat[0]==UCASE_FMT_0 && /* dataFormat="cAsE" */ pInfo->dataFormat[1]==UCASE_FMT_1 && pInfo->dataFormat[2]==UCASE_FMT_2 && pInfo->dataFormat[3]==UCASE_FMT_3 && pInfo->formatVersion[0]==1 && pInfo->formatVersion[2]==UTRIE_SHIFT && pInfo->formatVersion[3]==UTRIE_INDEX_SHIFT ) { UCaseProps *csp=(UCaseProps *)context; uprv_memcpy(csp->formatVersion, pInfo->formatVersion, 4); return TRUE; } else { return FALSE; } } static UCaseProps * ucase_openData(UCaseProps *cspProto, const uint8_t *bin, int32_t length, UErrorCode *pErrorCode) { UCaseProps *csp; int32_t size; cspProto->indexes=(const int32_t *)bin; if( (length>=0 && length<16*4) || cspProto->indexes[UCASE_IX_INDEX_TOP]<16 ) { /* length or indexes[] too short for minimum indexes[] length of 16 */ *pErrorCode=U_INVALID_FORMAT_ERROR; return NULL; } size=cspProto->indexes[UCASE_IX_INDEX_TOP]*4; if(length>=0) { if(length>=size && length>=cspProto->indexes[UCASE_IX_LENGTH]) { length-=size; } else { /* length too short for indexes[] or for the whole data length */ *pErrorCode=U_INVALID_FORMAT_ERROR; return NULL; } } bin+=size; /* from here on, assume that the sizes of the items fit into the total length */ /* unserialize the trie, after indexes[] */ size=cspProto->indexes[UCASE_IX_TRIE_SIZE]; utrie_unserialize(&cspProto->trie, bin, size, pErrorCode); if(U_FAILURE(*pErrorCode)) { return NULL; } bin+=size; /* get exceptions[] */ size=2*cspProto->indexes[UCASE_IX_EXC_LENGTH]; cspProto->exceptions=(const uint16_t *)bin; bin+=size; /* get unfold[] */ size=2*cspProto->indexes[UCASE_IX_UNFOLD_LENGTH]; if(size!=0) { cspProto->unfold=(const UChar *)bin; bin+=size; } else { cspProto->unfold=NULL; } /* allocate, copy, and return the new UCaseProps */ csp=(UCaseProps *)uprv_malloc(sizeof(UCaseProps)); if(csp==NULL) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } else { uprv_memcpy(csp, cspProto, sizeof(UCaseProps)); return csp; } } U_CAPI UCaseProps * U_EXPORT2 ucase_open(UErrorCode *pErrorCode) { UCaseProps cspProto={ NULL }, *csp; cspProto.mem=udata_openChoice(NULL, UCASE_DATA_TYPE, UCASE_DATA_NAME, isAcceptable, &cspProto, pErrorCode); if(U_FAILURE(*pErrorCode)) { return NULL; } csp=ucase_openData( &cspProto, udata_getMemory(cspProto.mem), udata_getLength(cspProto.mem), pErrorCode); if(U_FAILURE(*pErrorCode)) { udata_close(cspProto.mem); return NULL; } else { return csp; } } U_CAPI UCaseProps * U_EXPORT2 ucase_openBinary(const uint8_t *bin, int32_t length, UErrorCode *pErrorCode) { UCaseProps cspProto={ NULL }; const DataHeader *hdr; if(U_FAILURE(*pErrorCode)) { return NULL; } if(bin==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return NULL; } /* check the header */ if(length>=0 && length<20) { *pErrorCode=U_INVALID_FORMAT_ERROR; return NULL; } hdr=(const DataHeader *)bin; if( !(hdr->dataHeader.magic1==0xda && hdr->dataHeader.magic2==0x27 && hdr->info.isBigEndian==U_IS_BIG_ENDIAN && isAcceptable(&cspProto, UCASE_DATA_TYPE, UCASE_DATA_NAME, &hdr->info)) ) { *pErrorCode=U_INVALID_FORMAT_ERROR; return NULL; } bin+=hdr->dataHeader.headerSize; if(length>=0) { length-=hdr->dataHeader.headerSize; } return ucase_openData(&cspProto, bin, length, pErrorCode); } #endif U_CAPI void U_EXPORT2 ucase_close(UCaseProps *csp) { if(csp!=NULL) { #if !UCASE_HARDCODE_DATA udata_close(csp->mem); #endif uprv_free(csp); } } /* UCaseProps singleton ----------------------------------------------------- */ static UCaseProps *gCsp=NULL, *gCspDummy=NULL; #if !UCASE_HARDCODE_DATA static UErrorCode gErrorCode=U_ZERO_ERROR; static int8_t gHaveData=0; #endif static UBool U_CALLCONV ucase_cleanup(void) { ucase_close(gCsp); gCsp=NULL; ucase_close(gCspDummy); gCspDummy=NULL; #if !UCASE_HARDCODE_DATA gErrorCode=U_ZERO_ERROR; gHaveData=0; #endif return TRUE; } U_CAPI const UCaseProps * U_EXPORT2 ucase_getSingleton(UErrorCode *pErrorCode) { #if UCASE_HARDCODE_DATA if(U_FAILURE(*pErrorCode)) { return NULL; } return &ucase_props_singleton; #else int8_t haveData; if(U_FAILURE(*pErrorCode)) { return NULL; } UMTX_CHECK(NULL, gHaveData, haveData); if(haveData>0) { /* data was loaded */ return gCsp; } else if(haveData<0) { /* data loading failed */ *pErrorCode=gErrorCode; return NULL; } else /* haveData==0 */ { /* load the data */ UCaseProps *csp=ucase_open(pErrorCode); if(U_FAILURE(*pErrorCode)) { gHaveData=-1; gErrorCode=*pErrorCode; return NULL; } /* set the static variables */ umtx_lock(NULL); if(gCsp==NULL) { gCsp=csp; csp=NULL; gHaveData=1; ucln_common_registerCleanup(UCLN_COMMON_UCASE, ucase_cleanup); } umtx_unlock(NULL); ucase_close(csp); return gCsp; } #endif } U_CAPI const UCaseProps * U_EXPORT2 ucase_getDummy(UErrorCode *pErrorCode) { UCaseProps *csp; if(U_FAILURE(*pErrorCode)) { return NULL; } UMTX_CHECK(NULL, gCspDummy, csp); if(csp!=NULL) { /* the dummy object was already created */ return csp; } else /* csp==NULL */ { /* create the dummy object */ int32_t *indexes; csp=(UCaseProps *)uprv_malloc(sizeof(UCaseProps)+UCASE_IX_TOP*4+UTRIE_DUMMY_SIZE); if(csp==NULL) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memset(csp, 0, sizeof(UCaseProps)+UCASE_IX_TOP*4); csp->indexes=indexes=(int32_t *)(csp+1); indexes[UCASE_IX_INDEX_TOP]=UCASE_IX_TOP; indexes[UCASE_IX_TRIE_SIZE]= utrie_unserializeDummy(&csp->trie, indexes+UCASE_IX_TOP, UTRIE_DUMMY_SIZE, 0, 0, TRUE, pErrorCode); if(U_FAILURE(*pErrorCode)) { uprv_free(csp); return NULL; } csp->formatVersion[0]=1; csp->formatVersion[2]=UTRIE_SHIFT; csp->formatVersion[3]=UTRIE_INDEX_SHIFT; /* set the static variables */ umtx_lock(NULL); if(gCspDummy==NULL) { gCspDummy=csp; csp=NULL; ucln_common_registerCleanup(UCLN_COMMON_UCASE, ucase_cleanup); } umtx_unlock(NULL); uprv_free(csp); return gCspDummy; } } /* set of property starts for UnicodeSet ------------------------------------ */ static UBool U_CALLCONV _enumPropertyStartsRange(const void *context, UChar32 start, UChar32 limit, uint32_t value) { /* add the start code point to the USet */ const USetAdder *sa=(const USetAdder *)context; sa->add(sa->set, start); return TRUE; } U_CFUNC void U_EXPORT2 ucase_addPropertyStarts(const UCaseProps *csp, const USetAdder *sa, UErrorCode *pErrorCode) { if(U_FAILURE(*pErrorCode)) { return; } /* add the start code point of each same-value range of the trie */ utrie_enum(&csp->trie, NULL, _enumPropertyStartsRange, sa); /* add code points with hardcoded properties, plus the ones following them */ /* (none right now, see comment below) */ /* * Omit code points with hardcoded specialcasing properties * because we do not build property UnicodeSets for them right now. */ } /* data access primitives --------------------------------------------------- */ /* UTRIE_GET16() itself validates c */ #define GET_PROPS(csp, c, result) \ UTRIE_GET16(&(csp)->trie, c, result); #define GET_EXCEPTIONS(csp, props) ((csp)->exceptions+((props)>>UCASE_EXC_SHIFT)) #define PROPS_HAS_EXCEPTION(props) ((props)&UCASE_EXCEPTION) /* number of bits in an 8-bit integer value */ static const uint8_t flagsOffset[256]={ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; #define HAS_SLOT(flags, index) ((flags)&(1<<(index))) #define SLOT_OFFSET(flags, index) flagsOffset[(flags)&((1<<(index))-1)] /* * Get the value of an optional-value slot where HAS_SLOT(excWord, index). * * @param excWord (in) initial exceptions word * @param index (in) desired slot index * @param pExc16 (in/out) const uint16_t * after excWord=*pExc16++; * moved to the last uint16_t of the value, use +1 for beginning of next slot * @param value (out) int32_t or uint32_t output if hasSlot, otherwise not modified */ #define GET_SLOT_VALUE(excWord, index, pExc16, value) \ if(((excWord)&UCASE_EXC_DOUBLE_SLOTS)==0) { \ (pExc16)+=SLOT_OFFSET(excWord, index); \ (value)=*pExc16; \ } else { \ (pExc16)+=2*SLOT_OFFSET(excWord, index); \ (value)=*pExc16++; \ (value)=((value)<<16)|*pExc16; \ } /* simple case mappings ----------------------------------------------------- */ U_CAPI UChar32 U_EXPORT2 ucase_tolower(const UCaseProps *csp, UChar32 c) { uint16_t props; GET_PROPS(csp, c, props); if(!PROPS_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)>=UCASE_UPPER) { c+=UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(csp, props); uint16_t excWord=*pe++; if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) { GET_SLOT_VALUE(excWord, UCASE_EXC_LOWER, pe, c); } } return c; } U_CAPI UChar32 U_EXPORT2 ucase_toupper(const UCaseProps *csp, UChar32 c) { uint16_t props; GET_PROPS(csp, c, props); if(!PROPS_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)==UCASE_LOWER) { c+=UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(csp, props); uint16_t excWord=*pe++; if(HAS_SLOT(excWord, UCASE_EXC_UPPER)) { GET_SLOT_VALUE(excWord, UCASE_EXC_UPPER, pe, c); } } return c; } U_CAPI UChar32 U_EXPORT2 ucase_totitle(const UCaseProps *csp, UChar32 c) { uint16_t props; GET_PROPS(csp, c, props); if(!PROPS_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)==UCASE_LOWER) { c+=UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(csp, props); uint16_t excWord=*pe++; int32_t index; if(HAS_SLOT(excWord, UCASE_EXC_TITLE)) { index=UCASE_EXC_TITLE; } else if(HAS_SLOT(excWord, UCASE_EXC_UPPER)) { index=UCASE_EXC_UPPER; } else { return c; } GET_SLOT_VALUE(excWord, index, pe, c); } return c; } U_CFUNC void U_EXPORT2 ucase_addCaseClosure(const UCaseProps *csp, UChar32 c, const USetAdder *sa) { uint16_t props; /* * Hardcode the case closure of i and its relatives and ignore the * data file data for these characters. * The Turkic dotless i and dotted I with their case mapping conditions * and case folding option make the related characters behave specially. * This code matches their closure behavior to their case folding behavior. */ static const UChar iDot[2]= { 0x69, 0x307 }; switch(c) { case 0x49: /* regular i and I are in one equivalence class */ sa->add(sa->set, 0x69); return; case 0x69: sa->add(sa->set, 0x49); return; case 0x130: /* dotted I is in a class with <0069 0307> (for canonical equivalence with <0049 0307>) */ sa->addString(sa->set, iDot, 2); return; case 0x131: /* dotless i is in a class by itself */ return; default: /* otherwise use the data file data */ break; } GET_PROPS(csp, c, props); if(!PROPS_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)!=UCASE_NONE) { /* add the one simple case mapping, no matter what type it is */ int32_t delta=UCASE_GET_DELTA(props); if(delta!=0) { sa->add(sa->set, c+delta); } } } else { /* * c has exceptions, so there may be multiple simple and/or * full case mappings. Add them all. */ const uint16_t *pe0, *pe=GET_EXCEPTIONS(csp, props); const UChar *closure; uint16_t excWord=*pe++; int32_t index, closureLength, fullLength, length; pe0=pe; /* add all simple case mappings */ for(index=UCASE_EXC_LOWER; index<=UCASE_EXC_TITLE; ++index) { if(HAS_SLOT(excWord, index)) { pe=pe0; GET_SLOT_VALUE(excWord, index, pe, c); sa->add(sa->set, c); } } /* get the closure string pointer & length */ if(HAS_SLOT(excWord, UCASE_EXC_CLOSURE)) { pe=pe0; GET_SLOT_VALUE(excWord, UCASE_EXC_CLOSURE, pe, closureLength); closureLength&=UCASE_CLOSURE_MAX_LENGTH; /* higher bits are reserved */ closure=(const UChar *)pe+1; /* behind this slot, unless there are full case mappings */ } else { closureLength=0; closure=NULL; } /* add the full case folding */ if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) { pe=pe0; GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, fullLength); /* start of full case mapping strings */ ++pe; fullLength&=0xffff; /* bits 16 and higher are reserved */ /* skip the lowercase result string */ pe+=fullLength&UCASE_FULL_LOWER; fullLength>>=4; /* add the full case folding string */ length=fullLength&0xf; if(length!=0) { sa->addString(sa->set, (const UChar *)pe, length); pe+=length; } /* skip the uppercase and titlecase strings */ fullLength>>=4; pe+=fullLength&0xf; fullLength>>=4; pe+=fullLength; closure=(const UChar *)pe; /* behind full case mappings */ } /* add each code point in the closure string */ for(index=0; indexadd(sa->set, c); } } } /* * compare s, which has a length, with t, which has a maximum length or is NUL-terminated * must be length>0 and max>0 and length<=max */ static U_INLINE int32_t strcmpMax(const UChar *s, int32_t length, const UChar *t, int32_t max) { int32_t c1, c2; max-=length; /* we require length<=max, so no need to decrement max in the loop */ do { c1=*s++; c2=*t++; if(c2==0) { return 1; /* reached the end of t but not of s */ } c1-=c2; if(c1!=0) { return c1; /* return difference result */ } } while(--length>0); /* ends with length==0 */ if(max==0 || *t==0) { return 0; /* equal to length of both strings */ } else { return -max; /* return lengh difference */ } } U_CFUNC UBool U_EXPORT2 ucase_addStringCaseClosure(const UCaseProps *csp, const UChar *s, int32_t length, const USetAdder *sa) { const UChar *unfold, *p; int32_t i, start, limit, result, unfoldRows, unfoldRowWidth, unfoldStringWidth; if(csp->unfold==NULL || s==NULL) { return FALSE; /* no reverse case folding data, or no string */ } if(length<=1) { /* the string is too short to find any match */ /* * more precise would be: * if(!u_strHasMoreChar32Than(s, length, 1)) * but this does not make much practical difference because * a single supplementary code point would just not be found */ return FALSE; } unfold=csp->unfold; unfoldRows=unfold[UCASE_UNFOLD_ROWS]; unfoldRowWidth=unfold[UCASE_UNFOLD_ROW_WIDTH]; unfoldStringWidth=unfold[UCASE_UNFOLD_STRING_WIDTH]; unfold+=unfoldRowWidth; if(length>unfoldStringWidth) { /* the string is too long to find any match */ return FALSE; } /* do a binary search for the string */ start=0; limit=unfoldRows; while(startadd(sa->set, c); ucase_addCaseClosure(csp, c, sa); } return TRUE; } else if(result<0) { limit=i; } else /* result>0 */ { start=i+1; } } return FALSE; /* string not found */ } /** @return UCASE_NONE, UCASE_LOWER, UCASE_UPPER, UCASE_TITLE */ U_CAPI int32_t U_EXPORT2 ucase_getType(const UCaseProps *csp, UChar32 c) { uint16_t props; GET_PROPS(csp, c, props); return UCASE_GET_TYPE(props); } /** @return same as ucase_getType(), or <0 if c is case-ignorable */ U_CAPI int32_t U_EXPORT2 ucase_getTypeOrIgnorable(const UCaseProps *csp, UChar32 c) { int32_t type; uint16_t props; GET_PROPS(csp, c, props); type=UCASE_GET_TYPE(props); if(type!=UCASE_NONE) { return type; } else if( c==0x307 || (props&(UCASE_EXCEPTION|UCASE_CASE_IGNORABLE))==UCASE_CASE_IGNORABLE ) { return -1; /* case-ignorable */ } else { return 0; /* c is neither cased nor case-ignorable */ } } /** @return UCASE_NO_DOT, UCASE_SOFT_DOTTED, UCASE_ABOVE, UCASE_OTHER_ACCENT */ static U_INLINE int32_t getDotType(const UCaseProps *csp, UChar32 c) { uint16_t props; GET_PROPS(csp, c, props); if(!PROPS_HAS_EXCEPTION(props)) { return props&UCASE_DOT_MASK; } else { const uint16_t *pe=GET_EXCEPTIONS(csp, props); return (*pe>>UCASE_EXC_DOT_SHIFT)&UCASE_DOT_MASK; } } U_CAPI UBool U_EXPORT2 ucase_isSoftDotted(const UCaseProps *csp, UChar32 c) { return (UBool)(getDotType(csp, c)==UCASE_SOFT_DOTTED); } U_CAPI UBool U_EXPORT2 ucase_isCaseSensitive(const UCaseProps *csp, UChar32 c) { uint16_t props; GET_PROPS(csp, c, props); return (UBool)((props&UCASE_SENSITIVE)!=0); } /* string casing ------------------------------------------------------------ */ /* * These internal functions form the core of string case mappings. * They map single code points to result code points or strings and take * all necessary conditions (context, locale ID, options) into account. * * They do not iterate over the source or write to the destination * so that the same functions are useful for non-standard string storage, * such as in a Replaceable (for Transliterator) or UTF-8/32 strings etc. * For the same reason, the "surrounding text" context is passed in as a * UCaseContextIterator which does not make any assumptions about * the underlying storage. * * This section contains helper functions that check for conditions * in the input text surrounding the current code point * according to SpecialCasing.txt. * * Each helper function gets the index * - after the current code point if it looks at following text * - before the current code point if it looks at preceding text * * Unicode 3.2 UAX 21 "Case Mappings" defines the conditions as follows: * * Final_Sigma * C is preceded by a sequence consisting of * a cased letter and a case-ignorable sequence, * and C is not followed by a sequence consisting of * an ignorable sequence and then a cased letter. * * More_Above * C is followed by one or more characters of combining class 230 (ABOVE) * in the combining character sequence. * * After_Soft_Dotted * The last preceding character with combining class of zero before C * was Soft_Dotted, * and there is no intervening combining character class 230 (ABOVE). * * Before_Dot * C is followed by combining dot above (U+0307). * Any sequence of characters with a combining class that is neither 0 nor 230 * may intervene between the current character and the combining dot above. * * The erratum from 2002-10-31 adds the condition * * After_I * The last preceding base character was an uppercase I, and there is no * intervening combining character class 230 (ABOVE). * * (See Jitterbug 2344 and the comments on After_I below.) * * Helper definitions in Unicode 3.2 UAX 21: * * D1. A character C is defined to be cased * if it meets any of the following criteria: * * - The general category of C is Titlecase Letter (Lt) * - In [CoreProps], C has one of the properties Uppercase, or Lowercase * - Given D = NFD(C), then it is not the case that: * D = UCD_lower(D) = UCD_upper(D) = UCD_title(D) * (This third criterium does not add any characters to the list * for Unicode 3.2. Ignored.) * * D2. A character C is defined to be case-ignorable * if it meets either of the following criteria: * * - The general category of C is * Nonspacing Mark (Mn), or Enclosing Mark (Me), or Format Control (Cf), or * Letter Modifier (Lm), or Symbol Modifier (Sk) * - C is one of the following characters * U+0027 APOSTROPHE * U+00AD SOFT HYPHEN (SHY) * U+2019 RIGHT SINGLE QUOTATION MARK * (the preferred character for apostrophe) * * D3. A case-ignorable sequence is a sequence of * zero or more case-ignorable characters. */ enum { LOC_UNKNOWN, LOC_ROOT, LOC_TURKISH, LOC_LITHUANIAN }; #define is_a(c) ((c)=='a' || (c)=='A') #define is_e(c) ((c)=='e' || (c)=='E') #define is_i(c) ((c)=='i' || (c)=='I') #define is_l(c) ((c)=='l' || (c)=='L') #define is_r(c) ((c)=='r' || (c)=='R') #define is_t(c) ((c)=='t' || (c)=='T') #define is_u(c) ((c)=='u' || (c)=='U') #define is_z(c) ((c)=='z' || (c)=='Z') /* separator? */ #define is_sep(c) ((c)=='_' || (c)=='-' || (c)==0) /** * Requires non-NULL locale ID but otherwise does the equivalent of * checking for language codes as if uloc_getLanguage() were called: * Accepts both 2- and 3-letter codes and accepts case variants. */ U_CFUNC int32_t ucase_getCaseLocale(const char *locale, int32_t *locCache) { int32_t result; char c; if(locCache!=NULL && (result=*locCache)!=LOC_UNKNOWN) { return result; } result=LOC_ROOT; /* * This function used to use uloc_getLanguage(), but the current code * removes the dependency of this low-level code on uloc implementation code * and is faster because not the whole locale ID has to be * examined and copied/transformed. * * Because this code does not want to depend on uloc, the caller must * pass in a non-NULL locale, i.e., may need to call uloc_getDefault(). */ c=*locale++; if(is_t(c)) { /* tr or tur? */ c=*locale++; if(is_u(c)) { c=*locale++; } if(is_r(c)) { c=*locale; if(is_sep(c)) { result=LOC_TURKISH; } } } else if(is_a(c)) { /* az or aze? */ c=*locale++; if(is_z(c)) { c=*locale++; if(is_e(c)) { c=*locale; } if(is_sep(c)) { result=LOC_TURKISH; } } } else if(is_l(c)) { /* lt or lit? */ c=*locale++; if(is_i(c)) { c=*locale++; } if(is_t(c)) { c=*locale; if(is_sep(c)) { result=LOC_LITHUANIAN; } } } if(locCache!=NULL) { *locCache=result; } return result; } /* Is followed by {case-ignorable}* cased ? (dir determines looking forward/backward) */ static UBool isFollowedByCasedLetter(const UCaseProps *csp, UCaseContextIterator *iter, void *context, int8_t dir) { UChar32 c; uint16_t props; if(iter==NULL) { return FALSE; } for(/* dir!=0 sets direction */; (c=iter(context, dir))>=0; dir=0) { GET_PROPS(csp, c, props); if(UCASE_GET_TYPE(props)!=UCASE_NONE) { return TRUE; /* followed by cased letter */ } else if(c==0x307 || (props&(UCASE_EXCEPTION|UCASE_CASE_IGNORABLE))==UCASE_CASE_IGNORABLE) { /* case-ignorable, continue with the loop */ } else { return FALSE; /* not ignorable */ } } return FALSE; /* not followed by cased letter */ } /* Is preceded by Soft_Dotted character with no intervening cc=230 ? */ static UBool isPrecededBySoftDotted(const UCaseProps *csp, UCaseContextIterator *iter, void *context) { UChar32 c; int32_t dotType; int8_t dir; if(iter==NULL) { return FALSE; } for(dir=-1; (c=iter(context, dir))>=0; dir=0) { dotType=getDotType(csp, c); if(dotType==UCASE_SOFT_DOTTED) { return TRUE; /* preceded by TYPE_i */ } else if(dotType!=UCASE_OTHER_ACCENT) { return FALSE; /* preceded by different base character (not TYPE_i), or intervening cc==230 */ } } return FALSE; /* not preceded by TYPE_i */ } /* * See Jitterbug 2344: * The condition After_I for Turkic-lowercasing of U+0307 combining dot above * is checked in ICU 2.0, 2.1, 2.6 but was not in 2.2 & 2.4 because * we made those releases compatible with Unicode 3.2 which had not fixed * a related bug in SpecialCasing.txt. * * From the Jitterbug 2344 text: * ... this bug is listed as a Unicode erratum * from 2002-10-31 at http://www.unicode.org/uni2errata/UnicodeErrata.html * * There are two errors in SpecialCasing.txt. * 1. Missing semicolons on two lines. ... [irrelevant for ICU] * 2. An incorrect context definition. Correct as follows: * < 0307; ; 0307; 0307; tr After_Soft_Dotted; # COMBINING DOT ABOVE * < 0307; ; 0307; 0307; az After_Soft_Dotted; # COMBINING DOT ABOVE * --- * > 0307; ; 0307; 0307; tr After_I; # COMBINING DOT ABOVE * > 0307; ; 0307; 0307; az After_I; # COMBINING DOT ABOVE * where the context After_I is defined as: * The last preceding base character was an uppercase I, and there is no * intervening combining character class 230 (ABOVE). * * * Note that SpecialCasing.txt even in Unicode 3.2 described the condition as: * * # When lowercasing, remove dot_above in the sequence I + dot_above, which will turn into i. * # This matches the behavior of the canonically equivalent I-dot_above * * See also the description in this place in older versions of uchar.c (revision 1.100). * * Markus W. Scherer 2003-feb-15 */ /* Is preceded by base character 'I' with no intervening cc=230 ? */ static UBool isPrecededBy_I(const UCaseProps *csp, UCaseContextIterator *iter, void *context) { UChar32 c; int32_t dotType; int8_t dir; if(iter==NULL) { return FALSE; } for(dir=-1; (c=iter(context, dir))>=0; dir=0) { if(c==0x49) { return TRUE; /* preceded by I */ } dotType=getDotType(csp, c); if(dotType!=UCASE_OTHER_ACCENT) { return FALSE; /* preceded by different base character (not I), or intervening cc==230 */ } } return FALSE; /* not preceded by I */ } /* Is followed by one or more cc==230 ? */ static UBool isFollowedByMoreAbove(const UCaseProps *csp, UCaseContextIterator *iter, void *context) { UChar32 c; int32_t dotType; int8_t dir; if(iter==NULL) { return FALSE; } for(dir=1; (c=iter(context, dir))>=0; dir=0) { dotType=getDotType(csp, c); if(dotType==UCASE_ABOVE) { return TRUE; /* at least one cc==230 following */ } else if(dotType!=UCASE_OTHER_ACCENT) { return FALSE; /* next base character, no more cc==230 following */ } } return FALSE; /* no more cc==230 following */ } /* Is followed by a dot above (without cc==230 in between) ? */ static UBool isFollowedByDotAbove(const UCaseProps *csp, UCaseContextIterator *iter, void *context) { UChar32 c; int32_t dotType; int8_t dir; if(iter==NULL) { return FALSE; } for(dir=1; (c=iter(context, dir))>=0; dir=0) { if(c==0x307) { return TRUE; } dotType=getDotType(csp, c); if(dotType!=UCASE_OTHER_ACCENT) { return FALSE; /* next base character or cc==230 in between */ } } return FALSE; /* no dot above following */ } U_CAPI int32_t U_EXPORT2 ucase_toFullLower(const UCaseProps *csp, UChar32 c, UCaseContextIterator *iter, void *context, const UChar **pString, const char *locale, int32_t *locCache) { static const UChar iDot[2]= { 0x69, 0x307 }, jDot[2]= { 0x6a, 0x307 }, iOgonekDot[3]= { 0x12f, 0x307 }, iDotGrave[3]= { 0x69, 0x307, 0x300 }, iDotAcute[3]= { 0x69, 0x307, 0x301 }, iDotTilde[3]= { 0x69, 0x307, 0x303 }; UChar32 result; uint16_t props; result=c; GET_PROPS(csp, c, props); if(!PROPS_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)>=UCASE_UPPER) { result=c+UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(csp, props), *pe2; uint16_t excWord=*pe++; int32_t full; pe2=pe; if(excWord&UCASE_EXC_CONDITIONAL_SPECIAL) { /* use hardcoded conditions and mappings */ int32_t loc=ucase_getCaseLocale(locale, locCache); /* * Test for conditional mappings first * (otherwise the unconditional default mappings are always taken), * then test for characters that have unconditional mappings in SpecialCasing.txt, * then get the UnicodeData.txt mappings. */ if( loc==LOC_LITHUANIAN && /* base characters, find accents above */ (((c==0x49 || c==0x4a || c==0x12e) && isFollowedByMoreAbove(csp, iter, context)) || /* precomposed with accent above, no need to find one */ (c==0xcc || c==0xcd || c==0x128)) ) { /* # Lithuanian # Lithuanian retains the dot in a lowercase i when followed by accents. # Introduce an explicit dot above when lowercasing capital I's and J's # whenever there are more accents above. # (of the accents used in Lithuanian: grave, acute, tilde above, and ogonek) 0049; 0069 0307; 0049; 0049; lt More_Above; # LATIN CAPITAL LETTER I 004A; 006A 0307; 004A; 004A; lt More_Above; # LATIN CAPITAL LETTER J 012E; 012F 0307; 012E; 012E; lt More_Above; # LATIN CAPITAL LETTER I WITH OGONEK 00CC; 0069 0307 0300; 00CC; 00CC; lt; # LATIN CAPITAL LETTER I WITH GRAVE 00CD; 0069 0307 0301; 00CD; 00CD; lt; # LATIN CAPITAL LETTER I WITH ACUTE 0128; 0069 0307 0303; 0128; 0128; lt; # LATIN CAPITAL LETTER I WITH TILDE */ switch(c) { case 0x49: /* LATIN CAPITAL LETTER I */ *pString=iDot; return 2; case 0x4a: /* LATIN CAPITAL LETTER J */ *pString=jDot; return 2; case 0x12e: /* LATIN CAPITAL LETTER I WITH OGONEK */ *pString=iOgonekDot; return 2; case 0xcc: /* LATIN CAPITAL LETTER I WITH GRAVE */ *pString=iDotGrave; return 3; case 0xcd: /* LATIN CAPITAL LETTER I WITH ACUTE */ *pString=iDotAcute; return 3; case 0x128: /* LATIN CAPITAL LETTER I WITH TILDE */ *pString=iDotTilde; return 3; default: return 0; /* will not occur */ } /* # Turkish and Azeri */ } else if(loc==LOC_TURKISH && c==0x130) { /* # I and i-dotless; I-dot and i are case pairs in Turkish and Azeri # The following rules handle those cases. 0130; 0069; 0130; 0130; tr # LATIN CAPITAL LETTER I WITH DOT ABOVE 0130; 0069; 0130; 0130; az # LATIN CAPITAL LETTER I WITH DOT ABOVE */ return 0x69; } else if(loc==LOC_TURKISH && c==0x307 && isPrecededBy_I(csp, iter, context)) { /* # When lowercasing, remove dot_above in the sequence I + dot_above, which will turn into i. # This matches the behavior of the canonically equivalent I-dot_above 0307; ; 0307; 0307; tr After_I; # COMBINING DOT ABOVE 0307; ; 0307; 0307; az After_I; # COMBINING DOT ABOVE */ return 0; /* remove the dot (continue without output) */ } else if(loc==LOC_TURKISH && c==0x49 && !isFollowedByDotAbove(csp, iter, context)) { /* # When lowercasing, unless an I is before a dot_above, it turns into a dotless i. 0049; 0131; 0049; 0049; tr Not_Before_Dot; # LATIN CAPITAL LETTER I 0049; 0131; 0049; 0049; az Not_Before_Dot; # LATIN CAPITAL LETTER I */ return 0x131; } else if(c==0x130) { /* # Preserve canonical equivalence for I with dot. Turkic is handled below. 0130; 0069 0307; 0130; 0130; # LATIN CAPITAL LETTER I WITH DOT ABOVE */ *pString=iDot; return 2; } else if( c==0x3a3 && !isFollowedByCasedLetter(csp, iter, context, 1) && isFollowedByCasedLetter(csp, iter, context, -1) /* -1=preceded */ ) { /* greek capital sigma maps depending on surrounding cased letters (see SpecialCasing.txt) */ /* # Special case for final form of sigma 03A3; 03C2; 03A3; 03A3; Final_Sigma; # GREEK CAPITAL LETTER SIGMA */ return 0x3c2; /* greek small final sigma */ } else { /* no known conditional special case mapping, use a normal mapping */ } } else if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) { GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, full); full&=UCASE_FULL_LOWER; if(full!=0) { /* set the output pointer to the lowercase mapping */ *pString=pe+1; /* return the string length */ return full; } } if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) { GET_SLOT_VALUE(excWord, UCASE_EXC_LOWER, pe2, result); } } return (result==c) ? ~result : result; } /* internal */ static int32_t toUpperOrTitle(const UCaseProps *csp, UChar32 c, UCaseContextIterator *iter, void *context, const UChar **pString, const char *locale, int32_t *locCache, UBool upperNotTitle) { UChar32 result; uint16_t props; result=c; GET_PROPS(csp, c, props); if(!PROPS_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)==UCASE_LOWER) { result=c+UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(csp, props), *pe2; uint16_t excWord=*pe++; int32_t full, index; pe2=pe; if(excWord&UCASE_EXC_CONDITIONAL_SPECIAL) { /* use hardcoded conditions and mappings */ int32_t loc=ucase_getCaseLocale(locale, locCache); if(loc==LOC_TURKISH && c==0x69) { /* # Turkish and Azeri # I and i-dotless; I-dot and i are case pairs in Turkish and Azeri # The following rules handle those cases. # When uppercasing, i turns into a dotted capital I 0069; 0069; 0130; 0130; tr; # LATIN SMALL LETTER I 0069; 0069; 0130; 0130; az; # LATIN SMALL LETTER I */ return 0x130; } else if(loc==LOC_LITHUANIAN && c==0x307 && isPrecededBySoftDotted(csp, iter, context)) { /* # Lithuanian # Lithuanian retains the dot in a lowercase i when followed by accents. # Remove DOT ABOVE after "i" with upper or titlecase 0307; 0307; ; ; lt After_Soft_Dotted; # COMBINING DOT ABOVE */ return 0; /* remove the dot (continue without output) */ } else { /* no known conditional special case mapping, use a normal mapping */ } } else if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) { GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, full); /* start of full case mapping strings */ ++pe; /* skip the lowercase and case-folding result strings */ pe+=full&UCASE_FULL_LOWER; full>>=4; pe+=full&0xf; full>>=4; if(upperNotTitle) { full&=0xf; } else { /* skip the uppercase result string */ pe+=full&0xf; full=(full>>4)&0xf; } if(full!=0) { /* set the output pointer to the result string */ *pString=pe; /* return the string length */ return full; } } if(!upperNotTitle && HAS_SLOT(excWord, UCASE_EXC_TITLE)) { index=UCASE_EXC_TITLE; } else if(HAS_SLOT(excWord, UCASE_EXC_UPPER)) { /* here, titlecase is same as uppercase */ index=UCASE_EXC_UPPER; } else { return ~c; } GET_SLOT_VALUE(excWord, index, pe2, result); } return (result==c) ? ~result : result; } U_CAPI int32_t U_EXPORT2 ucase_toFullUpper(const UCaseProps *csp, UChar32 c, UCaseContextIterator *iter, void *context, const UChar **pString, const char *locale, int32_t *locCache) { return toUpperOrTitle(csp, c, iter, context, pString, locale, locCache, TRUE); } U_CAPI int32_t U_EXPORT2 ucase_toFullTitle(const UCaseProps *csp, UChar32 c, UCaseContextIterator *iter, void *context, const UChar **pString, const char *locale, int32_t *locCache) { return toUpperOrTitle(csp, c, iter, context, pString, locale, locCache, FALSE); } /* case folding ------------------------------------------------------------- */ /* * Case folding is similar to lowercasing. * The result may be a simple mapping, i.e., a single code point, or * a full mapping, i.e., a string. * If the case folding for a code point is the same as its simple (1:1) lowercase mapping, * then only the lowercase mapping is stored. * * Some special cases are hardcoded because their conditions cannot be * parsed and processed from CaseFolding.txt. * * Unicode 3.2 CaseFolding.txt specifies for its status field: # C: common case folding, common mappings shared by both simple and full mappings. # F: full case folding, mappings that cause strings to grow in length. Multiple characters are separated by spaces. # S: simple case folding, mappings to single characters where different from F. # T: special case for uppercase I and dotted uppercase I # - For non-Turkic languages, this mapping is normally not used. # - For Turkic languages (tr, az), this mapping can be used instead of the normal mapping for these characters. # # Usage: # A. To do a simple case folding, use the mappings with status C + S. # B. To do a full case folding, use the mappings with status C + F. # # The mappings with status T can be used or omitted depending on the desired case-folding # behavior. (The default option is to exclude them.) * Unicode 3.2 has 'T' mappings as follows: 0049; T; 0131; # LATIN CAPITAL LETTER I 0130; T; 0069; # LATIN CAPITAL LETTER I WITH DOT ABOVE * while the default mappings for these code points are: 0049; C; 0069; # LATIN CAPITAL LETTER I 0130; F; 0069 0307; # LATIN CAPITAL LETTER I WITH DOT ABOVE * U+0130 has no simple case folding (simple-case-folds to itself). */ /* return the simple case folding mapping for c */ U_CAPI UChar32 U_EXPORT2 ucase_fold(const UCaseProps *csp, UChar32 c, uint32_t options) { uint16_t props; GET_PROPS(csp, c, props); if(!PROPS_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)>=UCASE_UPPER) { c+=UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(csp, props); uint16_t excWord=*pe++; int32_t index; if(excWord&UCASE_EXC_CONDITIONAL_FOLD) { /* special case folding mappings, hardcoded */ if((options&_FOLD_CASE_OPTIONS_MASK)==U_FOLD_CASE_DEFAULT) { /* default mappings */ if(c==0x49) { /* 0049; C; 0069; # LATIN CAPITAL LETTER I */ return 0x69; } else if(c==0x130) { /* no simple case folding for U+0130 */ return c; } } else { /* Turkic mappings */ if(c==0x49) { /* 0049; T; 0131; # LATIN CAPITAL LETTER I */ return 0x131; } else if(c==0x130) { /* 0130; T; 0069; # LATIN CAPITAL LETTER I WITH DOT ABOVE */ return 0x69; } } } if(HAS_SLOT(excWord, UCASE_EXC_FOLD)) { index=UCASE_EXC_FOLD; } else if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) { index=UCASE_EXC_LOWER; } else { return c; } GET_SLOT_VALUE(excWord, index, pe, c); } return c; } /* * Issue for canonical caseless match (UAX #21): * Turkic casefolding (using "T" mappings in CaseFolding.txt) does not preserve * canonical equivalence, unlike default-option casefolding. * For example, I-grave and I + grave fold to strings that are not canonically * equivalent. * For more details, see the comment in unorm_compare() in unorm.cpp * and the intermediate prototype changes for Jitterbug 2021. * (For example, revision 1.104 of uchar.c and 1.4 of CaseFolding.txt.) * * This did not get fixed because it appears that it is not possible to fix * it for uppercase and lowercase characters (I-grave vs. i-grave) * together in a way that they still fold to common result strings. */ U_CAPI int32_t U_EXPORT2 ucase_toFullFolding(const UCaseProps *csp, UChar32 c, const UChar **pString, uint32_t options) { static const UChar iDot[2]= { 0x69, 0x307 }; UChar32 result; uint16_t props; result=c; GET_PROPS(csp, c, props); if(!PROPS_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)>=UCASE_UPPER) { result=c+UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(csp, props), *pe2; uint16_t excWord=*pe++; int32_t full, index; pe2=pe; if(excWord&UCASE_EXC_CONDITIONAL_FOLD) { /* use hardcoded conditions and mappings */ if((options&_FOLD_CASE_OPTIONS_MASK)==U_FOLD_CASE_DEFAULT) { /* default mappings */ if(c==0x49) { /* 0049; C; 0069; # LATIN CAPITAL LETTER I */ return 0x69; } else if(c==0x130) { /* 0130; F; 0069 0307; # LATIN CAPITAL LETTER I WITH DOT ABOVE */ *pString=iDot; return 2; } } else { /* Turkic mappings */ if(c==0x49) { /* 0049; T; 0131; # LATIN CAPITAL LETTER I */ return 0x131; } else if(c==0x130) { /* 0130; T; 0069; # LATIN CAPITAL LETTER I WITH DOT ABOVE */ return 0x69; } } } else if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) { GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, full); /* start of full case mapping strings */ ++pe; /* skip the lowercase result string */ pe+=full&UCASE_FULL_LOWER; full=(full>>4)&0xf; if(full!=0) { /* set the output pointer to the result string */ *pString=pe; /* return the string length */ return full; } } if(HAS_SLOT(excWord, UCASE_EXC_FOLD)) { index=UCASE_EXC_FOLD; } else if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) { index=UCASE_EXC_LOWER; } else { return ~c; } GET_SLOT_VALUE(excWord, index, pe2, result); } return (result==c) ? ~result : result; } /* case mapping properties API ---------------------------------------------- */ /* get the UCaseProps singleton, or else its dummy, once and for all */ static const UCaseProps * getCaseProps() { /* * This lazy intialization with double-checked locking (without mutex protection for * the initial check) is transiently unsafe under certain circumstances. * Check the readme and use u_init() if necessary. */ /* the initial check is performed by the GET_CASE_PROPS() macro */ const UCaseProps *csp; UErrorCode errorCode=U_ZERO_ERROR; csp=ucase_getSingleton(&errorCode); if(U_FAILURE(errorCode)) { errorCode=U_ZERO_ERROR; csp=ucase_getDummy(&errorCode); if(U_FAILURE(errorCode)) { return NULL; } } return csp; } /* * In ICU 3.0, most Unicode properties were loaded from uprops.icu. * ICU 3.2 adds ucase.icu for case mapping properties. * ICU 3.4 adds ubidi.icu for bidi/shaping properties and * removes case/bidi/shaping properties from uprops.icu. * * Loading of uprops.icu was never mutex-protected and required u_init() * for thread safety. * In order to maintain performance for all such properties, * ucase.icu and ubidi.icu are loaded lazily, without mutexing. * u_init() will try to load them for thread safety, * but u_init() will not fail if they are missing. * * uchar.c maintains a tri-state flag for (not loaded/loaded/failed to load) * and an error code for load failure. * Instead, here we try to load at most once. * If it works, we use the resulting singleton object. * If it fails, then we get a dummy object, which always works unless * we are seriously out of memory. * After the first try, we have a never-changing pointer to either the * real singleton or the dummy. * * This method is used in Unicode properties APIs (uchar.h) that * do not have a service object and also do not have an error code parameter. * Other API implementations get the singleton themselves * (with mutexing), store it in the service object, and report errors. */ #define GET_CASE_PROPS() (gCsp!=NULL ? gCsp : getCaseProps()) /* public API (see uchar.h) */ U_CAPI UBool U_EXPORT2 u_isULowercase(UChar32 c) { return (UBool)(UCASE_LOWER==ucase_getType(GET_CASE_PROPS(), c)); } U_CAPI UBool U_EXPORT2 u_isUUppercase(UChar32 c) { return (UBool)(UCASE_UPPER==ucase_getType(GET_CASE_PROPS(), c)); } /* Transforms the Unicode character to its lower case equivalent.*/ U_CAPI UChar32 U_EXPORT2 u_tolower(UChar32 c) { return ucase_tolower(GET_CASE_PROPS(), c); } /* Transforms the Unicode character to its upper case equivalent.*/ U_CAPI UChar32 U_EXPORT2 u_toupper(UChar32 c) { return ucase_toupper(GET_CASE_PROPS(), c); } /* Transforms the Unicode character to its title case equivalent.*/ U_CAPI UChar32 U_EXPORT2 u_totitle(UChar32 c) { return ucase_totitle(GET_CASE_PROPS(), c); } /* return the simple case folding mapping for c */ U_CAPI UChar32 U_EXPORT2 u_foldCase(UChar32 c, uint32_t options) { return ucase_fold(GET_CASE_PROPS(), c, options); } U_CFUNC int32_t U_EXPORT2 ucase_hasBinaryProperty(UChar32 c, UProperty which) { /* case mapping properties */ const UCaseProps *csp=GET_CASE_PROPS(); if(csp==NULL) { return FALSE; } switch(which) { case UCHAR_LOWERCASE: return (UBool)(UCASE_LOWER==ucase_getType(csp, c)); case UCHAR_UPPERCASE: return (UBool)(UCASE_UPPER==ucase_getType(csp, c)); case UCHAR_SOFT_DOTTED: return ucase_isSoftDotted(csp, c); case UCHAR_CASE_SENSITIVE: return ucase_isCaseSensitive(csp, c); default: return FALSE; } }