/* * jidctfst.c * * Copyright (C) 1994-1998, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a fast, not so accurate integer implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine * must also perform dequantization of the input coefficients. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time). Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README). The following code * is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs. These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries. The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with fixed-point math, * accuracy is lost due to imprecise representation of the scaled * quantization values. The smaller the quantization table entry, the less * precise the scaled value, so this implementation does worse with high- * quality-setting files than with low-quality ones. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_IFAST_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Scaling decisions are generally the same as in the LL&M algorithm; * see jidctint.c for more details. However, we choose to descale * (right shift) multiplication products as soon as they are formed, * rather than carrying additional fractional bits into subsequent additions. * This compromises accuracy slightly, but it lets us save a few shifts. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) * everywhere except in the multiplications proper; this saves a good deal * of work on 16-bit-int machines. * * The dequantized coefficients are not integers because the AA&N scaling * factors have been incorporated. We represent them scaled up by PASS1_BITS, * so that the first and second IDCT rounds have the same input scaling. * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to * avoid a descaling shift; this compromises accuracy rather drastically * for small quantization table entries, but it saves a lot of shifts. * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, * so we use a much larger scaling factor to preserve accuracy. * * A final compromise is to represent the multiplicative constants to only * 8 fractional bits, rather than 13. This saves some shifting work on some * machines, and may also reduce the cost of multiplication (since there * are fewer one-bits in the constants). */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 8 #define PASS1_BITS 2 #else #define CONST_BITS 8 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 8 #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ #else #define FIX_1_082392200 FIX(1.082392200) #define FIX_1_414213562 FIX(1.414213562) #define FIX_1_847759065 FIX(1.847759065) #define FIX_2_613125930 FIX(2.613125930) #endif /* We can gain a little more speed, with a further compromise in accuracy, * by omitting the addition in a descaling shift. This yields an incorrectly * rounded result half the time... */ #ifndef USE_ACCURATE_ROUNDING #undef DESCALE #define DESCALE(x,n) RIGHT_SHIFT(x, n) #endif /* Multiply a DCTELEM variable by an INT32 constant, and immediately * descale to yield a DCTELEM result. */ #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 * multiplication will do. For 12-bit data, the multiplier table is * declared INT32, so a 32-bit multiply will be used. */ #if BITS_IN_JSAMPLE == 8 #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) #else #define DEQUANTIZE(coef,quantval) \ DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) #endif /* Like DESCALE, but applies to a DCTELEM and produces an int. * We assume that int right shift is unsigned if INT32 right shift is. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS DCTELEM ishift_temp; #if BITS_IN_JSAMPLE == 8 #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ #else #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ #endif #define IRIGHT_SHIFT(x,shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif #ifdef USE_ACCURATE_ROUNDING #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) #else #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) #endif #ifdef HAVE_MMX_INTEL_MNEMONICS __inline GLOBAL(void) jpeg_idct_ifast_mmx (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); __inline GLOBAL(void) jpeg_idct_ifast_orig (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); #endif GLOBAL(void) jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); #ifdef HAVE_MMX_INTEL_MNEMONICS GLOBAL(void) jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (MMXAvailable) jpeg_idct_ifast_mmx(cinfo, compptr, coef_block, output_buf, output_col); else jpeg_idct_ifast_orig(cinfo, compptr, coef_block, output_buf, output_col); } #else /* * Perform dequantization and inverse DCT on one block of coefficients. */ GLOBAL (void) jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; DCTELEM tmp10, tmp11, tmp12, tmp13; DCTELEM z5, z10, z11, z12, z13; JCOEFPTR inptr; IFAST_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS /* for DESCALE */ ISHIFT_TEMPS /* for IDESCALE */ /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero */ int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; wsptr[DCTSIZE*4] = dcval; wsptr[DCTSIZE*5] = dcval; wsptr[DCTSIZE*6] = dcval; wsptr[DCTSIZE*7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp10 = tmp0 + tmp2; /* phase 3 */ tmp11 = tmp0 - tmp2; tmp13 = tmp1 + tmp3; /* phases 5-3 */ tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ tmp0 = tmp10 + tmp13; /* phase 2 */ tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); z13 = tmp6 + tmp5; /* phase 6 */ z10 = tmp6 - tmp5; z11 = tmp4 + tmp7; z12 = tmp4 - tmp7; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; outptr[4] = dcval; outptr[5] = dcval; outptr[6] = dcval; outptr[7] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; /* Final output stage: scale down by a factor of 8 and range-limit */ outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } #endif #ifdef HAVE_MMX_INTEL_MNEMONICS _inline GLOBAL(void) jpeg_idct_ifast_orig (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; DCTELEM tmp10, tmp11, tmp12, tmp13; DCTELEM z5, z10, z11, z12, z13; JCOEFPTR inptr; IFAST_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS /* for DESCALE */ ISHIFT_TEMPS /* for IDESCALE */ /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] | inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | inptr[DCTSIZE*7]) == 0) { /* AC terms all zero */ int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; wsptr[DCTSIZE*4] = dcval; wsptr[DCTSIZE*5] = dcval; wsptr[DCTSIZE*6] = dcval; wsptr[DCTSIZE*7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp10 = tmp0 + tmp2; /* phase 3 */ tmp11 = tmp0 - tmp2; tmp13 = tmp1 + tmp3; /* phases 5-3 */ tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ tmp0 = tmp10 + tmp13; /* phase 2 */ tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); z13 = tmp6 + tmp5; /* phase 6 */ z10 = tmp6 - tmp5; z11 = tmp4 + tmp7; z12 = tmp4 - tmp7; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ #ifndef NO_ZERO_ROW_TEST if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] | wsptr[7]) == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; outptr[4] = dcval; outptr[5] = dcval; outptr[6] = dcval; outptr[7] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; /* Final output stage: scale down by a factor of 8 and range-limit */ outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } static __int64 fix_141 = 0x5a825a825a825a82; static __int64 fix_184n261 = 0xcf04cf04cf04cf04; static __int64 fix_184 = 0x7641764176417641; static __int64 fix_n184 = 0x896f896f896f896f; static __int64 fix_108n184 = 0xcf04cf04cf04cf04; static __int64 const_0x0080 = 0x0080008000800080; __inline GLOBAL(void) jpeg_idct_ifast_mmx (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR inptr, JSAMPARRAY outptr, JDIMENSION output_col) { int16 workspace[DCTSIZE2 + 4]; /* buffers data between passes */ int16 *wsptr=workspace; int16 *quantptr=compptr->dct_table; __asm{ mov edi, quantptr mov ebx, inptr mov esi, wsptr add esi, 0x07 ;align wsptr to qword and esi, 0xfffffff8 ;align wsptr to qword mov eax, esi /* Odd part */ movq mm1, [ebx + 8*10] ;load inptr[DCTSIZE*5] pmullw mm1, [edi + 8*10] ;tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); movq mm0, [ebx + 8*6] ;load inptr[DCTSIZE*3] pmullw mm0, [edi + 8*6] ;tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); movq mm3, [ebx + 8*2] ;load inptr[DCTSIZE*1] movq mm2, mm1 ;copy tmp6 /* phase 6 */ pmullw mm3, [edi + 8*2] ;tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); movq mm4, [ebx + 8*14] ;load inptr[DCTSIZE*1] paddw mm1, mm0 ;z13 = tmp6 + tmp5; pmullw mm4, [edi + 8*14] ;tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); psubw mm2, mm0 ;z10 = tmp6 - tmp5 psllw mm2, 2 ;shift z10 movq mm0, mm2 ;copy z10 pmulhw mm2, fix_184n261 ;MULTIPLY( z12, FIX_1_847759065); /* 2*c2 */ movq mm5, mm3 ;copy tmp4 pmulhw mm0, fix_n184 ;MULTIPLY(z10, -FIX_1_847759065); /* 2*c2 */ paddw mm3, mm4 ;z11 = tmp4 + tmp7; movq mm6, mm3 ;copy z11 /* phase 5 */ psubw mm5, mm4 ;z12 = tmp4 - tmp7; psubw mm6, mm1 ;z11-z13 psllw mm5, 2 ;shift z12 movq mm4, [ebx + 8*12] ;load inptr[DCTSIZE*6], even part movq mm7, mm5 ;copy z12 pmulhw mm5, fix_108n184 ;MULT(z12, (FIX_1_08-FIX_1_84)) //- z5; /* 2*(c2-c6) */ even part paddw mm3, mm1 ;tmp7 = z11 + z13; /* Even part */ pmulhw mm7, fix_184 ;MULTIPLY(z10,(FIX_1_847759065 - FIX_2_613125930)) //+ z5; /* -2*(c2+c6) */ psllw mm6, 2 movq mm1, [ebx + 8*4] ;load inptr[DCTSIZE*2] pmullw mm1, [edi + 8*4] ;tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); paddw mm0, mm5 ;tmp10 pmullw mm4, [edi + 8*12] ;tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); paddw mm2, mm7 ;tmp12 pmulhw mm6, fix_141 ;tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ psubw mm2, mm3 ;tmp6 = tmp12 - tmp7 movq mm5, mm1 ;copy tmp1 paddw mm1, mm4 ;tmp13= tmp1 + tmp3; /* phases 5-3 */ psubw mm5, mm4 ;tmp1-tmp3 psubw mm6, mm2 ;tmp5 = tmp11 - tmp6; movq [esi+8*0], mm1 ;save tmp13 in workspace psllw mm5, 2 ;shift tmp1-tmp3 movq mm7, [ebx + 8*0] ;load inptr[DCTSIZE*0] pmulhw mm5, fix_141 ;MULTIPLY(tmp1 - tmp3, FIX_1_414213562) paddw mm0, mm6 ;tmp4 = tmp10 + tmp5; pmullw mm7, [edi + 8*0] ;tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); movq mm4, [ebx + 8*8] ;load inptr[DCTSIZE*4] pmullw mm4, [edi + 8*8] ;tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); psubw mm5, mm1 ;tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ movq [esi+8*4], mm0 ;save tmp4 in workspace movq mm1, mm7 ;copy tmp0 /* phase 3 */ movq [esi+8*2], mm5 ;save tmp12 in workspace psubw mm1, mm4 ;tmp11 = tmp0 - tmp2; paddw mm7, mm4 ;tmp10 = tmp0 + tmp2; movq mm5, mm1 ;copy tmp11 paddw mm1, [esi+8*2] ;tmp1 = tmp11 + tmp12; movq mm4, mm7 ;copy tmp10 /* phase 2 */ paddw mm7, [esi+8*0] ;tmp0 = tmp10 + tmp13; psubw mm4, [esi+8*0] ;tmp3 = tmp10 - tmp13; movq mm0, mm7 ;copy tmp0 psubw mm5, [esi+8*2] ;tmp2 = tmp11 - tmp12; paddw mm7, mm3 ;wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); psubw mm0, mm3 ;wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); movq [esi + 8*0], mm7 ;wsptr[DCTSIZE*0] movq mm3, mm1 ;copy tmp1 movq [esi + 8*14], mm0 ;wsptr[DCTSIZE*7] paddw mm1, mm2 ;wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); psubw mm3, mm2 ;wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); movq [esi + 8*2], mm1 ;wsptr[DCTSIZE*1] movq mm1, mm4 ;copy tmp3 movq [esi + 8*12], mm3 ;wsptr[DCTSIZE*6] paddw mm4, [esi+8*4] ;wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); psubw mm1, [esi+8*4] ;wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); movq [esi + 8*8], mm4 movq mm7, mm5 ;copy tmp2 paddw mm5, mm6 ;wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5) movq [esi+8*6], mm1 ; psubw mm7, mm6 ;wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); movq [esi + 8*4], mm5 movq [esi + 8*10], mm7 /*****************************************************************/ add edi, 8 add ebx, 8 add esi, 8 /*****************************************************************/ movq mm1, [ebx + 8*10] ;load inptr[DCTSIZE*5] pmullw mm1, [edi + 8*10] ;tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); movq mm0, [ebx + 8*6] ;load inptr[DCTSIZE*3] pmullw mm0, [edi + 8*6] ;tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); movq mm3, [ebx + 8*2] ;load inptr[DCTSIZE*1] movq mm2, mm1 ;copy tmp6 /* phase 6 */ pmullw mm3, [edi + 8*2] ;tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); movq mm4, [ebx + 8*14] ;load inptr[DCTSIZE*1] paddw mm1, mm0 ;z13 = tmp6 + tmp5; pmullw mm4, [edi + 8*14] ;tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); psubw mm2, mm0 ;z10 = tmp6 - tmp5 psllw mm2, 2 ;shift z10 movq mm0, mm2 ;copy z10 pmulhw mm2, fix_184n261 ;MULTIPLY( z12, FIX_1_847759065); /* 2*c2 */ movq mm5, mm3 ;copy tmp4 pmulhw mm0, fix_n184 ;MULTIPLY(z10, -FIX_1_847759065); /* 2*c2 */ paddw mm3, mm4 ;z11 = tmp4 + tmp7; movq mm6, mm3 ;copy z11 /* phase 5 */ psubw mm5, mm4 ;z12 = tmp4 - tmp7; psubw mm6, mm1 ;z11-z13 psllw mm5, 2 ;shift z12 movq mm4, [ebx + 8*12] ;load inptr[DCTSIZE*6], even part movq mm7, mm5 ;copy z12 pmulhw mm5, fix_108n184 ;MULT(z12, (FIX_1_08-FIX_1_84)) //- z5; /* 2*(c2-c6) */ even part paddw mm3, mm1 ;tmp7 = z11 + z13; /* Even part */ pmulhw mm7, fix_184 ;MULTIPLY(z10,(FIX_1_847759065 - FIX_2_613125930)) //+ z5; /* -2*(c2+c6) */ psllw mm6, 2 movq mm1, [ebx + 8*4] ;load inptr[DCTSIZE*2] pmullw mm1, [edi + 8*4] ;tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); paddw mm0, mm5 ;tmp10 pmullw mm4, [edi + 8*12] ;tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); paddw mm2, mm7 ;tmp12 pmulhw mm6, fix_141 ;tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ psubw mm2, mm3 ;tmp6 = tmp12 - tmp7 movq mm5, mm1 ;copy tmp1 paddw mm1, mm4 ;tmp13= tmp1 + tmp3; /* phases 5-3 */ psubw mm5, mm4 ;tmp1-tmp3 psubw mm6, mm2 ;tmp5 = tmp11 - tmp6; movq [esi+8*0], mm1 ;save tmp13 in workspace psllw mm5, 2 ;shift tmp1-tmp3 movq mm7, [ebx + 8*0] ;load inptr[DCTSIZE*0] paddw mm0, mm6 ;tmp4 = tmp10 + tmp5; pmulhw mm5, fix_141 ;MULTIPLY(tmp1 - tmp3, FIX_1_414213562) pmullw mm7, [edi + 8*0] ;tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); movq mm4, [ebx + 8*8] ;load inptr[DCTSIZE*4] pmullw mm4, [edi + 8*8] ;tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); psubw mm5, mm1 ;tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ movq [esi+8*4], mm0 ;save tmp4 in workspace movq mm1, mm7 ;copy tmp0 /* phase 3 */ movq [esi+8*2], mm5 ;save tmp12 in workspace psubw mm1, mm4 ;tmp11 = tmp0 - tmp2; paddw mm7, mm4 ;tmp10 = tmp0 + tmp2; movq mm5, mm1 ;copy tmp11 paddw mm1, [esi+8*2] ;tmp1 = tmp11 + tmp12; movq mm4, mm7 ;copy tmp10 /* phase 2 */ paddw mm7, [esi+8*0] ;tmp0 = tmp10 + tmp13; psubw mm4, [esi+8*0] ;tmp3 = tmp10 - tmp13; movq mm0, mm7 ;copy tmp0 psubw mm5, [esi+8*2] ;tmp2 = tmp11 - tmp12; paddw mm7, mm3 ;wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); psubw mm0, mm3 ;wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); movq [esi + 8*0], mm7 ;wsptr[DCTSIZE*0] movq mm3, mm1 ;copy tmp1 movq [esi + 8*14], mm0 ;wsptr[DCTSIZE*7] paddw mm1, mm2 ;wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); psubw mm3, mm2 ;wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); movq [esi + 8*2], mm1 ;wsptr[DCTSIZE*1] movq mm1, mm4 ;copy tmp3 movq [esi + 8*12], mm3 ;wsptr[DCTSIZE*6] paddw mm4, [esi+8*4] ;wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); psubw mm1, [esi+8*4] ;wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); movq [esi + 8*8], mm4 movq mm7, mm5 ;copy tmp2 paddw mm5, mm6 ;wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5) movq [esi+8*6], mm1 ; psubw mm7, mm6 ;wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); movq [esi + 8*4], mm5 movq [esi + 8*10], mm7 /*****************************************************************/ /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ /*****************************************************************/ /* Even part */ mov esi, eax mov eax, outptr // tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); // tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); // tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); // tmp14 = ((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6]); movq mm0, [esi+8*0] ;wsptr[0,0],[0,1],[0,2],[0,3] movq mm1, [esi+8*1] ;wsptr[0,4],[0,5],[0,6],[0,7] movq mm2, mm0 movq mm3, [esi+8*2] ;wsptr[1,0],[1,1],[1,2],[1,3] paddw mm0, mm1 ;wsptr[0,tmp10],[xxx],[0,tmp13],[xxx] movq mm4, [esi+8*3] ;wsptr[1,4],[1,5],[1,6],[1,7] psubw mm2, mm1 ;wsptr[0,tmp11],[xxx],[0,tmp14],[xxx] movq mm6, mm0 movq mm5, mm3 paddw mm3, mm4 ;wsptr[1,tmp10],[xxx],[1,tmp13],[xxx] movq mm1, mm2 psubw mm5, mm4 ;wsptr[1,tmp11],[xxx],[1,tmp14],[xxx] punpcklwd mm0, mm3 ;wsptr[0,tmp10],[1,tmp10],[xxx],[xxx] movq mm7, [esi+8*7] ;wsptr[3,4],[3,5],[3,6],[3,7] punpckhwd mm6, mm3 ;wsptr[0,tmp13],[1,tmp13],[xxx],[xxx] movq mm3, [esi+8*4] ;wsptr[2,0],[2,1],[2,2],[2,3] punpckldq mm0, mm6 ;wsptr[0,tmp10],[1,tmp10],[0,tmp13],[1,tmp13] punpcklwd mm1, mm5 ;wsptr[0,tmp11],[1,tmp11],[xxx],[xxx] movq mm4, mm3 movq mm6, [esi+8*6] ;wsptr[3,0],[3,1],[3,2],[3,3] punpckhwd mm2, mm5 ;wsptr[0,tmp14],[1,tmp14],[xxx],[xxx] movq mm5, [esi+8*5] ;wsptr[2,4],[2,5],[2,6],[2,7] punpckldq mm1, mm2 ;wsptr[0,tmp11],[1,tmp11],[0,tmp14],[1,tmp14] paddw mm3, mm5 ;wsptr[2,tmp10],[xxx],[2,tmp13],[xxx] movq mm2, mm6 psubw mm4, mm5 ;wsptr[2,tmp11],[xxx],[2,tmp14],[xxx] paddw mm6, mm7 ;wsptr[3,tmp10],[xxx],[3,tmp13],[xxx] movq mm5, mm3 punpcklwd mm3, mm6 ;wsptr[2,tmp10],[3,tmp10],[xxx],[xxx] psubw mm2, mm7 ;wsptr[3,tmp11],[xxx],[3,tmp14],[xxx] punpckhwd mm5, mm6 ;wsptr[2,tmp13],[3,tmp13],[xxx],[xxx] movq mm7, mm4 punpckldq mm3, mm5 ;wsptr[2,tmp10],[3,tmp10],[2,tmp13],[3,tmp13] punpcklwd mm4, mm2 ;wsptr[2,tmp11],[3,tmp11],[xxx],[xxx] punpckhwd mm7, mm2 ;wsptr[2,tmp14],[3,tmp14],[xxx],[xxx] punpckldq mm4, mm7 ;wsptr[2,tmp11],[3,tmp11],[2,tmp14],[3,tmp14] movq mm6, mm1 // mm0 = ;wsptr[0,tmp10],[1,tmp10],[0,tmp13],[1,tmp13] // mm1 = ;wsptr[0,tmp11],[1,tmp11],[0,tmp14],[1,tmp14] movq mm2, mm0 punpckhdq mm6, mm4 ;wsptr[0,tmp14],[1,tmp14],[2,tmp14],[3,tmp14] punpckldq mm1, mm4 ;wsptr[0,tmp11],[1,tmp11],[2,tmp11],[3,tmp11] psllw mm6, 2 pmulhw mm6, fix_141 punpckldq mm0, mm3 ;wsptr[0,tmp10],[1,tmp10],[2,tmp10],[3,tmp10] punpckhdq mm2, mm3 ;wsptr[0,tmp13],[1,tmp13],[2,tmp13],[3,tmp13] movq mm7, mm0 // tmp0 = tmp10 + tmp13; // tmp3 = tmp10 - tmp13; paddw mm0, mm2 ;[0,tmp0],[1,tmp0],[2,tmp0],[3,tmp0] psubw mm7, mm2 ;[0,tmp3],[1,tmp3],[2,tmp3],[3,tmp3] // tmp12 = MULTIPLY(tmp14, FIX_1_414213562) - tmp13; psubw mm6, mm2 ;wsptr[0,tmp12],[1,tmp12],[2,tmp12],[3,tmp12] // tmp1 = tmp11 + tmp12; // tmp2 = tmp11 - tmp12; movq mm5, mm1 /* Odd part */ // z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; // z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; // z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; // z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; movq mm3, [esi+8*0] ;wsptr[0,0],[0,1],[0,2],[0,3] paddw mm1, mm6 ;[0,tmp1],[1,tmp1],[2,tmp1],[3,tmp1] movq mm4, [esi+8*1] ;wsptr[0,4],[0,5],[0,6],[0,7] psubw mm5, mm6 ;[0,tmp2],[1,tmp2],[2,tmp2],[3,tmp2] movq mm6, mm3 punpckldq mm3, mm4 ;wsptr[0,0],[0,1],[0,4],[0,5] punpckhdq mm4, mm6 ;wsptr[0,6],[0,7],[0,2],[0,3] movq mm2, mm3 //Save tmp0 and tmp1 in wsptr movq [esi+8*0], mm0 ;save tmp0 paddw mm2, mm4 ;wsptr[xxx],[0,z11],[xxx],[0,z13] //Continue with z10 --- z13 movq mm6, [esi+8*2] ;wsptr[1,0],[1,1],[1,2],[1,3] psubw mm3, mm4 ;wsptr[xxx],[0,z12],[xxx],[0,z10] movq mm0, [esi+8*3] ;wsptr[1,4],[1,5],[1,6],[1,7] movq mm4, mm6 movq [esi+8*1], mm1 ;save tmp1 punpckldq mm6, mm0 ;wsptr[1,0],[1,1],[1,4],[1,5] punpckhdq mm0, mm4 ;wsptr[1,6],[1,7],[1,2],[1,3] movq mm1, mm6 //Save tmp2 and tmp3 in wsptr paddw mm6, mm0 ;wsptr[xxx],[1,z11],[xxx],[1,z13] movq mm4, mm2 //Continue with z10 --- z13 movq [esi+8*2], mm5 ;save tmp2 punpcklwd mm2, mm6 ;wsptr[xxx],[xxx],[0,z11],[1,z11] psubw mm1, mm0 ;wsptr[xxx],[1,z12],[xxx],[1,z10] punpckhwd mm4, mm6 ;wsptr[xxx],[xxx],[0,z13],[1,z13] movq mm0, mm3 punpcklwd mm3, mm1 ;wsptr[xxx],[xxx],[0,z12],[1,z12] movq [esi+8*3], mm7 ;save tmp3 punpckhwd mm0, mm1 ;wsptr[xxx],[xxx],[0,z10],[1,z10] movq mm6, [esi+8*4] ;wsptr[2,0],[2,1],[2,2],[2,3] punpckhdq mm0, mm2 ;wsptr[0,z10],[1,z10],[0,z11],[1,z11] movq mm7, [esi+8*5] ;wsptr[2,4],[2,5],[2,6],[2,7] punpckhdq mm3, mm4 ;wsptr[0,z12],[1,z12],[0,z13],[1,z13] movq mm1, [esi+8*6] ;wsptr[3,0],[3,1],[3,2],[3,3] movq mm4, mm6 punpckldq mm6, mm7 ;wsptr[2,0],[2,1],[2,4],[2,5] movq mm5, mm1 punpckhdq mm7, mm4 ;wsptr[2,6],[2,7],[2,2],[2,3] movq mm2, mm6 movq mm4, [esi+8*7] ;wsptr[3,4],[3,5],[3,6],[3,7] paddw mm6, mm7 ;wsptr[xxx],[2,z11],[xxx],[2,z13] psubw mm2, mm7 ;wsptr[xxx],[2,z12],[xxx],[2,z10] punpckldq mm1, mm4 ;wsptr[3,0],[3,1],[3,4],[3,5] punpckhdq mm4, mm5 ;wsptr[3,6],[3,7],[3,2],[3,3] movq mm7, mm1 paddw mm1, mm4 ;wsptr[xxx],[3,z11],[xxx],[3,z13] psubw mm7, mm4 ;wsptr[xxx],[3,z12],[xxx],[3,z10] movq mm5, mm6 punpcklwd mm6, mm1 ;wsptr[xxx],[xxx],[2,z11],[3,z11] punpckhwd mm5, mm1 ;wsptr[xxx],[xxx],[2,z13],[3,z13] movq mm4, mm2 punpcklwd mm2, mm7 ;wsptr[xxx],[xxx],[2,z12],[3,z12] punpckhwd mm4, mm7 ;wsptr[xxx],[xxx],[2,z10],[3,z10] punpckhdq mm4, mm6 ;wsptr[2,z10],[3,z10],[2,z11],[3,z11] punpckhdq mm2, mm5 ;wsptr[2,z12],[3,z12],[2,z13],[3,z13] movq mm5, mm0 punpckldq mm0, mm4 ;wsptr[0,z10],[1,z10],[2,z10],[3,z10] punpckhdq mm5, mm4 ;wsptr[0,z11],[1,z11],[2,z11],[3,z11] movq mm4, mm3 punpckhdq mm4, mm2 ;wsptr[0,z13],[1,z13],[2,z13],[3,z13] movq mm1, mm5 punpckldq mm3, mm2 ;wsptr[0,z12],[1,z12],[2,z12],[3,z12] // tmp7 = z11 + z13; /* phase 5 */ // tmp8 = z11 - z13; /* phase 5 */ psubw mm1, mm4 ;tmp8 paddw mm5, mm4 ;tmp7 // tmp21 = MULTIPLY(tmp8, FIX_1_414213562); /* 2*c4 */ psllw mm1, 2 psllw mm0, 2 pmulhw mm1, fix_141 ;tmp21 // tmp20 = MULTIPLY(z12, (FIX_1_082392200- FIX_1_847759065)) /* 2*(c2-c6) */ // + MULTIPLY(z10, - FIX_1_847759065); /* 2*c2 */ psllw mm3, 2 movq mm7, mm0 pmulhw mm7, fix_n184 movq mm6, mm3 movq mm2, [esi+8*0] ;tmp0,final1 pmulhw mm6, fix_108n184 // tmp22 = MULTIPLY(z10,(FIX_1_847759065 - FIX_2_613125930)) /* -2*(c2+c6) */ // + MULTIPLY(z12, FIX_1_847759065); /* 2*c2 */ movq mm4, mm2 ;final1 pmulhw mm0, fix_184n261 paddw mm2, mm5 ;tmp0+tmp7,final1 pmulhw mm3, fix_184 psubw mm4, mm5 ;tmp0-tmp7,final1 // tmp6 = tmp22 - tmp7; /* phase 2 */ psraw mm2, 5 ;outptr[0,0],[1,0],[2,0],[3,0],final1 paddsw mm2, const_0x0080 ;final1 paddw mm7, mm6 ;tmp20 psraw mm4, 5 ;outptr[0,7],[1,7],[2,7],[3,7],final1 paddsw mm4, const_0x0080 ;final1 paddw mm3, mm0 ;tmp22 // tmp5 = tmp21 - tmp6; psubw mm3, mm5 ;tmp6 // tmp4 = tmp20 + tmp5; movq mm0, [esi+8*1] ;tmp1,final2 psubw mm1, mm3 ;tmp5 movq mm6, mm0 ;final2 paddw mm0, mm3 ;tmp1+tmp6,final2 /* Final output stage: scale down by a factor of 8 and range-limit */ // outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) // & RANGE_MASK]; // outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) // & RANGE_MASK]; final1 // outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) // & RANGE_MASK]; // outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) // & RANGE_MASK]; final2 psubw mm6, mm3 ;tmp1-tmp6,final2 psraw mm0, 5 ;outptr[0,1],[1,1],[2,1],[3,1] paddsw mm0, const_0x0080 psraw mm6, 5 ;outptr[0,6],[1,6],[2,6],[3,6] paddsw mm6, const_0x0080 ;need to check this value packuswb mm0, mm4 ;out[0,1],[1,1],[2,1],[3,1],[0,7],[1,7],[2,7],[3,7] movq mm5, [esi+8*2] ;tmp2,final3 packuswb mm2, mm6 ;out[0,0],[1,0],[2,0],[3,0],[0,6],[1,6],[2,6],[3,6] // outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) // & RANGE_MASK]; // outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) // & RANGE_MASK]; final3 paddw mm7, mm1 ;tmp4 movq mm3, mm5 paddw mm5, mm1 ;tmp2+tmp5 psubw mm3, mm1 ;tmp2-tmp5 psraw mm5, 5 ;outptr[0,2],[1,2],[2,2],[3,2] paddsw mm5, const_0x0080 movq mm4, [esi+8*3] ;tmp3,final4 psraw mm3, 5 ;outptr[0,5],[1,5],[2,5],[3,5] paddsw mm3, const_0x0080 // outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) // & RANGE_MASK]; // outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) // & RANGE_MASK]; final4 movq mm6, mm4 paddw mm4, mm7 ;tmp3+tmp4 psubw mm6, mm7 ;tmp3-tmp4 psraw mm4, 5 ;outptr[0,4],[1,4],[2,4],[3,4] mov ecx, [eax] paddsw mm4, const_0x0080 psraw mm6, 5 ;outptr[0,3],[1,3],[2,3],[3,3] paddsw mm6, const_0x0080 packuswb mm5, mm4 ;out[0,2],[1,2],[2,2],[3,2],[0,4],[1,4],[2,4],[3,4] packuswb mm6, mm3 ;out[0,3],[1,3],[2,3],[3,3],[0,5],[1,5],[2,5],[3,5] movq mm4, mm2 movq mm7, mm5 punpcklbw mm2, mm0 ;out[0,0],[0,1],[1,0],[1,1],[2,0],[2,1],[3,0],[3,1] punpckhbw mm4, mm0 ;out[0,6],[0,7],[1,6],[1,7],[2,6],[2,7],[3,6],[3,7] movq mm1, mm2 punpcklbw mm5, mm6 ;out[0,2],[0,3],[1,2],[1,3],[2,2],[2,3],[3,2],[3,3] add eax, 4 punpckhbw mm7, mm6 ;out[0,4],[0,5],[1,4],[1,5],[2,4],[2,5],[3,4],[3,5] punpcklwd mm2, mm5 ;out[0,0],[0,1],[0,2],[0,3],[1,0],[1,1],[1,2],[1,3] add ecx, output_col movq mm6, mm7 punpckhwd mm1, mm5 ;out[2,0],[2,1],[2,2],[2,3],[3,0],[3,1],[3,2],[3,3] movq mm0, mm2 punpcklwd mm6, mm4 ;out[0,4],[0,5],[0,6],[0,7],[1,4],[1,5],[1,6],[1,7] mov ebx, [eax] punpckldq mm2, mm6 ;out[0,0],[0,1],[0,2],[0,3],[0,4],[0,5],[0,6],[0,7] add eax, 4 movq mm3, mm1 add ebx, output_col punpckhwd mm7, mm4 ;out[2,4],[2,5],[2,6],[2,7],[3,4],[3,5],[3,6],[3,7] movq [ecx], mm2 punpckhdq mm0, mm6 ;out[1,0],[1,1],[1,2],[1,3],[1,4],[1,5],[1,6],[1,7] mov ecx, [eax] add eax, 4 add ecx, output_col movq [ebx], mm0 punpckldq mm1, mm7 ;out[2,0],[2,1],[2,2],[2,3],[2,4],[2,5],[2,6],[2,7] mov ebx, [eax] add ebx, output_col punpckhdq mm3, mm7 ;out[3,0],[3,1],[3,2],[3,3],[3,4],[3,5],[3,6],[3,7] movq [ecx], mm1 movq [ebx], mm3 /*******************************************************************/ add esi, 64 add eax, 4 /*******************************************************************/ // tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); // tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); // tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); // tmp14 = ((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6]); movq mm0, [esi+8*0] ;wsptr[0,0],[0,1],[0,2],[0,3] movq mm1, [esi+8*1] ;wsptr[0,4],[0,5],[0,6],[0,7] movq mm2, mm0 movq mm3, [esi+8*2] ;wsptr[1,0],[1,1],[1,2],[1,3] paddw mm0, mm1 ;wsptr[0,tmp10],[xxx],[0,tmp13],[xxx] movq mm4, [esi+8*3] ;wsptr[1,4],[1,5],[1,6],[1,7] psubw mm2, mm1 ;wsptr[0,tmp11],[xxx],[0,tmp14],[xxx] movq mm6, mm0 movq mm5, mm3 paddw mm3, mm4 ;wsptr[1,tmp10],[xxx],[1,tmp13],[xxx] movq mm1, mm2 psubw mm5, mm4 ;wsptr[1,tmp11],[xxx],[1,tmp14],[xxx] punpcklwd mm0, mm3 ;wsptr[0,tmp10],[1,tmp10],[xxx],[xxx] movq mm7, [esi+8*7] ;wsptr[3,4],[3,5],[3,6],[3,7] punpckhwd mm6, mm3 ;wsptr[0,tmp13],[1,tmp13],[xxx],[xxx] movq mm3, [esi+8*4] ;wsptr[2,0],[2,1],[2,2],[2,3] punpckldq mm0, mm6 ;wsptr[0,tmp10],[1,tmp10],[0,tmp13],[1,tmp13] punpcklwd mm1, mm5 ;wsptr[0,tmp11],[1,tmp11],[xxx],[xxx] movq mm4, mm3 movq mm6, [esi+8*6] ;wsptr[3,0],[3,1],[3,2],[3,3] punpckhwd mm2, mm5 ;wsptr[0,tmp14],[1,tmp14],[xxx],[xxx] movq mm5, [esi+8*5] ;wsptr[2,4],[2,5],[2,6],[2,7] punpckldq mm1, mm2 ;wsptr[0,tmp11],[1,tmp11],[0,tmp14],[1,tmp14] paddw mm3, mm5 ;wsptr[2,tmp10],[xxx],[2,tmp13],[xxx] movq mm2, mm6 psubw mm4, mm5 ;wsptr[2,tmp11],[xxx],[2,tmp14],[xxx] paddw mm6, mm7 ;wsptr[3,tmp10],[xxx],[3,tmp13],[xxx] movq mm5, mm3 punpcklwd mm3, mm6 ;wsptr[2,tmp10],[3,tmp10],[xxx],[xxx] psubw mm2, mm7 ;wsptr[3,tmp11],[xxx],[3,tmp14],[xxx] punpckhwd mm5, mm6 ;wsptr[2,tmp13],[3,tmp13],[xxx],[xxx] movq mm7, mm4 punpckldq mm3, mm5 ;wsptr[2,tmp10],[3,tmp10],[2,tmp13],[3,tmp13] punpcklwd mm4, mm2 ;wsptr[2,tmp11],[3,tmp11],[xxx],[xxx] punpckhwd mm7, mm2 ;wsptr[2,tmp14],[3,tmp14],[xxx],[xxx] punpckldq mm4, mm7 ;wsptr[2,tmp11],[3,tmp11],[2,tmp14],[3,tmp14] movq mm6, mm1 // mm0 = ;wsptr[0,tmp10],[1,tmp10],[0,tmp13],[1,tmp13] // mm1 = ;wsptr[0,tmp11],[1,tmp11],[0,tmp14],[1,tmp14] movq mm2, mm0 punpckhdq mm6, mm4 ;wsptr[0,tmp14],[1,tmp14],[2,tmp14],[3,tmp14] punpckldq mm1, mm4 ;wsptr[0,tmp11],[1,tmp11],[2,tmp11],[3,tmp11] psllw mm6, 2 pmulhw mm6, fix_141 punpckldq mm0, mm3 ;wsptr[0,tmp10],[1,tmp10],[2,tmp10],[3,tmp10] punpckhdq mm2, mm3 ;wsptr[0,tmp13],[1,tmp13],[2,tmp13],[3,tmp13] movq mm7, mm0 // tmp0 = tmp10 + tmp13; // tmp3 = tmp10 - tmp13; paddw mm0, mm2 ;[0,tmp0],[1,tmp0],[2,tmp0],[3,tmp0] psubw mm7, mm2 ;[0,tmp3],[1,tmp3],[2,tmp3],[3,tmp3] // tmp12 = MULTIPLY(tmp14, FIX_1_414213562) - tmp13; psubw mm6, mm2 ;wsptr[0,tmp12],[1,tmp12],[2,tmp12],[3,tmp12] // tmp1 = tmp11 + tmp12; // tmp2 = tmp11 - tmp12; movq mm5, mm1 /* Odd part */ // z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; // z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; // z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; // z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; movq mm3, [esi+8*0] ;wsptr[0,0],[0,1],[0,2],[0,3] paddw mm1, mm6 ;[0,tmp1],[1,tmp1],[2,tmp1],[3,tmp1] movq mm4, [esi+8*1] ;wsptr[0,4],[0,5],[0,6],[0,7] psubw mm5, mm6 ;[0,tmp2],[1,tmp2],[2,tmp2],[3,tmp2] movq mm6, mm3 punpckldq mm3, mm4 ;wsptr[0,0],[0,1],[0,4],[0,5] punpckhdq mm4, mm6 ;wsptr[0,6],[0,7],[0,2],[0,3] movq mm2, mm3 //Save tmp0 and tmp1 in wsptr movq [esi+8*0], mm0 ;save tmp0 paddw mm2, mm4 ;wsptr[xxx],[0,z11],[xxx],[0,z13] //Continue with z10 --- z13 movq mm6, [esi+8*2] ;wsptr[1,0],[1,1],[1,2],[1,3] psubw mm3, mm4 ;wsptr[xxx],[0,z12],[xxx],[0,z10] movq mm0, [esi+8*3] ;wsptr[1,4],[1,5],[1,6],[1,7] movq mm4, mm6 movq [esi+8*1], mm1 ;save tmp1 punpckldq mm6, mm0 ;wsptr[1,0],[1,1],[1,4],[1,5] punpckhdq mm0, mm4 ;wsptr[1,6],[1,7],[1,2],[1,3] movq mm1, mm6 //Save tmp2 and tmp3 in wsptr paddw mm6, mm0 ;wsptr[xxx],[1,z11],[xxx],[1,z13] movq mm4, mm2 //Continue with z10 --- z13 movq [esi+8*2], mm5 ;save tmp2 punpcklwd mm2, mm6 ;wsptr[xxx],[xxx],[0,z11],[1,z11] psubw mm1, mm0 ;wsptr[xxx],[1,z12],[xxx],[1,z10] punpckhwd mm4, mm6 ;wsptr[xxx],[xxx],[0,z13],[1,z13] movq mm0, mm3 punpcklwd mm3, mm1 ;wsptr[xxx],[xxx],[0,z12],[1,z12] movq [esi+8*3], mm7 ;save tmp3 punpckhwd mm0, mm1 ;wsptr[xxx],[xxx],[0,z10],[1,z10] movq mm6, [esi+8*4] ;wsptr[2,0],[2,1],[2,2],[2,3] punpckhdq mm0, mm2 ;wsptr[0,z10],[1,z10],[0,z11],[1,z11] movq mm7, [esi+8*5] ;wsptr[2,4],[2,5],[2,6],[2,7] punpckhdq mm3, mm4 ;wsptr[0,z12],[1,z12],[0,z13],[1,z13] movq mm1, [esi+8*6] ;wsptr[3,0],[3,1],[3,2],[3,3] movq mm4, mm6 punpckldq mm6, mm7 ;wsptr[2,0],[2,1],[2,4],[2,5] movq mm5, mm1 punpckhdq mm7, mm4 ;wsptr[2,6],[2,7],[2,2],[2,3] movq mm2, mm6 movq mm4, [esi+8*7] ;wsptr[3,4],[3,5],[3,6],[3,7] paddw mm6, mm7 ;wsptr[xxx],[2,z11],[xxx],[2,z13] psubw mm2, mm7 ;wsptr[xxx],[2,z12],[xxx],[2,z10] punpckldq mm1, mm4 ;wsptr[3,0],[3,1],[3,4],[3,5] punpckhdq mm4, mm5 ;wsptr[3,6],[3,7],[3,2],[3,3] movq mm7, mm1 paddw mm1, mm4 ;wsptr[xxx],[3,z11],[xxx],[3,z13] psubw mm7, mm4 ;wsptr[xxx],[3,z12],[xxx],[3,z10] movq mm5, mm6 punpcklwd mm6, mm1 ;wsptr[xxx],[xxx],[2,z11],[3,z11] punpckhwd mm5, mm1 ;wsptr[xxx],[xxx],[2,z13],[3,z13] movq mm4, mm2 punpcklwd mm2, mm7 ;wsptr[xxx],[xxx],[2,z12],[3,z12] punpckhwd mm4, mm7 ;wsptr[xxx],[xxx],[2,z10],[3,z10] punpckhdq mm4, mm6 ;wsptr[2,z10],[3,z10],[2,z11],[3,z11] punpckhdq mm2, mm5 ;wsptr[2,z12],[3,z12],[2,z13],[3,z13] movq mm5, mm0 punpckldq mm0, mm4 ;wsptr[0,z10],[1,z10],[2,z10],[3,z10] punpckhdq mm5, mm4 ;wsptr[0,z11],[1,z11],[2,z11],[3,z11] movq mm4, mm3 punpckhdq mm4, mm2 ;wsptr[0,z13],[1,z13],[2,z13],[3,z13] movq mm1, mm5 punpckldq mm3, mm2 ;wsptr[0,z12],[1,z12],[2,z12],[3,z12] // tmp7 = z11 + z13; /* phase 5 */ // tmp8 = z11 - z13; /* phase 5 */ psubw mm1, mm4 ;tmp8 paddw mm5, mm4 ;tmp7 // tmp21 = MULTIPLY(tmp8, FIX_1_414213562); /* 2*c4 */ psllw mm1, 2 psllw mm0, 2 pmulhw mm1, fix_141 ;tmp21 // tmp20 = MULTIPLY(z12, (FIX_1_082392200- FIX_1_847759065)) /* 2*(c2-c6) */ // + MULTIPLY(z10, - FIX_1_847759065); /* 2*c2 */ psllw mm3, 2 movq mm7, mm0 pmulhw mm7, fix_n184 movq mm6, mm3 movq mm2, [esi+8*0] ;tmp0,final1 pmulhw mm6, fix_108n184 // tmp22 = MULTIPLY(z10,(FIX_1_847759065 - FIX_2_613125930)) /* -2*(c2+c6) */ // + MULTIPLY(z12, FIX_1_847759065); /* 2*c2 */ movq mm4, mm2 ;final1 pmulhw mm0, fix_184n261 paddw mm2, mm5 ;tmp0+tmp7,final1 pmulhw mm3, fix_184 psubw mm4, mm5 ;tmp0-tmp7,final1 // tmp6 = tmp22 - tmp7; /* phase 2 */ psraw mm2, 5 ;outptr[0,0],[1,0],[2,0],[3,0],final1 paddsw mm2, const_0x0080 ;final1 paddw mm7, mm6 ;tmp20 psraw mm4, 5 ;outptr[0,7],[1,7],[2,7],[3,7],final1 paddsw mm4, const_0x0080 ;final1 paddw mm3, mm0 ;tmp22 // tmp5 = tmp21 - tmp6; psubw mm3, mm5 ;tmp6 // tmp4 = tmp20 + tmp5; movq mm0, [esi+8*1] ;tmp1,final2 psubw mm1, mm3 ;tmp5 movq mm6, mm0 ;final2 paddw mm0, mm3 ;tmp1+tmp6,final2 /* Final output stage: scale down by a factor of 8 and range-limit */ // outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) // & RANGE_MASK]; // outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) // & RANGE_MASK]; final1 // outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) // & RANGE_MASK]; // outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) // & RANGE_MASK]; final2 psubw mm6, mm3 ;tmp1-tmp6,final2 psraw mm0, 5 ;outptr[0,1],[1,1],[2,1],[3,1] paddsw mm0, const_0x0080 psraw mm6, 5 ;outptr[0,6],[1,6],[2,6],[3,6] paddsw mm6, const_0x0080 ;need to check this value packuswb mm0, mm4 ;out[0,1],[1,1],[2,1],[3,1],[0,7],[1,7],[2,7],[3,7] movq mm5, [esi+8*2] ;tmp2,final3 packuswb mm2, mm6 ;out[0,0],[1,0],[2,0],[3,0],[0,6],[1,6],[2,6],[3,6] // outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) // & RANGE_MASK]; // outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) // & RANGE_MASK]; final3 paddw mm7, mm1 ;tmp4 movq mm3, mm5 paddw mm5, mm1 ;tmp2+tmp5 psubw mm3, mm1 ;tmp2-tmp5 psraw mm5, 5 ;outptr[0,2],[1,2],[2,2],[3,2] paddsw mm5, const_0x0080 movq mm4, [esi+8*3] ;tmp3,final4 psraw mm3, 5 ;outptr[0,5],[1,5],[2,5],[3,5] paddsw mm3, const_0x0080 // outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) // & RANGE_MASK]; // outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) // & RANGE_MASK]; final4 movq mm6, mm4 paddw mm4, mm7 ;tmp3+tmp4 psubw mm6, mm7 ;tmp3-tmp4 psraw mm4, 5 ;outptr[0,4],[1,4],[2,4],[3,4] mov ecx, [eax] paddsw mm4, const_0x0080 psraw mm6, 5 ;outptr[0,3],[1,3],[2,3],[3,3] paddsw mm6, const_0x0080 packuswb mm5, mm4 ;out[0,2],[1,2],[2,2],[3,2],[0,4],[1,4],[2,4],[3,4] packuswb mm6, mm3 ;out[0,3],[1,3],[2,3],[3,3],[0,5],[1,5],[2,5],[3,5] movq mm4, mm2 movq mm7, mm5 punpcklbw mm2, mm0 ;out[0,0],[0,1],[1,0],[1,1],[2,0],[2,1],[3,0],[3,1] punpckhbw mm4, mm0 ;out[0,6],[0,7],[1,6],[1,7],[2,6],[2,7],[3,6],[3,7] movq mm1, mm2 punpcklbw mm5, mm6 ;out[0,2],[0,3],[1,2],[1,3],[2,2],[2,3],[3,2],[3,3] add eax, 4 punpckhbw mm7, mm6 ;out[0,4],[0,5],[1,4],[1,5],[2,4],[2,5],[3,4],[3,5] punpcklwd mm2, mm5 ;out[0,0],[0,1],[0,2],[0,3],[1,0],[1,1],[1,2],[1,3] add ecx, output_col movq mm6, mm7 punpckhwd mm1, mm5 ;out[2,0],[2,1],[2,2],[2,3],[3,0],[3,1],[3,2],[3,3] movq mm0, mm2 punpcklwd mm6, mm4 ;out[0,4],[0,5],[0,6],[0,7],[1,4],[1,5],[1,6],[1,7] mov ebx, [eax] punpckldq mm2, mm6 ;out[0,0],[0,1],[0,2],[0,3],[0,4],[0,5],[0,6],[0,7] add eax, 4 movq mm3, mm1 add ebx, output_col punpckhwd mm7, mm4 ;out[2,4],[2,5],[2,6],[2,7],[3,4],[3,5],[3,6],[3,7] movq [ecx], mm2 punpckhdq mm0, mm6 ;out[1,0],[1,1],[1,2],[1,3],[1,4],[1,5],[1,6],[1,7] mov ecx, [eax] add eax, 4 add ecx, output_col movq [ebx], mm0 punpckldq mm1, mm7 ;out[2,0],[2,1],[2,2],[2,3],[2,4],[2,5],[2,6],[2,7] mov ebx, [eax] add ebx, output_col punpckhdq mm3, mm7 ;out[3,0],[3,1],[3,2],[3,3],[3,4],[3,5],[3,6],[3,7] movq [ecx], mm1 movq [ebx], mm3 emms } } #endif #endif /* DCT_IFAST_SUPPORTED */