/* Copyright (c) Mark Harmstone 2016-17 * * This file is part of WinBtrfs. * * WinBtrfs is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public Licence as published by * the Free Software Foundation, either version 3 of the Licence, or * (at your option) any later version. * * WinBtrfs is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public Licence for more details. * * You should have received a copy of the GNU Lesser General Public Licence * along with WinBtrfs. If not, see . */ #include "btrfs_drv.h" enum read_data_status { ReadDataStatus_Pending, ReadDataStatus_Success, ReadDataStatus_Error, ReadDataStatus_MissingDevice, ReadDataStatus_Skip }; struct read_data_context; typedef struct { struct read_data_context* context; UINT16 stripenum; BOOL rewrite; PIRP Irp; IO_STATUS_BLOCK iosb; enum read_data_status status; PMDL mdl; UINT64 stripestart; UINT64 stripeend; } read_data_stripe; typedef struct { KEVENT Event; NTSTATUS Status; chunk* c; UINT64 address; UINT32 buflen; LONG num_stripes, stripes_left; UINT64 type; UINT32 sector_size; UINT16 firstoff, startoffstripe, sectors_per_stripe; UINT32* csum; BOOL tree; read_data_stripe* stripes; UINT8* va; } read_data_context; extern BOOL diskacc; extern tPsUpdateDiskCounters fPsUpdateDiskCounters; extern tCcCopyReadEx fCcCopyReadEx; extern tFsRtlUpdateDiskCounters fFsRtlUpdateDiskCounters; #define LINUX_PAGE_SIZE 4096 _Function_class_(IO_COMPLETION_ROUTINE) #ifdef __REACTOS__ static NTSTATUS NTAPI read_data_completion(PDEVICE_OBJECT DeviceObject, PIRP Irp, PVOID conptr) { #else static NTSTATUS read_data_completion(PDEVICE_OBJECT DeviceObject, PIRP Irp, PVOID conptr) { #endif read_data_stripe* stripe = conptr; read_data_context* context = (read_data_context*)stripe->context; UNUSED(DeviceObject); stripe->iosb = Irp->IoStatus; if (NT_SUCCESS(Irp->IoStatus.Status)) stripe->status = ReadDataStatus_Success; else stripe->status = ReadDataStatus_Error; if (InterlockedDecrement(&context->stripes_left) == 0) KeSetEvent(&context->Event, 0, FALSE); return STATUS_MORE_PROCESSING_REQUIRED; } NTSTATUS check_csum(device_extension* Vcb, UINT8* data, UINT32 sectors, UINT32* csum) { NTSTATUS Status; calc_job* cj; UINT32* csum2; // From experimenting, it seems that 40 sectors is roughly the crossover // point where offloading the crc32 calculation becomes worth it. if (sectors < 40 || KeQueryActiveProcessorCount(NULL) < 2) { ULONG j; for (j = 0; j < sectors; j++) { UINT32 crc32 = ~calc_crc32c(0xffffffff, data + (j * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (crc32 != csum[j]) { return STATUS_CRC_ERROR; } } return STATUS_SUCCESS; } csum2 = ExAllocatePoolWithTag(PagedPool, sizeof(UINT32) * sectors, ALLOC_TAG); if (!csum2) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } Status = add_calc_job(Vcb, data, sectors, csum2, &cj); if (!NT_SUCCESS(Status)) { ERR("add_calc_job returned %08x\n", Status); ExFreePool(csum2); return Status; } KeWaitForSingleObject(&cj->event, Executive, KernelMode, FALSE, NULL); if (RtlCompareMemory(csum2, csum, sectors * sizeof(UINT32)) != sectors * sizeof(UINT32)) { free_calc_job(cj); ExFreePool(csum2); return STATUS_CRC_ERROR; } free_calc_job(cj); ExFreePool(csum2); return STATUS_SUCCESS; } static NTSTATUS read_data_dup(device_extension* Vcb, UINT8* buf, UINT64 addr, read_data_context* context, CHUNK_ITEM* ci, device** devices, UINT64 generation) { ULONG i; BOOL checksum_error = FALSE; UINT16 j, stripe = 0; NTSTATUS Status; CHUNK_ITEM_STRIPE* cis = (CHUNK_ITEM_STRIPE*)&ci[1]; for (j = 0; j < ci->num_stripes; j++) { if (context->stripes[j].status == ReadDataStatus_Error) { WARN("stripe %u returned error %08x\n", j, context->stripes[j].iosb.Status); log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); return context->stripes[j].iosb.Status; } else if (context->stripes[j].status == ReadDataStatus_Success) { stripe = j; break; } } if (context->stripes[stripe].status != ReadDataStatus_Success) return STATUS_INTERNAL_ERROR; if (context->tree) { tree_header* th = (tree_header*)buf; UINT32 crc32; crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&th->fs_uuid, context->buflen - sizeof(th->csum)); if (th->address != context->address || crc32 != *((UINT32*)th->csum)) { checksum_error = TRUE; log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_CORRUPTION_ERRORS); } else if (generation != 0 && th->generation != generation) { checksum_error = TRUE; log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_GENERATION_ERRORS); } } else if (context->csum) { #ifdef DEBUG_STATS LARGE_INTEGER time1, time2; time1 = KeQueryPerformanceCounter(NULL); #endif Status = check_csum(Vcb, buf, (ULONG)context->stripes[stripe].Irp->IoStatus.Information / context->sector_size, context->csum); if (Status == STATUS_CRC_ERROR) { checksum_error = TRUE; log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_CORRUPTION_ERRORS); } else if (!NT_SUCCESS(Status)) { ERR("check_csum returned %08x\n", Status); return Status; } #ifdef DEBUG_STATS time2 = KeQueryPerformanceCounter(NULL); Vcb->stats.read_csum_time += time2.QuadPart - time1.QuadPart; #endif } if (!checksum_error) return STATUS_SUCCESS; if (ci->num_stripes == 1) return STATUS_CRC_ERROR; if (context->tree) { tree_header* t2; BOOL recovered = FALSE; t2 = ExAllocatePoolWithTag(NonPagedPool, Vcb->superblock.node_size, ALLOC_TAG); if (!t2) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } for (j = 0; j < ci->num_stripes; j++) { if (j != stripe && devices[j] && devices[j]->devobj) { Status = sync_read_phys(devices[j]->devobj, cis[j].offset + context->stripes[stripe].stripestart, Vcb->superblock.node_size, (UINT8*)t2, FALSE); if (!NT_SUCCESS(Status)) { WARN("sync_read_phys returned %08x\n", Status); log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); } else { UINT32 crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&t2->fs_uuid, Vcb->superblock.node_size - sizeof(t2->csum)); if (t2->address == addr && crc32 == *((UINT32*)t2->csum) && (generation == 0 || t2->generation == generation)) { RtlCopyMemory(buf, t2, Vcb->superblock.node_size); ERR("recovering from checksum error at %llx, device %llx\n", addr, devices[stripe]->devitem.dev_id); recovered = TRUE; if (!Vcb->readonly && !devices[stripe]->readonly) { // write good data over bad Status = write_data_phys(devices[stripe]->devobj, cis[stripe].offset + context->stripes[stripe].stripestart, t2, Vcb->superblock.node_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_WRITE_ERRORS); } } break; } else if (t2->address != addr || crc32 != *((UINT32*)t2->csum)) log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_CORRUPTION_ERRORS); else log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_GENERATION_ERRORS); } } } if (!recovered) { ERR("unrecoverable checksum error at %llx\n", addr); ExFreePool(t2); return STATUS_CRC_ERROR; } ExFreePool(t2); } else { ULONG sectors = (ULONG)context->stripes[stripe].Irp->IoStatus.Information / Vcb->superblock.sector_size; UINT8* sector; sector = ExAllocatePoolWithTag(NonPagedPool, Vcb->superblock.sector_size, ALLOC_TAG); if (!sector) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } for (i = 0; i < sectors; i++) { UINT32 crc32 = ~calc_crc32c(0xffffffff, buf + (i * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (context->csum[i] != crc32) { BOOL recovered = FALSE; for (j = 0; j < ci->num_stripes; j++) { if (j != stripe && devices[j] && devices[j]->devobj) { Status = sync_read_phys(devices[j]->devobj, cis[j].offset + context->stripes[stripe].stripestart + UInt32x32To64(i, Vcb->superblock.sector_size), Vcb->superblock.sector_size, sector, FALSE); if (!NT_SUCCESS(Status)) { WARN("sync_read_phys returned %08x\n", Status); log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); } else { UINT32 crc32b = ~calc_crc32c(0xffffffff, sector, Vcb->superblock.sector_size); if (crc32b == context->csum[i]) { RtlCopyMemory(buf + (i * Vcb->superblock.sector_size), sector, Vcb->superblock.sector_size); ERR("recovering from checksum error at %llx, device %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size), devices[stripe]->devitem.dev_id); recovered = TRUE; if (!Vcb->readonly && !devices[stripe]->readonly) { // write good data over bad Status = write_data_phys(devices[stripe]->devobj, cis[stripe].offset + context->stripes[stripe].stripestart + UInt32x32To64(i, Vcb->superblock.sector_size), sector, Vcb->superblock.sector_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_WRITE_ERRORS); } } break; } else log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_CORRUPTION_ERRORS); } } } if (!recovered) { ERR("unrecoverable checksum error at %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size)); ExFreePool(sector); return STATUS_CRC_ERROR; } } } ExFreePool(sector); } return STATUS_SUCCESS; } static NTSTATUS read_data_raid0(device_extension* Vcb, UINT8* buf, UINT64 addr, UINT32 length, read_data_context* context, CHUNK_ITEM* ci, device** devices, UINT64 generation, UINT64 offset) { UINT64 i; for (i = 0; i < ci->num_stripes; i++) { if (context->stripes[i].status == ReadDataStatus_Error) { WARN("stripe %llu returned error %08x\n", i, context->stripes[i].iosb.Status); log_device_error(Vcb, devices[i], BTRFS_DEV_STAT_READ_ERRORS); return context->stripes[i].iosb.Status; } } if (context->tree) { // shouldn't happen, as trees shouldn't cross stripe boundaries tree_header* th = (tree_header*)buf; UINT32 crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&th->fs_uuid, Vcb->superblock.node_size - sizeof(th->csum)); if (crc32 != *((UINT32*)th->csum) || addr != th->address || (generation != 0 && generation != th->generation)) { UINT64 off; UINT16 stripe; get_raid0_offset(addr - offset, ci->stripe_length, ci->num_stripes, &off, &stripe); ERR("unrecoverable checksum error at %llx, device %llx\n", addr, devices[stripe]->devitem.dev_id); if (crc32 != *((UINT32*)th->csum)) { WARN("crc32 was %08x, expected %08x\n", crc32, *((UINT32*)th->csum)); log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_CORRUPTION_ERRORS); return STATUS_CRC_ERROR; } else if (addr != th->address) { WARN("address of tree was %llx, not %llx as expected\n", th->address, addr); log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_CORRUPTION_ERRORS); return STATUS_CRC_ERROR; } else if (generation != 0 && generation != th->generation) { WARN("generation of tree was %llx, not %llx as expected\n", th->generation, generation); log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_GENERATION_ERRORS); return STATUS_CRC_ERROR; } } } else if (context->csum) { NTSTATUS Status; #ifdef DEBUG_STATS LARGE_INTEGER time1, time2; time1 = KeQueryPerformanceCounter(NULL); #endif Status = check_csum(Vcb, buf, length / Vcb->superblock.sector_size, context->csum); if (Status == STATUS_CRC_ERROR) { for (i = 0; i < length / Vcb->superblock.sector_size; i++) { UINT32 crc32 = ~calc_crc32c(0xffffffff, buf + (i * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (context->csum[i] != crc32) { UINT64 off; UINT16 stripe; get_raid0_offset(addr - offset + UInt32x32To64(i, Vcb->superblock.sector_size), ci->stripe_length, ci->num_stripes, &off, &stripe); ERR("unrecoverable checksum error at %llx, device %llx\n", addr, devices[stripe]->devitem.dev_id); log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_CORRUPTION_ERRORS); return Status; } } return Status; } else if (!NT_SUCCESS(Status)) { ERR("check_csum returned %08x\n", Status); return Status; } #ifdef DEBUG_STATS time2 = KeQueryPerformanceCounter(NULL); Vcb->stats.read_csum_time += time2.QuadPart - time1.QuadPart; #endif } return STATUS_SUCCESS; } static NTSTATUS read_data_raid10(device_extension* Vcb, UINT8* buf, UINT64 addr, UINT32 length, read_data_context* context, CHUNK_ITEM* ci, device** devices, UINT64 generation, UINT64 offset) { UINT64 i; UINT16 j, stripe; NTSTATUS Status; BOOL checksum_error = FALSE; CHUNK_ITEM_STRIPE* cis = (CHUNK_ITEM_STRIPE*)&ci[1]; for (j = 0; j < ci->num_stripes; j++) { if (context->stripes[j].status == ReadDataStatus_Error) { WARN("stripe %llu returned error %08x\n", j, context->stripes[j].iosb.Status); log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); return context->stripes[j].iosb.Status; } else if (context->stripes[j].status == ReadDataStatus_Success) stripe = j; } if (context->tree) { tree_header* th = (tree_header*)buf; UINT32 crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&th->fs_uuid, Vcb->superblock.node_size - sizeof(th->csum)); if (crc32 != *((UINT32*)th->csum)) { WARN("crc32 was %08x, expected %08x\n", crc32, *((UINT32*)th->csum)); checksum_error = TRUE; log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_CORRUPTION_ERRORS); } else if (addr != th->address) { WARN("address of tree was %llx, not %llx as expected\n", th->address, addr); checksum_error = TRUE; log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_CORRUPTION_ERRORS); } else if (generation != 0 && generation != th->generation) { WARN("generation of tree was %llx, not %llx as expected\n", th->generation, generation); checksum_error = TRUE; log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_GENERATION_ERRORS); } } else if (context->csum) { #ifdef DEBUG_STATS LARGE_INTEGER time1, time2; time1 = KeQueryPerformanceCounter(NULL); #endif Status = check_csum(Vcb, buf, length / Vcb->superblock.sector_size, context->csum); if (Status == STATUS_CRC_ERROR) checksum_error = TRUE; else if (!NT_SUCCESS(Status)) { ERR("check_csum returned %08x\n", Status); return Status; } #ifdef DEBUG_STATS time2 = KeQueryPerformanceCounter(NULL); Vcb->stats.read_csum_time += time2.QuadPart - time1.QuadPart; #endif } if (!checksum_error) return STATUS_SUCCESS; if (context->tree) { tree_header* t2; UINT64 off; UINT16 badsubstripe = 0; BOOL recovered = FALSE; t2 = ExAllocatePoolWithTag(NonPagedPool, Vcb->superblock.node_size, ALLOC_TAG); if (!t2) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } get_raid0_offset(addr - offset, ci->stripe_length, ci->num_stripes / ci->sub_stripes, &off, &stripe); stripe *= ci->sub_stripes; for (j = 0; j < ci->sub_stripes; j++) { if (context->stripes[stripe + j].status == ReadDataStatus_Success) { badsubstripe = j; break; } } for (j = 0; j < ci->sub_stripes; j++) { if (context->stripes[stripe + j].status != ReadDataStatus_Success && devices[stripe + j] && devices[stripe + j]->devobj) { Status = sync_read_phys(devices[stripe + j]->devobj, cis[stripe + j].offset + off, Vcb->superblock.node_size, (UINT8*)t2, FALSE); if (!NT_SUCCESS(Status)) { WARN("sync_read_phys returned %08x\n", Status); log_device_error(Vcb, devices[stripe + j], BTRFS_DEV_STAT_READ_ERRORS); } else { UINT32 crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&t2->fs_uuid, Vcb->superblock.node_size - sizeof(t2->csum)); if (t2->address == addr && crc32 == *((UINT32*)t2->csum) && (generation == 0 || t2->generation == generation)) { RtlCopyMemory(buf, t2, Vcb->superblock.node_size); ERR("recovering from checksum error at %llx, device %llx\n", addr, devices[stripe + j]->devitem.dev_id); recovered = TRUE; if (!Vcb->readonly && !devices[stripe + badsubstripe]->readonly && devices[stripe + badsubstripe]->devobj) { // write good data over bad Status = write_data_phys(devices[stripe + badsubstripe]->devobj, cis[stripe + badsubstripe].offset + off, t2, Vcb->superblock.node_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[stripe + badsubstripe], BTRFS_DEV_STAT_WRITE_ERRORS); } } break; } else if (t2->address != addr || crc32 != *((UINT32*)t2->csum)) log_device_error(Vcb, devices[stripe + j], BTRFS_DEV_STAT_CORRUPTION_ERRORS); else log_device_error(Vcb, devices[stripe + j], BTRFS_DEV_STAT_GENERATION_ERRORS); } } } if (!recovered) { ERR("unrecoverable checksum error at %llx\n", addr); ExFreePool(t2); return STATUS_CRC_ERROR; } ExFreePool(t2); } else { ULONG sectors = length / Vcb->superblock.sector_size; UINT8* sector; sector = ExAllocatePoolWithTag(NonPagedPool, Vcb->superblock.sector_size, ALLOC_TAG); if (!sector) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } for (i = 0; i < sectors; i++) { UINT32 crc32 = ~calc_crc32c(0xffffffff, buf + (i * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (context->csum[i] != crc32) { UINT64 off; UINT16 stripe2, badsubstripe = 0; BOOL recovered = FALSE; get_raid0_offset(addr - offset + UInt32x32To64(i, Vcb->superblock.sector_size), ci->stripe_length, ci->num_stripes / ci->sub_stripes, &off, &stripe2); stripe2 *= ci->sub_stripes; for (j = 0; j < ci->sub_stripes; j++) { if (context->stripes[stripe2 + j].status == ReadDataStatus_Success) { badsubstripe = j; break; } } log_device_error(Vcb, devices[stripe2 + badsubstripe], BTRFS_DEV_STAT_CORRUPTION_ERRORS); for (j = 0; j < ci->sub_stripes; j++) { if (context->stripes[stripe2 + j].status != ReadDataStatus_Success && devices[stripe2 + j] && devices[stripe2 + j]->devobj) { Status = sync_read_phys(devices[stripe2 + j]->devobj, cis[stripe2 + j].offset + off, Vcb->superblock.sector_size, sector, FALSE); if (!NT_SUCCESS(Status)) { WARN("sync_read_phys returned %08x\n", Status); log_device_error(Vcb, devices[stripe2 + j], BTRFS_DEV_STAT_READ_ERRORS); } else { UINT32 crc32b = ~calc_crc32c(0xffffffff, sector, Vcb->superblock.sector_size); if (crc32b == context->csum[i]) { RtlCopyMemory(buf + (i * Vcb->superblock.sector_size), sector, Vcb->superblock.sector_size); ERR("recovering from checksum error at %llx, device %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size), devices[stripe2 + j]->devitem.dev_id); recovered = TRUE; if (!Vcb->readonly && !devices[stripe2 + badsubstripe]->readonly && devices[stripe2 + badsubstripe]->devobj) { // write good data over bad Status = write_data_phys(devices[stripe2 + badsubstripe]->devobj, cis[stripe2 + badsubstripe].offset + off, sector, Vcb->superblock.sector_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[stripe2 + badsubstripe], BTRFS_DEV_STAT_READ_ERRORS); } } break; } else log_device_error(Vcb, devices[stripe2 + j], BTRFS_DEV_STAT_CORRUPTION_ERRORS); } } } if (!recovered) { ERR("unrecoverable checksum error at %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size)); ExFreePool(sector); return STATUS_CRC_ERROR; } } } ExFreePool(sector); } return STATUS_SUCCESS; } static NTSTATUS read_data_raid5(device_extension* Vcb, UINT8* buf, UINT64 addr, UINT32 length, read_data_context* context, CHUNK_ITEM* ci, device** devices, UINT64 offset, UINT64 generation, chunk* c, BOOL degraded) { ULONG i; NTSTATUS Status; BOOL checksum_error = FALSE; CHUNK_ITEM_STRIPE* cis = (CHUNK_ITEM_STRIPE*)&ci[1]; UINT16 j, stripe; BOOL no_success = TRUE; for (j = 0; j < ci->num_stripes; j++) { if (context->stripes[j].status == ReadDataStatus_Error) { WARN("stripe %u returned error %08x\n", j, context->stripes[j].iosb.Status); log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); return context->stripes[j].iosb.Status; } else if (context->stripes[j].status == ReadDataStatus_Success) { stripe = j; no_success = FALSE; } } if (c) { // check partial stripes LIST_ENTRY* le; UINT64 ps_length = (ci->num_stripes - 1) * ci->stripe_length; ExAcquireResourceSharedLite(&c->partial_stripes_lock, TRUE); le = c->partial_stripes.Flink; while (le != &c->partial_stripes) { partial_stripe* ps = CONTAINING_RECORD(le, partial_stripe, list_entry); if (ps->address + ps_length > addr && ps->address < addr + length) { ULONG runlength, index; runlength = RtlFindFirstRunClear(&ps->bmp, &index); while (runlength != 0) { UINT64 runstart = ps->address + (index * Vcb->superblock.sector_size); UINT64 runend = runstart + (runlength * Vcb->superblock.sector_size); UINT64 start = max(runstart, addr); UINT64 end = min(runend, addr + length); if (end > start) RtlCopyMemory(buf + start - addr, &ps->data[start - ps->address], (ULONG)(end - start)); runlength = RtlFindNextForwardRunClear(&ps->bmp, index + runlength, &index); } } else if (ps->address >= addr + length) break; le = le->Flink; } ExReleaseResourceLite(&c->partial_stripes_lock); } if (context->tree) { tree_header* th = (tree_header*)buf; UINT32 crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&th->fs_uuid, Vcb->superblock.node_size - sizeof(th->csum)); if (addr != th->address || crc32 != *((UINT32*)th->csum)) { checksum_error = TRUE; if (!no_success && !degraded) log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_CORRUPTION_ERRORS); } else if (generation != 0 && generation != th->generation) { checksum_error = TRUE; if (!no_success && !degraded) log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_GENERATION_ERRORS); } } else if (context->csum) { #ifdef DEBUG_STATS LARGE_INTEGER time1, time2; time1 = KeQueryPerformanceCounter(NULL); #endif Status = check_csum(Vcb, buf, length / Vcb->superblock.sector_size, context->csum); if (Status == STATUS_CRC_ERROR) { if (!degraded) WARN("checksum error\n"); checksum_error = TRUE; } else if (!NT_SUCCESS(Status)) { ERR("check_csum returned %08x\n", Status); return Status; } #ifdef DEBUG_STATS time2 = KeQueryPerformanceCounter(NULL); Vcb->stats.read_csum_time += time2.QuadPart - time1.QuadPart; #endif } else if (degraded) checksum_error = TRUE; if (!checksum_error) return STATUS_SUCCESS; if (context->tree) { UINT16 parity; UINT64 off; BOOL recovered = FALSE, first = TRUE, failed = FALSE; UINT8* t2; t2 = ExAllocatePoolWithTag(NonPagedPool, Vcb->superblock.node_size * 2, ALLOC_TAG); if (!t2) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } get_raid0_offset(addr - offset, ci->stripe_length, ci->num_stripes - 1, &off, &stripe); parity = (((addr - offset) / ((ci->num_stripes - 1) * ci->stripe_length)) + ci->num_stripes - 1) % ci->num_stripes; stripe = (parity + stripe + 1) % ci->num_stripes; for (j = 0; j < ci->num_stripes; j++) { if (j != stripe) { if (devices[j] && devices[j]->devobj) { if (first) { Status = sync_read_phys(devices[j]->devobj, cis[j].offset + off, Vcb->superblock.node_size, t2, FALSE); if (!NT_SUCCESS(Status)) { ERR("sync_read_phys returned %08x\n", Status); log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); failed = TRUE; break; } first = FALSE; } else { Status = sync_read_phys(devices[j]->devobj, cis[j].offset + off, Vcb->superblock.node_size, t2 + Vcb->superblock.node_size, FALSE); if (!NT_SUCCESS(Status)) { ERR("sync_read_phys returned %08x\n", Status); log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); failed = TRUE; break; } do_xor(t2, t2 + Vcb->superblock.node_size, Vcb->superblock.node_size); } } else { failed = TRUE; break; } } } if (!failed) { tree_header* t3 = (tree_header*)t2; UINT32 crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&t3->fs_uuid, Vcb->superblock.node_size - sizeof(t3->csum)); if (t3->address == addr && crc32 == *((UINT32*)t3->csum) && (generation == 0 || t3->generation == generation)) { RtlCopyMemory(buf, t2, Vcb->superblock.node_size); if (!degraded) ERR("recovering from checksum error at %llx, device %llx\n", addr, devices[stripe]->devitem.dev_id); recovered = TRUE; if (!Vcb->readonly && devices[stripe] && !devices[stripe]->readonly && devices[stripe]->devobj) { // write good data over bad Status = write_data_phys(devices[stripe]->devobj, cis[stripe].offset + off, t2, Vcb->superblock.node_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_WRITE_ERRORS); } } } } if (!recovered) { ERR("unrecoverable checksum error at %llx\n", addr); ExFreePool(t2); return STATUS_CRC_ERROR; } ExFreePool(t2); } else { ULONG sectors = length / Vcb->superblock.sector_size; UINT8* sector; sector = ExAllocatePoolWithTag(NonPagedPool, Vcb->superblock.sector_size * 2, ALLOC_TAG); if (!sector) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } for (i = 0; i < sectors; i++) { UINT16 parity; UINT64 off; UINT32 crc32; if (context->csum) crc32 = ~calc_crc32c(0xffffffff, buf + (i * Vcb->superblock.sector_size), Vcb->superblock.sector_size); get_raid0_offset(addr - offset + UInt32x32To64(i, Vcb->superblock.sector_size), ci->stripe_length, ci->num_stripes - 1, &off, &stripe); parity = (((addr - offset + UInt32x32To64(i, Vcb->superblock.sector_size)) / ((ci->num_stripes - 1) * ci->stripe_length)) + ci->num_stripes - 1) % ci->num_stripes; stripe = (parity + stripe + 1) % ci->num_stripes; if (!devices[stripe] || !devices[stripe]->devobj || (context->csum && context->csum[i] != crc32)) { BOOL recovered = FALSE, first = TRUE, failed = FALSE; if (devices[stripe] && devices[stripe]->devobj) log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_READ_ERRORS); for (j = 0; j < ci->num_stripes; j++) { if (j != stripe) { if (devices[j] && devices[j]->devobj) { if (first) { Status = sync_read_phys(devices[j]->devobj, cis[j].offset + off, Vcb->superblock.sector_size, sector, FALSE); if (!NT_SUCCESS(Status)) { ERR("sync_read_phys returned %08x\n", Status); failed = TRUE; log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); break; } first = FALSE; } else { Status = sync_read_phys(devices[j]->devobj, cis[j].offset + off, Vcb->superblock.sector_size, sector + Vcb->superblock.sector_size, FALSE); if (!NT_SUCCESS(Status)) { ERR("sync_read_phys returned %08x\n", Status); failed = TRUE; log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); break; } do_xor(sector, sector + Vcb->superblock.sector_size, Vcb->superblock.sector_size); } } else { failed = TRUE; break; } } } if (!failed) { if (context->csum) crc32 = ~calc_crc32c(0xffffffff, sector, Vcb->superblock.sector_size); if (!context->csum || crc32 == context->csum[i]) { RtlCopyMemory(buf + (i * Vcb->superblock.sector_size), sector, Vcb->superblock.sector_size); if (!degraded) ERR("recovering from checksum error at %llx, device %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size), devices[stripe]->devitem.dev_id); recovered = TRUE; if (!Vcb->readonly && devices[stripe] && !devices[stripe]->readonly && devices[stripe]->devobj) { // write good data over bad Status = write_data_phys(devices[stripe]->devobj, cis[stripe].offset + off, sector, Vcb->superblock.sector_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_WRITE_ERRORS); } } } } if (!recovered) { ERR("unrecoverable checksum error at %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size)); ExFreePool(sector); return STATUS_CRC_ERROR; } } } ExFreePool(sector); } return STATUS_SUCCESS; } void raid6_recover2(UINT8* sectors, UINT16 num_stripes, ULONG sector_size, UINT16 missing1, UINT16 missing2, UINT8* out) { if (missing1 == num_stripes - 2 || missing2 == num_stripes - 2) { // reconstruct from q and data UINT16 missing = missing1 == (num_stripes - 2) ? missing2 : missing1; UINT16 stripe; stripe = num_stripes - 3; if (stripe == missing) RtlZeroMemory(out, sector_size); else RtlCopyMemory(out, sectors + (stripe * sector_size), sector_size); do { stripe--; galois_double(out, sector_size); if (stripe != missing) do_xor(out, sectors + (stripe * sector_size), sector_size); } while (stripe > 0); do_xor(out, sectors + ((num_stripes - 1) * sector_size), sector_size); if (missing != 0) galois_divpower(out, (UINT8)missing, sector_size); } else { // reconstruct from p and q UINT16 x, y, stripe; UINT8 gyx, gx, denom, a, b, *p, *q, *pxy, *qxy; UINT32 j; stripe = num_stripes - 3; pxy = out + sector_size; qxy = out; if (stripe == missing1 || stripe == missing2) { RtlZeroMemory(qxy, sector_size); RtlZeroMemory(pxy, sector_size); if (stripe == missing1) x = stripe; else y = stripe; } else { RtlCopyMemory(qxy, sectors + (stripe * sector_size), sector_size); RtlCopyMemory(pxy, sectors + (stripe * sector_size), sector_size); } do { stripe--; galois_double(qxy, sector_size); if (stripe != missing1 && stripe != missing2) { do_xor(qxy, sectors + (stripe * sector_size), sector_size); do_xor(pxy, sectors + (stripe * sector_size), sector_size); } else if (stripe == missing1) x = stripe; else if (stripe == missing2) y = stripe; } while (stripe > 0); gyx = gpow2(y > x ? (y-x) : (255-x+y)); gx = gpow2(255-x); denom = gdiv(1, gyx ^ 1); a = gmul(gyx, denom); b = gmul(gx, denom); p = sectors + ((num_stripes - 2) * sector_size); q = sectors + ((num_stripes - 1) * sector_size); for (j = 0; j < sector_size; j++) { *qxy = gmul(a, *p ^ *pxy) ^ gmul(b, *q ^ *qxy); p++; q++; pxy++; qxy++; } do_xor(out + sector_size, out, sector_size); do_xor(out + sector_size, sectors + ((num_stripes - 2) * sector_size), sector_size); } } static NTSTATUS read_data_raid6(device_extension* Vcb, UINT8* buf, UINT64 addr, UINT32 length, read_data_context* context, CHUNK_ITEM* ci, device** devices, UINT64 offset, UINT64 generation, chunk* c, BOOL degraded) { NTSTATUS Status; ULONG i; BOOL checksum_error = FALSE; CHUNK_ITEM_STRIPE* cis = (CHUNK_ITEM_STRIPE*)&ci[1]; UINT16 stripe, j; BOOL no_success = TRUE; for (j = 0; j < ci->num_stripes; j++) { if (context->stripes[j].status == ReadDataStatus_Error) { WARN("stripe %u returned error %08x\n", j, context->stripes[j].iosb.Status); if (devices[j]) log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); return context->stripes[j].iosb.Status; } else if (context->stripes[j].status == ReadDataStatus_Success) { stripe = j; no_success = FALSE; } } if (c) { // check partial stripes LIST_ENTRY* le; UINT64 ps_length = (ci->num_stripes - 2) * ci->stripe_length; ExAcquireResourceSharedLite(&c->partial_stripes_lock, TRUE); le = c->partial_stripes.Flink; while (le != &c->partial_stripes) { partial_stripe* ps = CONTAINING_RECORD(le, partial_stripe, list_entry); if (ps->address + ps_length > addr && ps->address < addr + length) { ULONG runlength, index; runlength = RtlFindFirstRunClear(&ps->bmp, &index); while (runlength != 0) { UINT64 runstart = ps->address + (index * Vcb->superblock.sector_size); UINT64 runend = runstart + (runlength * Vcb->superblock.sector_size); UINT64 start = max(runstart, addr); UINT64 end = min(runend, addr + length); if (end > start) RtlCopyMemory(buf + start - addr, &ps->data[start - ps->address], (ULONG)(end - start)); runlength = RtlFindNextForwardRunClear(&ps->bmp, index + runlength, &index); } } else if (ps->address >= addr + length) break; le = le->Flink; } ExReleaseResourceLite(&c->partial_stripes_lock); } if (context->tree) { tree_header* th = (tree_header*)buf; UINT32 crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&th->fs_uuid, Vcb->superblock.node_size - sizeof(th->csum)); if (addr != th->address || crc32 != *((UINT32*)th->csum)) { checksum_error = TRUE; if (!no_success && !degraded && devices[stripe]) log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_CORRUPTION_ERRORS); } else if (generation != 0 && generation != th->generation) { checksum_error = TRUE; if (!no_success && !degraded && devices[stripe]) log_device_error(Vcb, devices[stripe], BTRFS_DEV_STAT_GENERATION_ERRORS); } } else if (context->csum) { #ifdef DEBUG_STATS LARGE_INTEGER time1, time2; time1 = KeQueryPerformanceCounter(NULL); #endif Status = check_csum(Vcb, buf, length / Vcb->superblock.sector_size, context->csum); if (Status == STATUS_CRC_ERROR) { if (!degraded) WARN("checksum error\n"); checksum_error = TRUE; } else if (!NT_SUCCESS(Status)) { ERR("check_csum returned %08x\n", Status); return Status; } #ifdef DEBUG_STATS time2 = KeQueryPerformanceCounter(NULL); Vcb->stats.read_csum_time += time2.QuadPart - time1.QuadPart; #endif } else if (degraded) checksum_error = TRUE; if (!checksum_error) return STATUS_SUCCESS; if (context->tree) { UINT8* sector; UINT16 k, physstripe, parity1, parity2, error_stripe; UINT64 off; BOOL recovered = FALSE, failed = FALSE; ULONG num_errors = 0; sector = ExAllocatePoolWithTag(NonPagedPool, Vcb->superblock.node_size * (ci->num_stripes + 2), ALLOC_TAG); if (!sector) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } get_raid0_offset(addr - offset, ci->stripe_length, ci->num_stripes - 2, &off, &stripe); parity1 = (((addr - offset) / ((ci->num_stripes - 2) * ci->stripe_length)) + ci->num_stripes - 2) % ci->num_stripes; parity2 = (parity1 + 1) % ci->num_stripes; physstripe = (parity2 + stripe + 1) % ci->num_stripes; j = (parity2 + 1) % ci->num_stripes; for (k = 0; k < ci->num_stripes - 1; k++) { if (j != physstripe) { if (devices[j] && devices[j]->devobj) { Status = sync_read_phys(devices[j]->devobj, cis[j].offset + off, Vcb->superblock.node_size, sector + (k * Vcb->superblock.node_size), FALSE); if (!NT_SUCCESS(Status)) { ERR("sync_read_phys returned %08x\n", Status); log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); num_errors++; error_stripe = k; if (num_errors > 1) { failed = TRUE; break; } } } else { num_errors++; error_stripe = k; if (num_errors > 1) { failed = TRUE; break; } } } j = (j + 1) % ci->num_stripes; } if (!failed) { if (num_errors == 0) { tree_header* th = (tree_header*)(sector + (stripe * Vcb->superblock.node_size)); UINT32 crc32; RtlCopyMemory(sector + (stripe * Vcb->superblock.node_size), sector + ((ci->num_stripes - 2) * Vcb->superblock.node_size), Vcb->superblock.node_size); for (j = 0; j < ci->num_stripes - 2; j++) { if (j != stripe) do_xor(sector + (stripe * Vcb->superblock.node_size), sector + (j * Vcb->superblock.node_size), Vcb->superblock.node_size); } crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&th->fs_uuid, Vcb->superblock.node_size - sizeof(th->csum)); if (th->address == addr && crc32 == *((UINT32*)th->csum) && (generation == 0 || th->generation == generation)) { RtlCopyMemory(buf, sector + (stripe * Vcb->superblock.node_size), Vcb->superblock.node_size); if (devices[physstripe] && devices[physstripe]->devobj) ERR("recovering from checksum error at %llx, device %llx\n", addr, devices[physstripe]->devitem.dev_id); recovered = TRUE; if (!Vcb->readonly && devices[physstripe] && devices[physstripe]->devobj && !devices[physstripe]->readonly) { // write good data over bad Status = write_data_phys(devices[physstripe]->devobj, cis[physstripe].offset + off, sector + (stripe * Vcb->superblock.node_size), Vcb->superblock.node_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[physstripe], BTRFS_DEV_STAT_WRITE_ERRORS); } } } } if (!recovered) { UINT32 crc32; tree_header* th = (tree_header*)(sector + (ci->num_stripes * Vcb->superblock.node_size)); BOOL read_q = FALSE; if (devices[parity2] && devices[parity2]->devobj) { Status = sync_read_phys(devices[parity2]->devobj, cis[parity2].offset + off, Vcb->superblock.node_size, sector + ((ci->num_stripes - 1) * Vcb->superblock.node_size), FALSE); if (!NT_SUCCESS(Status)) { ERR("sync_read_phys returned %08x\n", Status); log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); } else read_q = TRUE; } if (read_q) { if (num_errors == 1) { raid6_recover2(sector, ci->num_stripes, Vcb->superblock.node_size, stripe, error_stripe, sector + (ci->num_stripes * Vcb->superblock.node_size)); crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&th->fs_uuid, Vcb->superblock.node_size - sizeof(th->csum)); if (th->address == addr && crc32 == *((UINT32*)th->csum) && (generation == 0 || th->generation == generation)) recovered = TRUE; } else { for (j = 0; j < ci->num_stripes - 1; j++) { if (j != stripe) { raid6_recover2(sector, ci->num_stripes, Vcb->superblock.node_size, stripe, j, sector + (ci->num_stripes * Vcb->superblock.node_size)); crc32 = ~calc_crc32c(0xffffffff, (UINT8*)&th->fs_uuid, Vcb->superblock.node_size - sizeof(th->csum)); if (th->address == addr && crc32 == *((UINT32*)th->csum) && (generation == 0 || th->generation == generation)) { recovered = TRUE; error_stripe = j; break; } } } } } if (recovered) { UINT16 error_stripe_phys = (parity2 + error_stripe + 1) % ci->num_stripes; if (devices[physstripe] && devices[physstripe]->devobj) ERR("recovering from checksum error at %llx, device %llx\n", addr, devices[physstripe]->devitem.dev_id); RtlCopyMemory(buf, sector + (ci->num_stripes * Vcb->superblock.node_size), Vcb->superblock.node_size); if (!Vcb->readonly && devices[physstripe] && devices[physstripe]->devobj && !devices[physstripe]->readonly) { // write good data over bad Status = write_data_phys(devices[physstripe]->devobj, cis[physstripe].offset + off, sector + (ci->num_stripes * Vcb->superblock.node_size), Vcb->superblock.node_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[physstripe], BTRFS_DEV_STAT_WRITE_ERRORS); } } if (devices[error_stripe_phys] && devices[error_stripe_phys]->devobj) { if (error_stripe == ci->num_stripes - 2) { ERR("recovering from parity error at %llx, device %llx\n", addr, devices[error_stripe_phys]->devitem.dev_id); log_device_error(Vcb, devices[error_stripe_phys], BTRFS_DEV_STAT_CORRUPTION_ERRORS); RtlZeroMemory(sector + ((ci->num_stripes - 2) * Vcb->superblock.node_size), Vcb->superblock.node_size); for (j = 0; j < ci->num_stripes - 2; j++) { if (j == stripe) { do_xor(sector + ((ci->num_stripes - 2) * Vcb->superblock.node_size), sector + (ci->num_stripes * Vcb->superblock.node_size), Vcb->superblock.node_size); } else { do_xor(sector + ((ci->num_stripes - 2) * Vcb->superblock.node_size), sector + (j * Vcb->superblock.node_size), Vcb->superblock.node_size); } } } else { ERR("recovering from checksum error at %llx, device %llx\n", addr + ((error_stripe - stripe) * ci->stripe_length), devices[error_stripe_phys]->devitem.dev_id); log_device_error(Vcb, devices[error_stripe_phys], BTRFS_DEV_STAT_CORRUPTION_ERRORS); RtlCopyMemory(sector + (error_stripe * Vcb->superblock.node_size), sector + ((ci->num_stripes + 1) * Vcb->superblock.node_size), Vcb->superblock.node_size); } } if (!Vcb->readonly && devices[error_stripe_phys] && devices[error_stripe_phys]->devobj && !devices[error_stripe_phys]->readonly) { // write good data over bad Status = write_data_phys(devices[error_stripe_phys]->devobj, cis[error_stripe_phys].offset + off, sector + (error_stripe * Vcb->superblock.node_size), Vcb->superblock.node_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[error_stripe_phys], BTRFS_DEV_STAT_WRITE_ERRORS); } } } } } if (!recovered) { ERR("unrecoverable checksum error at %llx\n", addr); ExFreePool(sector); return STATUS_CRC_ERROR; } ExFreePool(sector); } else { ULONG sectors = length / Vcb->superblock.sector_size; UINT8* sector; sector = ExAllocatePoolWithTag(NonPagedPool, Vcb->superblock.sector_size * (ci->num_stripes + 2), ALLOC_TAG); if (!sector) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } for (i = 0; i < sectors; i++) { UINT64 off; UINT16 physstripe, parity1, parity2; UINT32 crc32; if (context->csum) crc32 = ~calc_crc32c(0xffffffff, buf + (i * Vcb->superblock.sector_size), Vcb->superblock.sector_size); get_raid0_offset(addr - offset + UInt32x32To64(i, Vcb->superblock.sector_size), ci->stripe_length, ci->num_stripes - 2, &off, &stripe); parity1 = (((addr - offset + UInt32x32To64(i, Vcb->superblock.sector_size)) / ((ci->num_stripes - 2) * ci->stripe_length)) + ci->num_stripes - 2) % ci->num_stripes; parity2 = (parity1 + 1) % ci->num_stripes; physstripe = (parity2 + stripe + 1) % ci->num_stripes; if (!devices[physstripe] || !devices[physstripe]->devobj || (context->csum && context->csum[i] != crc32)) { UINT16 k, error_stripe; BOOL recovered = FALSE, failed = FALSE; ULONG num_errors = 0; if (devices[physstripe] && devices[physstripe]->devobj) log_device_error(Vcb, devices[physstripe], BTRFS_DEV_STAT_READ_ERRORS); j = (parity2 + 1) % ci->num_stripes; for (k = 0; k < ci->num_stripes - 1; k++) { if (j != physstripe) { if (devices[j] && devices[j]->devobj) { Status = sync_read_phys(devices[j]->devobj, cis[j].offset + off, Vcb->superblock.sector_size, sector + (k * Vcb->superblock.sector_size), FALSE); if (!NT_SUCCESS(Status)) { ERR("sync_read_phys returned %08x\n", Status); log_device_error(Vcb, devices[j], BTRFS_DEV_STAT_READ_ERRORS); num_errors++; error_stripe = k; if (num_errors > 1) { failed = TRUE; break; } } } else { num_errors++; error_stripe = k; if (num_errors > 1) { failed = TRUE; break; } } } j = (j + 1) % ci->num_stripes; } if (!failed) { if (num_errors == 0) { RtlCopyMemory(sector + (stripe * Vcb->superblock.sector_size), sector + ((ci->num_stripes - 2) * Vcb->superblock.sector_size), Vcb->superblock.sector_size); for (j = 0; j < ci->num_stripes - 2; j++) { if (j != stripe) do_xor(sector + (stripe * Vcb->superblock.sector_size), sector + (j * Vcb->superblock.sector_size), Vcb->superblock.sector_size); } if (context->csum) crc32 = ~calc_crc32c(0xffffffff, sector + (stripe * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (!context->csum || crc32 == context->csum[i]) { RtlCopyMemory(buf + (i * Vcb->superblock.sector_size), sector + (stripe * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (devices[physstripe] && devices[physstripe]->devobj) ERR("recovering from checksum error at %llx, device %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size), devices[physstripe]->devitem.dev_id); recovered = TRUE; if (!Vcb->readonly && devices[physstripe] && devices[physstripe]->devobj && !devices[physstripe]->readonly) { // write good data over bad Status = write_data_phys(devices[physstripe]->devobj, cis[physstripe].offset + off, sector + (stripe * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[physstripe], BTRFS_DEV_STAT_WRITE_ERRORS); } } } } if (!recovered) { BOOL read_q = FALSE; if (devices[parity2] && devices[parity2]->devobj) { Status = sync_read_phys(devices[parity2]->devobj, cis[parity2].offset + off, Vcb->superblock.sector_size, sector + ((ci->num_stripes - 1) * Vcb->superblock.sector_size), FALSE); if (!NT_SUCCESS(Status)) { ERR("sync_read_phys returned %08x\n", Status); log_device_error(Vcb, devices[parity2], BTRFS_DEV_STAT_READ_ERRORS); } else read_q = TRUE; } if (read_q) { if (num_errors == 1) { raid6_recover2(sector, ci->num_stripes, Vcb->superblock.sector_size, stripe, error_stripe, sector + (ci->num_stripes * Vcb->superblock.sector_size)); if (!devices[physstripe] || !devices[physstripe]->devobj) recovered = TRUE; else { crc32 = ~calc_crc32c(0xffffffff, sector + (ci->num_stripes * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (crc32 == context->csum[i]) recovered = TRUE; } } else { for (j = 0; j < ci->num_stripes - 1; j++) { if (j != stripe) { raid6_recover2(sector, ci->num_stripes, Vcb->superblock.sector_size, stripe, j, sector + (ci->num_stripes * Vcb->superblock.sector_size)); crc32 = ~calc_crc32c(0xffffffff, sector + (ci->num_stripes * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (crc32 == context->csum[i]) { recovered = TRUE; error_stripe = j; break; } } } } } if (recovered) { UINT16 error_stripe_phys = (parity2 + error_stripe + 1) % ci->num_stripes; if (devices[physstripe] && devices[physstripe]->devobj) ERR("recovering from checksum error at %llx, device %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size), devices[physstripe]->devitem.dev_id); RtlCopyMemory(buf + (i * Vcb->superblock.sector_size), sector + (ci->num_stripes * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (!Vcb->readonly && devices[physstripe] && devices[physstripe]->devobj && !devices[physstripe]->readonly) { // write good data over bad Status = write_data_phys(devices[physstripe]->devobj, cis[physstripe].offset + off, sector + (ci->num_stripes * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[physstripe], BTRFS_DEV_STAT_WRITE_ERRORS); } } if (devices[error_stripe_phys] && devices[error_stripe_phys]->devobj) { if (error_stripe == ci->num_stripes - 2) { ERR("recovering from parity error at %llx, device %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size), devices[error_stripe_phys]->devitem.dev_id); log_device_error(Vcb, devices[error_stripe_phys], BTRFS_DEV_STAT_CORRUPTION_ERRORS); RtlZeroMemory(sector + ((ci->num_stripes - 2) * Vcb->superblock.sector_size), Vcb->superblock.sector_size); for (j = 0; j < ci->num_stripes - 2; j++) { if (j == stripe) { do_xor(sector + ((ci->num_stripes - 2) * Vcb->superblock.sector_size), sector + (ci->num_stripes * Vcb->superblock.sector_size), Vcb->superblock.sector_size); } else { do_xor(sector + ((ci->num_stripes - 2) * Vcb->superblock.sector_size), sector + (j * Vcb->superblock.sector_size), Vcb->superblock.sector_size); } } } else { ERR("recovering from checksum error at %llx, device %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size) + ((error_stripe - stripe) * ci->stripe_length), devices[error_stripe_phys]->devitem.dev_id); log_device_error(Vcb, devices[error_stripe_phys], BTRFS_DEV_STAT_CORRUPTION_ERRORS); RtlCopyMemory(sector + (error_stripe * Vcb->superblock.sector_size), sector + ((ci->num_stripes + 1) * Vcb->superblock.sector_size), Vcb->superblock.sector_size); } } if (!Vcb->readonly && devices[error_stripe_phys] && devices[error_stripe_phys]->devobj && !devices[error_stripe_phys]->readonly) { // write good data over bad Status = write_data_phys(devices[error_stripe_phys]->devobj, cis[error_stripe_phys].offset + off, sector + (error_stripe * Vcb->superblock.sector_size), Vcb->superblock.sector_size); if (!NT_SUCCESS(Status)) { WARN("write_data_phys returned %08x\n", Status); log_device_error(Vcb, devices[error_stripe_phys], BTRFS_DEV_STAT_WRITE_ERRORS); } } } } } if (!recovered) { ERR("unrecoverable checksum error at %llx\n", addr + UInt32x32To64(i, Vcb->superblock.sector_size)); ExFreePool(sector); return STATUS_CRC_ERROR; } } } ExFreePool(sector); } return STATUS_SUCCESS; } NTSTATUS read_data(_In_ device_extension* Vcb, _In_ UINT64 addr, _In_ UINT32 length, _In_reads_bytes_opt_(length*sizeof(UINT32)/Vcb->superblock.sector_size) UINT32* csum, _In_ BOOL is_tree, _Out_writes_bytes_(length) UINT8* buf, _In_opt_ chunk* c, _Out_opt_ chunk** pc, _In_opt_ PIRP Irp, _In_ UINT64 generation, _In_ BOOL file_read, _In_ ULONG priority) { CHUNK_ITEM* ci; CHUNK_ITEM_STRIPE* cis; read_data_context context; UINT64 type, offset, total_reading = 0; NTSTATUS Status; device** devices = NULL; UINT16 i, startoffstripe, allowed_missing, missing_devices = 0; UINT8* dummypage = NULL; PMDL dummy_mdl = NULL; BOOL need_to_wait; UINT64 lockaddr, locklen; #ifdef DEBUG_STATS LARGE_INTEGER time1, time2; #endif if (Vcb->log_to_phys_loaded) { if (!c) { c = get_chunk_from_address(Vcb, addr); if (!c) { ERR("get_chunk_from_address failed\n"); return STATUS_INTERNAL_ERROR; } } ci = c->chunk_item; offset = c->offset; devices = c->devices; if (pc) *pc = c; } else { LIST_ENTRY* le = Vcb->sys_chunks.Flink; ci = NULL; c = NULL; while (le != &Vcb->sys_chunks) { sys_chunk* sc = CONTAINING_RECORD(le, sys_chunk, list_entry); if (sc->key.obj_id == 0x100 && sc->key.obj_type == TYPE_CHUNK_ITEM && sc->key.offset <= addr) { CHUNK_ITEM* chunk_item = sc->data; if ((addr - sc->key.offset) < chunk_item->size && chunk_item->num_stripes > 0) { ci = chunk_item; offset = sc->key.offset; cis = (CHUNK_ITEM_STRIPE*)&chunk_item[1]; devices = ExAllocatePoolWithTag(PagedPool, sizeof(device*) * ci->num_stripes, ALLOC_TAG); if (!devices) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } for (i = 0; i < ci->num_stripes; i++) { devices[i] = find_device_from_uuid(Vcb, &cis[i].dev_uuid); } break; } } le = le->Flink; } if (!ci) { ERR("could not find chunk for %llx in bootstrap\n", addr); return STATUS_INTERNAL_ERROR; } if (pc) *pc = NULL; } if (ci->type & BLOCK_FLAG_DUPLICATE) { type = BLOCK_FLAG_DUPLICATE; allowed_missing = ci->num_stripes - 1; } else if (ci->type & BLOCK_FLAG_RAID0) { type = BLOCK_FLAG_RAID0; allowed_missing = 0; } else if (ci->type & BLOCK_FLAG_RAID1) { type = BLOCK_FLAG_DUPLICATE; allowed_missing = 1; } else if (ci->type & BLOCK_FLAG_RAID10) { type = BLOCK_FLAG_RAID10; allowed_missing = 1; } else if (ci->type & BLOCK_FLAG_RAID5) { type = BLOCK_FLAG_RAID5; allowed_missing = 1; } else if (ci->type & BLOCK_FLAG_RAID6) { type = BLOCK_FLAG_RAID6; allowed_missing = 2; } else { // SINGLE type = BLOCK_FLAG_DUPLICATE; allowed_missing = 0; } cis = (CHUNK_ITEM_STRIPE*)&ci[1]; RtlZeroMemory(&context, sizeof(read_data_context)); KeInitializeEvent(&context.Event, NotificationEvent, FALSE); context.stripes = ExAllocatePoolWithTag(NonPagedPool, sizeof(read_data_stripe) * ci->num_stripes, ALLOC_TAG); if (!context.stripes) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } if (c && (type == BLOCK_FLAG_RAID5 || type == BLOCK_FLAG_RAID6)) { get_raid56_lock_range(c, addr, length, &lockaddr, &locklen); chunk_lock_range(Vcb, c, lockaddr, locklen); } RtlZeroMemory(context.stripes, sizeof(read_data_stripe) * ci->num_stripes); context.buflen = length; context.num_stripes = ci->num_stripes; context.stripes_left = context.num_stripes; context.sector_size = Vcb->superblock.sector_size; context.csum = csum; context.tree = is_tree; context.type = type; if (type == BLOCK_FLAG_RAID0) { UINT64 startoff, endoff; UINT16 endoffstripe, stripe; UINT32 *stripeoff, pos; PMDL master_mdl; PFN_NUMBER* pfns; // FIXME - test this still works if page size isn't the same as sector size // This relies on the fact that MDLs are followed in memory by the page file numbers, // so with a bit of jiggery-pokery you can trick your disks into deinterlacing your RAID0 // data for you without doing a memcpy yourself. // MDLs are officially opaque, so this might very well break in future versions of Windows. get_raid0_offset(addr - offset, ci->stripe_length, ci->num_stripes, &startoff, &startoffstripe); get_raid0_offset(addr + length - offset - 1, ci->stripe_length, ci->num_stripes, &endoff, &endoffstripe); if (file_read) { // Unfortunately we can't avoid doing at least one memcpy, as Windows can give us an MDL // with duplicated dummy PFNs, which confuse check_csum. Ah well. // See https://msdn.microsoft.com/en-us/library/windows/hardware/Dn614012.aspx if you're interested. context.va = ExAllocatePoolWithTag(NonPagedPool, length, ALLOC_TAG); if (!context.va) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } else context.va = buf; master_mdl = IoAllocateMdl(context.va, length, FALSE, FALSE, NULL); if (!master_mdl) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } Status = STATUS_SUCCESS; _SEH2_TRY { MmProbeAndLockPages(master_mdl, KernelMode, IoWriteAccess); } _SEH2_EXCEPT (EXCEPTION_EXECUTE_HANDLER) { Status = _SEH2_GetExceptionCode(); } _SEH2_END; if (!NT_SUCCESS(Status)) { ERR("MmProbeAndLockPages threw exception %08x\n", Status); IoFreeMdl(master_mdl); goto exit; } pfns = (PFN_NUMBER*)(master_mdl + 1); for (i = 0; i < ci->num_stripes; i++) { if (startoffstripe > i) context.stripes[i].stripestart = startoff - (startoff % ci->stripe_length) + ci->stripe_length; else if (startoffstripe == i) context.stripes[i].stripestart = startoff; else context.stripes[i].stripestart = startoff - (startoff % ci->stripe_length); if (endoffstripe > i) context.stripes[i].stripeend = endoff - (endoff % ci->stripe_length) + ci->stripe_length; else if (endoffstripe == i) context.stripes[i].stripeend = endoff + 1; else context.stripes[i].stripeend = endoff - (endoff % ci->stripe_length); if (context.stripes[i].stripestart != context.stripes[i].stripeend) { context.stripes[i].mdl = IoAllocateMdl(context.va, (ULONG)(context.stripes[i].stripeend - context.stripes[i].stripestart), FALSE, FALSE, NULL); if (!context.stripes[i].mdl) { ERR("IoAllocateMdl failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } } stripeoff = ExAllocatePoolWithTag(NonPagedPool, sizeof(UINT32) * ci->num_stripes, ALLOC_TAG); if (!stripeoff) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } RtlZeroMemory(stripeoff, sizeof(UINT32) * ci->num_stripes); pos = 0; stripe = startoffstripe; while (pos < length) { PFN_NUMBER* stripe_pfns = (PFN_NUMBER*)(context.stripes[stripe].mdl + 1); if (pos == 0) { UINT32 readlen = (UINT32)min(context.stripes[stripe].stripeend - context.stripes[stripe].stripestart, ci->stripe_length - (context.stripes[stripe].stripestart % ci->stripe_length)); RtlCopyMemory(stripe_pfns, pfns, readlen * sizeof(PFN_NUMBER) >> PAGE_SHIFT); stripeoff[stripe] += readlen; pos += readlen; } else if (length - pos < ci->stripe_length) { RtlCopyMemory(&stripe_pfns[stripeoff[stripe] >> PAGE_SHIFT], &pfns[pos >> PAGE_SHIFT], (length - pos) * sizeof(PFN_NUMBER) >> PAGE_SHIFT); pos = length; } else { RtlCopyMemory(&stripe_pfns[stripeoff[stripe] >> PAGE_SHIFT], &pfns[pos >> PAGE_SHIFT], (ULONG)(ci->stripe_length * sizeof(PFN_NUMBER) >> PAGE_SHIFT)); stripeoff[stripe] += (UINT32)ci->stripe_length; pos += (UINT32)ci->stripe_length; } stripe = (stripe + 1) % ci->num_stripes; } MmUnlockPages(master_mdl); IoFreeMdl(master_mdl); ExFreePool(stripeoff); } else if (type == BLOCK_FLAG_RAID10) { UINT64 startoff, endoff; UINT16 endoffstripe, j, stripe; ULONG orig_ls; PMDL master_mdl; PFN_NUMBER* pfns; UINT32* stripeoff, pos; read_data_stripe** stripes; if (c) orig_ls = c->last_stripe; else orig_ls = 0; get_raid0_offset(addr - offset, ci->stripe_length, ci->num_stripes / ci->sub_stripes, &startoff, &startoffstripe); get_raid0_offset(addr + length - offset - 1, ci->stripe_length, ci->num_stripes / ci->sub_stripes, &endoff, &endoffstripe); if ((ci->num_stripes % ci->sub_stripes) != 0) { ERR("chunk %llx: num_stripes %x was not a multiple of sub_stripes %x!\n", offset, ci->num_stripes, ci->sub_stripes); Status = STATUS_INTERNAL_ERROR; goto exit; } if (file_read) { context.va = ExAllocatePoolWithTag(NonPagedPool, length, ALLOC_TAG); if (!context.va) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } else context.va = buf; context.firstoff = (UINT16)((startoff % ci->stripe_length) / Vcb->superblock.sector_size); context.startoffstripe = startoffstripe; context.sectors_per_stripe = (UINT16)(ci->stripe_length / Vcb->superblock.sector_size); startoffstripe *= ci->sub_stripes; endoffstripe *= ci->sub_stripes; if (c) c->last_stripe = (orig_ls + 1) % ci->sub_stripes; master_mdl = IoAllocateMdl(context.va, length, FALSE, FALSE, NULL); if (!master_mdl) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } Status = STATUS_SUCCESS; _SEH2_TRY { MmProbeAndLockPages(master_mdl, KernelMode, IoWriteAccess); } _SEH2_EXCEPT (EXCEPTION_EXECUTE_HANDLER) { Status = _SEH2_GetExceptionCode(); } _SEH2_END; if (!NT_SUCCESS(Status)) { ERR("MmProbeAndLockPages threw exception %08x\n", Status); IoFreeMdl(master_mdl); goto exit; } pfns = (PFN_NUMBER*)(master_mdl + 1); stripes = ExAllocatePoolWithTag(NonPagedPool, sizeof(read_data_stripe*) * ci->num_stripes / ci->sub_stripes, ALLOC_TAG); if (!stripes) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } RtlZeroMemory(stripes, sizeof(read_data_stripe*) * ci->num_stripes / ci->sub_stripes); for (i = 0; i < ci->num_stripes; i += ci->sub_stripes) { UINT64 sstart, send; BOOL stripeset = FALSE; if (startoffstripe > i) sstart = startoff - (startoff % ci->stripe_length) + ci->stripe_length; else if (startoffstripe == i) sstart = startoff; else sstart = startoff - (startoff % ci->stripe_length); if (endoffstripe > i) send = endoff - (endoff % ci->stripe_length) + ci->stripe_length; else if (endoffstripe == i) send = endoff + 1; else send = endoff - (endoff % ci->stripe_length); for (j = 0; j < ci->sub_stripes; j++) { if (j == orig_ls && devices[i+j] && devices[i+j]->devobj) { context.stripes[i+j].stripestart = sstart; context.stripes[i+j].stripeend = send; stripes[i / ci->sub_stripes] = &context.stripes[i+j]; if (sstart != send) { context.stripes[i+j].mdl = IoAllocateMdl(context.va, (ULONG)(send - sstart), FALSE, FALSE, NULL); if (!context.stripes[i+j].mdl) { ERR("IoAllocateMdl failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } stripeset = TRUE; } else context.stripes[i+j].status = ReadDataStatus_Skip; } if (!stripeset) { for (j = 0; j < ci->sub_stripes; j++) { if (devices[i+j] && devices[i+j]->devobj) { context.stripes[i+j].stripestart = sstart; context.stripes[i+j].stripeend = send; context.stripes[i+j].status = ReadDataStatus_Pending; stripes[i / ci->sub_stripes] = &context.stripes[i+j]; if (sstart != send) { context.stripes[i+j].mdl = IoAllocateMdl(context.va, (ULONG)(send - sstart), FALSE, FALSE, NULL); if (!context.stripes[i+j].mdl) { ERR("IoAllocateMdl failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } stripeset = TRUE; break; } } if (!stripeset) { ERR("could not find stripe to read\n"); Status = STATUS_DEVICE_NOT_READY; goto exit; } } } stripeoff = ExAllocatePoolWithTag(NonPagedPool, sizeof(UINT32) * ci->num_stripes / ci->sub_stripes, ALLOC_TAG); if (!stripeoff) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } RtlZeroMemory(stripeoff, sizeof(UINT32) * ci->num_stripes / ci->sub_stripes); pos = 0; stripe = startoffstripe / ci->sub_stripes; while (pos < length) { PFN_NUMBER* stripe_pfns = (PFN_NUMBER*)(stripes[stripe]->mdl + 1); if (pos == 0) { UINT32 readlen = (UINT32)min(stripes[stripe]->stripeend - stripes[stripe]->stripestart, ci->stripe_length - (stripes[stripe]->stripestart % ci->stripe_length)); RtlCopyMemory(stripe_pfns, pfns, readlen * sizeof(PFN_NUMBER) >> PAGE_SHIFT); stripeoff[stripe] += readlen; pos += readlen; } else if (length - pos < ci->stripe_length) { RtlCopyMemory(&stripe_pfns[stripeoff[stripe] >> PAGE_SHIFT], &pfns[pos >> PAGE_SHIFT], (length - pos) * sizeof(PFN_NUMBER) >> PAGE_SHIFT); pos = length; } else { RtlCopyMemory(&stripe_pfns[stripeoff[stripe] >> PAGE_SHIFT], &pfns[pos >> PAGE_SHIFT], (ULONG)(ci->stripe_length * sizeof(PFN_NUMBER) >> PAGE_SHIFT)); stripeoff[stripe] += (ULONG)ci->stripe_length; pos += (ULONG)ci->stripe_length; } stripe = (stripe + 1) % (ci->num_stripes / ci->sub_stripes); } MmUnlockPages(master_mdl); IoFreeMdl(master_mdl); ExFreePool(stripeoff); ExFreePool(stripes); } else if (type == BLOCK_FLAG_DUPLICATE) { UINT64 orig_ls; if (c) orig_ls = i = c->last_stripe; else orig_ls = i = 0; while (!devices[i] || !devices[i]->devobj) { i = (i + 1) % ci->num_stripes; if (i == orig_ls) { ERR("no devices available to service request\n"); Status = STATUS_DEVICE_NOT_READY; goto exit; } } if (c) c->last_stripe = (i + 1) % ci->num_stripes; context.stripes[i].stripestart = addr - offset; context.stripes[i].stripeend = context.stripes[i].stripestart + length; if (file_read) { context.va = ExAllocatePoolWithTag(NonPagedPool, length, ALLOC_TAG); if (!context.va) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } context.stripes[i].mdl = IoAllocateMdl(context.va, length, FALSE, FALSE, NULL); if (!context.stripes[i].mdl) { ERR("IoAllocateMdl failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } MmBuildMdlForNonPagedPool(context.stripes[i].mdl); } else { context.stripes[i].mdl = IoAllocateMdl(buf, length, FALSE, FALSE, NULL); if (!context.stripes[i].mdl) { ERR("IoAllocateMdl failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } Status = STATUS_SUCCESS; _SEH2_TRY { MmProbeAndLockPages(context.stripes[i].mdl, KernelMode, IoWriteAccess); } _SEH2_EXCEPT (EXCEPTION_EXECUTE_HANDLER) { Status = _SEH2_GetExceptionCode(); } _SEH2_END; if (!NT_SUCCESS(Status)) { ERR("MmProbeAndLockPages threw exception %08x\n", Status); goto exit; } } } else if (type == BLOCK_FLAG_RAID5) { UINT64 startoff, endoff; UINT16 endoffstripe, parity; UINT32 *stripeoff, pos; PMDL master_mdl; PFN_NUMBER *pfns, dummy; BOOL need_dummy = FALSE; get_raid0_offset(addr - offset, ci->stripe_length, ci->num_stripes - 1, &startoff, &startoffstripe); get_raid0_offset(addr + length - offset - 1, ci->stripe_length, ci->num_stripes - 1, &endoff, &endoffstripe); if (file_read) { context.va = ExAllocatePoolWithTag(NonPagedPool, length, ALLOC_TAG); if (!context.va) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } else context.va = buf; master_mdl = IoAllocateMdl(context.va, length, FALSE, FALSE, NULL); if (!master_mdl) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } Status = STATUS_SUCCESS; _SEH2_TRY { MmProbeAndLockPages(master_mdl, KernelMode, IoWriteAccess); } _SEH2_EXCEPT (EXCEPTION_EXECUTE_HANDLER) { Status = _SEH2_GetExceptionCode(); } _SEH2_END; if (!NT_SUCCESS(Status)) { ERR("MmProbeAndLockPages threw exception %08x\n", Status); IoFreeMdl(master_mdl); goto exit; } pfns = (PFN_NUMBER*)(master_mdl + 1); pos = 0; while (pos < length) { parity = (((addr - offset + pos) / ((ci->num_stripes - 1) * ci->stripe_length)) + ci->num_stripes - 1) % ci->num_stripes; if (pos == 0) { UINT16 stripe = (parity + startoffstripe + 1) % ci->num_stripes; ULONG skip, readlen; i = startoffstripe; while (stripe != parity) { if (i == startoffstripe) { readlen = min(length, (ULONG)(ci->stripe_length - (startoff % ci->stripe_length))); context.stripes[stripe].stripestart = startoff; context.stripes[stripe].stripeend = startoff + readlen; pos += readlen; if (pos == length) break; } else { readlen = min(length - pos, (ULONG)ci->stripe_length); context.stripes[stripe].stripestart = startoff - (startoff % ci->stripe_length); context.stripes[stripe].stripeend = context.stripes[stripe].stripestart + readlen; pos += readlen; if (pos == length) break; } i++; stripe = (stripe + 1) % ci->num_stripes; } if (pos == length) break; for (i = 0; i < startoffstripe; i++) { UINT16 stripe2 = (parity + i + 1) % ci->num_stripes; context.stripes[stripe2].stripestart = context.stripes[stripe2].stripeend = startoff - (startoff % ci->stripe_length) + ci->stripe_length; } context.stripes[parity].stripestart = context.stripes[parity].stripeend = startoff - (startoff % ci->stripe_length) + ci->stripe_length; if (length - pos > ci->num_stripes * (ci->num_stripes - 1) * ci->stripe_length) { skip = (ULONG)(((length - pos) / (ci->num_stripes * (ci->num_stripes - 1) * ci->stripe_length)) - 1); for (i = 0; i < ci->num_stripes; i++) { context.stripes[i].stripeend += skip * ci->num_stripes * ci->stripe_length; } pos += (UINT32)(skip * (ci->num_stripes - 1) * ci->num_stripes * ci->stripe_length); need_dummy = TRUE; } } else if (length - pos >= ci->stripe_length * (ci->num_stripes - 1)) { for (i = 0; i < ci->num_stripes; i++) { context.stripes[i].stripeend += ci->stripe_length; } pos += (UINT32)(ci->stripe_length * (ci->num_stripes - 1)); need_dummy = TRUE; } else { UINT16 stripe = (parity + 1) % ci->num_stripes; i = 0; while (stripe != parity) { if (endoffstripe == i) { context.stripes[stripe].stripeend = endoff + 1; break; } else if (endoffstripe > i) context.stripes[stripe].stripeend = endoff - (endoff % ci->stripe_length) + ci->stripe_length; i++; stripe = (stripe + 1) % ci->num_stripes; } break; } } for (i = 0; i < ci->num_stripes; i++) { if (context.stripes[i].stripestart != context.stripes[i].stripeend) { context.stripes[i].mdl = IoAllocateMdl(context.va, (ULONG)(context.stripes[i].stripeend - context.stripes[i].stripestart), FALSE, FALSE, NULL); if (!context.stripes[i].mdl) { ERR("IoAllocateMdl failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } } if (need_dummy) { dummypage = ExAllocatePoolWithTag(NonPagedPool, PAGE_SIZE, ALLOC_TAG); if (!dummypage) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } dummy_mdl = IoAllocateMdl(dummypage, PAGE_SIZE, FALSE, FALSE, NULL); if (!dummy_mdl) { ERR("IoAllocateMdl failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } MmBuildMdlForNonPagedPool(dummy_mdl); dummy = *(PFN_NUMBER*)(dummy_mdl + 1); } stripeoff = ExAllocatePoolWithTag(NonPagedPool, sizeof(UINT32) * ci->num_stripes, ALLOC_TAG); if (!stripeoff) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } RtlZeroMemory(stripeoff, sizeof(UINT32) * ci->num_stripes); pos = 0; while (pos < length) { PFN_NUMBER* stripe_pfns; parity = (((addr - offset + pos) / ((ci->num_stripes - 1) * ci->stripe_length)) + ci->num_stripes - 1) % ci->num_stripes; if (pos == 0) { UINT16 stripe = (parity + startoffstripe + 1) % ci->num_stripes; UINT32 readlen = min(length - pos, (UINT32)min(context.stripes[stripe].stripeend - context.stripes[stripe].stripestart, ci->stripe_length - (context.stripes[stripe].stripestart % ci->stripe_length))); stripe_pfns = (PFN_NUMBER*)(context.stripes[stripe].mdl + 1); RtlCopyMemory(stripe_pfns, pfns, readlen * sizeof(PFN_NUMBER) >> PAGE_SHIFT); stripeoff[stripe] = readlen; pos += readlen; stripe = (stripe + 1) % ci->num_stripes; while (stripe != parity) { stripe_pfns = (PFN_NUMBER*)(context.stripes[stripe].mdl + 1); readlen = min(length - pos, (UINT32)min(context.stripes[stripe].stripeend - context.stripes[stripe].stripestart, ci->stripe_length)); if (readlen == 0) break; RtlCopyMemory(stripe_pfns, &pfns[pos >> PAGE_SHIFT], readlen * sizeof(PFN_NUMBER) >> PAGE_SHIFT); stripeoff[stripe] = readlen; pos += readlen; stripe = (stripe + 1) % ci->num_stripes; } } else if (length - pos >= ci->stripe_length * (ci->num_stripes - 1)) { UINT16 stripe = (parity + 1) % ci->num_stripes; ULONG k; while (stripe != parity) { stripe_pfns = (PFN_NUMBER*)(context.stripes[stripe].mdl + 1); RtlCopyMemory(&stripe_pfns[stripeoff[stripe] >> PAGE_SHIFT], &pfns[pos >> PAGE_SHIFT], (ULONG)(ci->stripe_length * sizeof(PFN_NUMBER) >> PAGE_SHIFT)); stripeoff[stripe] += (UINT32)ci->stripe_length; pos += (UINT32)ci->stripe_length; stripe = (stripe + 1) % ci->num_stripes; } stripe_pfns = (PFN_NUMBER*)(context.stripes[parity].mdl + 1); for (k = 0; k < ci->stripe_length >> PAGE_SHIFT; k++) { stripe_pfns[stripeoff[parity] >> PAGE_SHIFT] = dummy; stripeoff[parity] += PAGE_SIZE; } } else { UINT16 stripe = (parity + 1) % ci->num_stripes; UINT32 readlen; while (pos < length) { stripe_pfns = (PFN_NUMBER*)(context.stripes[stripe].mdl + 1); readlen = min(length - pos, (ULONG)min(context.stripes[stripe].stripeend - context.stripes[stripe].stripestart, ci->stripe_length)); if (readlen == 0) break; RtlCopyMemory(&stripe_pfns[stripeoff[stripe] >> PAGE_SHIFT], &pfns[pos >> PAGE_SHIFT], readlen * sizeof(PFN_NUMBER) >> PAGE_SHIFT); stripeoff[stripe] += readlen; pos += readlen; stripe = (stripe + 1) % ci->num_stripes; } } } MmUnlockPages(master_mdl); IoFreeMdl(master_mdl); ExFreePool(stripeoff); } else if (type == BLOCK_FLAG_RAID6) { UINT64 startoff, endoff; UINT16 endoffstripe, parity1; UINT32 *stripeoff, pos; PMDL master_mdl; PFN_NUMBER *pfns, dummy; BOOL need_dummy = FALSE; get_raid0_offset(addr - offset, ci->stripe_length, ci->num_stripes - 2, &startoff, &startoffstripe); get_raid0_offset(addr + length - offset - 1, ci->stripe_length, ci->num_stripes - 2, &endoff, &endoffstripe); if (file_read) { context.va = ExAllocatePoolWithTag(NonPagedPool, length, ALLOC_TAG); if (!context.va) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } else context.va = buf; master_mdl = IoAllocateMdl(context.va, length, FALSE, FALSE, NULL); if (!master_mdl) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } Status = STATUS_SUCCESS; _SEH2_TRY { MmProbeAndLockPages(master_mdl, KernelMode, IoWriteAccess); } _SEH2_EXCEPT (EXCEPTION_EXECUTE_HANDLER) { Status = _SEH2_GetExceptionCode(); } _SEH2_END; if (!NT_SUCCESS(Status)) { ERR("MmProbeAndLockPages threw exception %08x\n", Status); IoFreeMdl(master_mdl); goto exit; } pfns = (PFN_NUMBER*)(master_mdl + 1); pos = 0; while (pos < length) { parity1 = (((addr - offset + pos) / ((ci->num_stripes - 2) * ci->stripe_length)) + ci->num_stripes - 2) % ci->num_stripes; if (pos == 0) { UINT16 stripe = (parity1 + startoffstripe + 2) % ci->num_stripes, parity2; ULONG skip, readlen; i = startoffstripe; while (stripe != parity1) { if (i == startoffstripe) { readlen = (ULONG)min(length, ci->stripe_length - (startoff % ci->stripe_length)); context.stripes[stripe].stripestart = startoff; context.stripes[stripe].stripeend = startoff + readlen; pos += readlen; if (pos == length) break; } else { readlen = min(length - pos, (ULONG)ci->stripe_length); context.stripes[stripe].stripestart = startoff - (startoff % ci->stripe_length); context.stripes[stripe].stripeend = context.stripes[stripe].stripestart + readlen; pos += readlen; if (pos == length) break; } i++; stripe = (stripe + 1) % ci->num_stripes; } if (pos == length) break; for (i = 0; i < startoffstripe; i++) { UINT16 stripe2 = (parity1 + i + 2) % ci->num_stripes; context.stripes[stripe2].stripestart = context.stripes[stripe2].stripeend = startoff - (startoff % ci->stripe_length) + ci->stripe_length; } context.stripes[parity1].stripestart = context.stripes[parity1].stripeend = startoff - (startoff % ci->stripe_length) + ci->stripe_length; parity2 = (parity1 + 1) % ci->num_stripes; context.stripes[parity2].stripestart = context.stripes[parity2].stripeend = startoff - (startoff % ci->stripe_length) + ci->stripe_length; if (length - pos > ci->num_stripes * (ci->num_stripes - 2) * ci->stripe_length) { skip = (ULONG)(((length - pos) / (ci->num_stripes * (ci->num_stripes - 2) * ci->stripe_length)) - 1); for (i = 0; i < ci->num_stripes; i++) { context.stripes[i].stripeend += skip * ci->num_stripes * ci->stripe_length; } pos += (UINT32)(skip * (ci->num_stripes - 2) * ci->num_stripes * ci->stripe_length); need_dummy = TRUE; } } else if (length - pos >= ci->stripe_length * (ci->num_stripes - 2)) { for (i = 0; i < ci->num_stripes; i++) { context.stripes[i].stripeend += ci->stripe_length; } pos += (UINT32)(ci->stripe_length * (ci->num_stripes - 2)); need_dummy = TRUE; } else { UINT16 stripe = (parity1 + 2) % ci->num_stripes; i = 0; while (stripe != parity1) { if (endoffstripe == i) { context.stripes[stripe].stripeend = endoff + 1; break; } else if (endoffstripe > i) context.stripes[stripe].stripeend = endoff - (endoff % ci->stripe_length) + ci->stripe_length; i++; stripe = (stripe + 1) % ci->num_stripes; } break; } } for (i = 0; i < ci->num_stripes; i++) { if (context.stripes[i].stripestart != context.stripes[i].stripeend) { context.stripes[i].mdl = IoAllocateMdl(context.va, (ULONG)(context.stripes[i].stripeend - context.stripes[i].stripestart), FALSE, FALSE, NULL); if (!context.stripes[i].mdl) { ERR("IoAllocateMdl failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } } if (need_dummy) { dummypage = ExAllocatePoolWithTag(NonPagedPool, PAGE_SIZE, ALLOC_TAG); if (!dummypage) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } dummy_mdl = IoAllocateMdl(dummypage, PAGE_SIZE, FALSE, FALSE, NULL); if (!dummy_mdl) { ERR("IoAllocateMdl failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } MmBuildMdlForNonPagedPool(dummy_mdl); dummy = *(PFN_NUMBER*)(dummy_mdl + 1); } stripeoff = ExAllocatePoolWithTag(NonPagedPool, sizeof(UINT32) * ci->num_stripes, ALLOC_TAG); if (!stripeoff) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } RtlZeroMemory(stripeoff, sizeof(UINT32) * ci->num_stripes); pos = 0; while (pos < length) { PFN_NUMBER* stripe_pfns; parity1 = (((addr - offset + pos) / ((ci->num_stripes - 2) * ci->stripe_length)) + ci->num_stripes - 2) % ci->num_stripes; if (pos == 0) { UINT16 stripe = (parity1 + startoffstripe + 2) % ci->num_stripes; UINT32 readlen = min(length - pos, (UINT32)min(context.stripes[stripe].stripeend - context.stripes[stripe].stripestart, ci->stripe_length - (context.stripes[stripe].stripestart % ci->stripe_length))); stripe_pfns = (PFN_NUMBER*)(context.stripes[stripe].mdl + 1); RtlCopyMemory(stripe_pfns, pfns, readlen * sizeof(PFN_NUMBER) >> PAGE_SHIFT); stripeoff[stripe] = readlen; pos += readlen; stripe = (stripe + 1) % ci->num_stripes; while (stripe != parity1) { stripe_pfns = (PFN_NUMBER*)(context.stripes[stripe].mdl + 1); readlen = (UINT32)min(length - pos, min(context.stripes[stripe].stripeend - context.stripes[stripe].stripestart, ci->stripe_length)); if (readlen == 0) break; RtlCopyMemory(stripe_pfns, &pfns[pos >> PAGE_SHIFT], readlen * sizeof(PFN_NUMBER) >> PAGE_SHIFT); stripeoff[stripe] = readlen; pos += readlen; stripe = (stripe + 1) % ci->num_stripes; } } else if (length - pos >= ci->stripe_length * (ci->num_stripes - 2)) { UINT16 stripe = (parity1 + 2) % ci->num_stripes; UINT16 parity2 = (parity1 + 1) % ci->num_stripes; ULONG k; while (stripe != parity1) { stripe_pfns = (PFN_NUMBER*)(context.stripes[stripe].mdl + 1); RtlCopyMemory(&stripe_pfns[stripeoff[stripe] >> PAGE_SHIFT], &pfns[pos >> PAGE_SHIFT], (ULONG)(ci->stripe_length * sizeof(PFN_NUMBER) >> PAGE_SHIFT)); stripeoff[stripe] += (UINT32)ci->stripe_length; pos += (UINT32)ci->stripe_length; stripe = (stripe + 1) % ci->num_stripes; } stripe_pfns = (PFN_NUMBER*)(context.stripes[parity1].mdl + 1); for (k = 0; k < ci->stripe_length >> PAGE_SHIFT; k++) { stripe_pfns[stripeoff[parity1] >> PAGE_SHIFT] = dummy; stripeoff[parity1] += PAGE_SIZE; } stripe_pfns = (PFN_NUMBER*)(context.stripes[parity2].mdl + 1); for (k = 0; k < ci->stripe_length >> PAGE_SHIFT; k++) { stripe_pfns[stripeoff[parity2] >> PAGE_SHIFT] = dummy; stripeoff[parity2] += PAGE_SIZE; } } else { UINT16 stripe = (parity1 + 2) % ci->num_stripes; UINT32 readlen; while (pos < length) { stripe_pfns = (PFN_NUMBER*)(context.stripes[stripe].mdl + 1); readlen = (UINT32)min(length - pos, min(context.stripes[stripe].stripeend - context.stripes[stripe].stripestart, ci->stripe_length)); if (readlen == 0) break; RtlCopyMemory(&stripe_pfns[stripeoff[stripe] >> PAGE_SHIFT], &pfns[pos >> PAGE_SHIFT], readlen * sizeof(PFN_NUMBER) >> PAGE_SHIFT); stripeoff[stripe] += readlen; pos += readlen; stripe = (stripe + 1) % ci->num_stripes; } } } MmUnlockPages(master_mdl); IoFreeMdl(master_mdl); ExFreePool(stripeoff); } context.address = addr; for (i = 0; i < ci->num_stripes; i++) { if (!devices[i] || !devices[i]->devobj || context.stripes[i].stripestart == context.stripes[i].stripeend) { context.stripes[i].status = ReadDataStatus_MissingDevice; context.stripes_left--; if (!devices[i] || !devices[i]->devobj) missing_devices++; } } if (missing_devices > allowed_missing) { ERR("not enough devices to service request (%u missing)\n", missing_devices); Status = STATUS_UNEXPECTED_IO_ERROR; goto exit; } for (i = 0; i < ci->num_stripes; i++) { PIO_STACK_LOCATION IrpSp; if (devices[i] && devices[i]->devobj && context.stripes[i].stripestart != context.stripes[i].stripeend && context.stripes[i].status != ReadDataStatus_Skip) { context.stripes[i].context = (struct read_data_context*)&context; if (type == BLOCK_FLAG_RAID10) { context.stripes[i].stripenum = i / ci->sub_stripes; } if (!Irp) { context.stripes[i].Irp = IoAllocateIrp(devices[i]->devobj->StackSize, FALSE); if (!context.stripes[i].Irp) { ERR("IoAllocateIrp failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } else { context.stripes[i].Irp = IoMakeAssociatedIrp(Irp, devices[i]->devobj->StackSize); if (!context.stripes[i].Irp) { ERR("IoMakeAssociatedIrp failed\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } IrpSp = IoGetNextIrpStackLocation(context.stripes[i].Irp); IrpSp->MajorFunction = IRP_MJ_READ; if (devices[i]->devobj->Flags & DO_BUFFERED_IO) { context.stripes[i].Irp->AssociatedIrp.SystemBuffer = ExAllocatePoolWithTag(NonPagedPool, (ULONG)(context.stripes[i].stripeend - context.stripes[i].stripestart), ALLOC_TAG); if (!context.stripes[i].Irp->AssociatedIrp.SystemBuffer) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } context.stripes[i].Irp->Flags |= IRP_BUFFERED_IO | IRP_DEALLOCATE_BUFFER | IRP_INPUT_OPERATION; context.stripes[i].Irp->UserBuffer = MmGetSystemAddressForMdlSafe(context.stripes[i].mdl, priority); } else if (devices[i]->devobj->Flags & DO_DIRECT_IO) context.stripes[i].Irp->MdlAddress = context.stripes[i].mdl; else context.stripes[i].Irp->UserBuffer = MmGetSystemAddressForMdlSafe(context.stripes[i].mdl, priority); IrpSp->Parameters.Read.Length = (ULONG)(context.stripes[i].stripeend - context.stripes[i].stripestart); IrpSp->Parameters.Read.ByteOffset.QuadPart = context.stripes[i].stripestart + cis[i].offset; total_reading += IrpSp->Parameters.Read.Length; context.stripes[i].Irp->UserIosb = &context.stripes[i].iosb; IoSetCompletionRoutine(context.stripes[i].Irp, read_data_completion, &context.stripes[i], TRUE, TRUE, TRUE); context.stripes[i].status = ReadDataStatus_Pending; } } #ifdef DEBUG_STATS if (!is_tree) time1 = KeQueryPerformanceCounter(NULL); #endif need_to_wait = FALSE; for (i = 0; i < ci->num_stripes; i++) { if (context.stripes[i].status != ReadDataStatus_MissingDevice && context.stripes[i].status != ReadDataStatus_Skip) { IoCallDriver(devices[i]->devobj, context.stripes[i].Irp); need_to_wait = TRUE; } } if (need_to_wait) KeWaitForSingleObject(&context.Event, Executive, KernelMode, FALSE, NULL); #ifdef DEBUG_STATS if (!is_tree) { time2 = KeQueryPerformanceCounter(NULL); Vcb->stats.read_disk_time += time2.QuadPart - time1.QuadPart; } #endif if (diskacc) fFsRtlUpdateDiskCounters(total_reading, 0); // check if any of the devices return a "user-induced" error for (i = 0; i < ci->num_stripes; i++) { if (context.stripes[i].status == ReadDataStatus_Error && IoIsErrorUserInduced(context.stripes[i].iosb.Status)) { Status = context.stripes[i].iosb.Status; goto exit; } } if (type == BLOCK_FLAG_RAID0) { Status = read_data_raid0(Vcb, file_read ? context.va : buf, addr, length, &context, ci, devices, generation, offset); if (!NT_SUCCESS(Status)) { ERR("read_data_raid0 returned %08x\n", Status); if (file_read) ExFreePool(context.va); goto exit; } if (file_read) { RtlCopyMemory(buf, context.va, length); ExFreePool(context.va); } } else if (type == BLOCK_FLAG_RAID10) { Status = read_data_raid10(Vcb, file_read ? context.va : buf, addr, length, &context, ci, devices, generation, offset); if (!NT_SUCCESS(Status)) { ERR("read_data_raid10 returned %08x\n", Status); if (file_read) ExFreePool(context.va); goto exit; } if (file_read) { RtlCopyMemory(buf, context.va, length); ExFreePool(context.va); } } else if (type == BLOCK_FLAG_DUPLICATE) { Status = read_data_dup(Vcb, file_read ? context.va : buf, addr, &context, ci, devices, generation); if (!NT_SUCCESS(Status)) { ERR("read_data_dup returned %08x\n", Status); if (file_read) ExFreePool(context.va); goto exit; } if (file_read) { RtlCopyMemory(buf, context.va, length); ExFreePool(context.va); } } else if (type == BLOCK_FLAG_RAID5) { Status = read_data_raid5(Vcb, file_read ? context.va : buf, addr, length, &context, ci, devices, offset, generation, c, missing_devices > 0 ? TRUE : FALSE); if (!NT_SUCCESS(Status)) { ERR("read_data_raid5 returned %08x\n", Status); if (file_read) ExFreePool(context.va); goto exit; } if (file_read) { RtlCopyMemory(buf, context.va, length); ExFreePool(context.va); } } else if (type == BLOCK_FLAG_RAID6) { Status = read_data_raid6(Vcb, file_read ? context.va : buf, addr, length, &context, ci, devices, offset, generation, c, missing_devices > 0 ? TRUE : FALSE); if (!NT_SUCCESS(Status)) { ERR("read_data_raid6 returned %08x\n", Status); if (file_read) ExFreePool(context.va); goto exit; } if (file_read) { RtlCopyMemory(buf, context.va, length); ExFreePool(context.va); } } exit: if (c && (type == BLOCK_FLAG_RAID5 || type == BLOCK_FLAG_RAID6)) chunk_unlock_range(Vcb, c, lockaddr, locklen); if (dummy_mdl) IoFreeMdl(dummy_mdl); if (dummypage) ExFreePool(dummypage); for (i = 0; i < ci->num_stripes; i++) { if (context.stripes[i].mdl) { if (context.stripes[i].mdl->MdlFlags & MDL_PAGES_LOCKED) MmUnlockPages(context.stripes[i].mdl); IoFreeMdl(context.stripes[i].mdl); } if (context.stripes[i].Irp) IoFreeIrp(context.stripes[i].Irp); } ExFreePool(context.stripes); if (!Vcb->log_to_phys_loaded) ExFreePool(devices); return Status; } NTSTATUS read_stream(fcb* fcb, UINT8* data, UINT64 start, ULONG length, ULONG* pbr) { ULONG readlen; TRACE("(%p, %p, %llx, %llx, %p)\n", fcb, data, start, length, pbr); if (pbr) *pbr = 0; if (start >= fcb->adsdata.Length) { TRACE("tried to read beyond end of stream\n"); return STATUS_END_OF_FILE; } if (length == 0) { WARN("tried to read zero bytes\n"); return STATUS_SUCCESS; } if (start + length < fcb->adsdata.Length) readlen = length; else readlen = fcb->adsdata.Length - (ULONG)start; if (readlen > 0) RtlCopyMemory(data + start, fcb->adsdata.Buffer, readlen); if (pbr) *pbr = readlen; return STATUS_SUCCESS; } NTSTATUS read_file(fcb* fcb, UINT8* data, UINT64 start, UINT64 length, ULONG* pbr, PIRP Irp) { NTSTATUS Status; EXTENT_DATA* ed; UINT32 bytes_read = 0; UINT64 last_end; LIST_ENTRY* le; #ifdef DEBUG_STATS LARGE_INTEGER time1, time2; #endif TRACE("(%p, %p, %llx, %llx, %p)\n", fcb, data, start, length, pbr); if (pbr) *pbr = 0; if (start >= fcb->inode_item.st_size) { WARN("Tried to read beyond end of file\n"); Status = STATUS_END_OF_FILE; goto exit; } #ifdef DEBUG_STATS time1 = KeQueryPerformanceCounter(NULL); #endif le = fcb->extents.Flink; last_end = start; while (le != &fcb->extents) { UINT64 len; extent* ext = CONTAINING_RECORD(le, extent, list_entry); EXTENT_DATA2* ed2; if (!ext->ignore) { ed = &ext->extent_data; ed2 = (ed->type == EXTENT_TYPE_REGULAR || ed->type == EXTENT_TYPE_PREALLOC) ? (EXTENT_DATA2*)ed->data : NULL; len = ed2 ? ed2->num_bytes : ed->decoded_size; if (ext->offset + len <= start) { last_end = ext->offset + len; goto nextitem; } if (ext->offset > last_end && ext->offset > start + bytes_read) { UINT32 read = (UINT32)min(length, ext->offset - max(start, last_end)); RtlZeroMemory(data + bytes_read, read); bytes_read += read; length -= read; } if (length == 0 || ext->offset > start + bytes_read + length) break; if (ed->encryption != BTRFS_ENCRYPTION_NONE) { WARN("Encryption not supported\n"); Status = STATUS_NOT_IMPLEMENTED; goto exit; } if (ed->encoding != BTRFS_ENCODING_NONE) { WARN("Other encodings not supported\n"); Status = STATUS_NOT_IMPLEMENTED; goto exit; } switch (ed->type) { case EXTENT_TYPE_INLINE: { UINT64 off = start + bytes_read - ext->offset; UINT32 read; if (ed->compression == BTRFS_COMPRESSION_NONE) { read = (UINT32)min(min(len, ext->datalen) - off, length); RtlCopyMemory(data + bytes_read, &ed->data[off], read); } else if (ed->compression == BTRFS_COMPRESSION_ZLIB || ed->compression == BTRFS_COMPRESSION_LZO) { UINT8* decomp; BOOL decomp_alloc; UINT16 inlen = ext->datalen - (UINT16)offsetof(EXTENT_DATA, data[0]); if (ed->decoded_size == 0 || ed->decoded_size > 0xffffffff) { ERR("ed->decoded_size was invalid (%llx)\n", ed->decoded_size); Status = STATUS_INTERNAL_ERROR; goto exit; } read = (UINT32)min(ed->decoded_size - off, length); if (off > 0) { decomp = ExAllocatePoolWithTag(NonPagedPool, (UINT32)ed->decoded_size, ALLOC_TAG); if (!decomp) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } decomp_alloc = TRUE; } else { decomp = data + bytes_read; decomp_alloc = FALSE; } if (ed->compression == BTRFS_COMPRESSION_ZLIB) { Status = zlib_decompress(ed->data, inlen, decomp, (UINT32)(read + off)); if (!NT_SUCCESS(Status)) { ERR("zlib_decompress returned %08x\n", Status); if (decomp_alloc) ExFreePool(decomp); goto exit; } } else if (ed->compression == BTRFS_COMPRESSION_LZO) { if (inlen < sizeof(UINT32)) { ERR("extent data was truncated\n"); Status = STATUS_INTERNAL_ERROR; if (decomp_alloc) ExFreePool(decomp); goto exit; } else inlen -= sizeof(UINT32); Status = lzo_decompress(ed->data + sizeof(UINT32), inlen, decomp, (UINT32)(read + off), sizeof(UINT32)); if (!NT_SUCCESS(Status)) { ERR("lzo_decompress returned %08x\n", Status); if (decomp_alloc) ExFreePool(decomp); goto exit; } } if (decomp_alloc) { RtlCopyMemory(data + bytes_read, decomp + off, read); ExFreePool(decomp); } } else { ERR("unhandled compression type %x\n", ed->compression); Status = STATUS_NOT_IMPLEMENTED; goto exit; } bytes_read += read; length -= read; break; } case EXTENT_TYPE_REGULAR: { UINT64 off = start + bytes_read - ext->offset; UINT32 to_read, read; UINT8* buf; BOOL mdl = (Irp && Irp->MdlAddress) ? TRUE : FALSE; BOOL buf_free; UINT32 bumpoff = 0, *csum; UINT64 addr; chunk* c; read = (UINT32)(len - off); if (read > length) read = (UINT32)length; if (ed->compression == BTRFS_COMPRESSION_NONE) { addr = ed2->address + ed2->offset + off; to_read = (UINT32)sector_align(read, fcb->Vcb->superblock.sector_size); if (addr % fcb->Vcb->superblock.sector_size > 0) { bumpoff = addr % fcb->Vcb->superblock.sector_size; addr -= bumpoff; to_read = (UINT32)sector_align(read + bumpoff, fcb->Vcb->superblock.sector_size); } } else { addr = ed2->address; to_read = (UINT32)sector_align(ed2->size, fcb->Vcb->superblock.sector_size); } if (ed->compression == BTRFS_COMPRESSION_NONE && start % fcb->Vcb->superblock.sector_size == 0 && length % fcb->Vcb->superblock.sector_size == 0) { buf = data + bytes_read; buf_free = FALSE; } else { buf = ExAllocatePoolWithTag(PagedPool, to_read, ALLOC_TAG); buf_free = TRUE; if (!buf) { ERR("out of memory\n"); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } mdl = FALSE; } c = get_chunk_from_address(fcb->Vcb, addr); if (!c) { ERR("get_chunk_from_address(%llx) failed\n", addr); if (buf_free) ExFreePool(buf); goto exit; } if (ext->csum) { if (ed->compression == BTRFS_COMPRESSION_NONE) csum = &ext->csum[off / fcb->Vcb->superblock.sector_size]; else csum = ext->csum; } else csum = NULL; Status = read_data(fcb->Vcb, addr, to_read, csum, FALSE, buf, c, NULL, Irp, 0, mdl, fcb && fcb->Header.Flags2 & FSRTL_FLAG2_IS_PAGING_FILE ? HighPagePriority : NormalPagePriority); if (!NT_SUCCESS(Status)) { ERR("read_data returned %08x\n", Status); if (buf_free) ExFreePool(buf); goto exit; } if (ed->compression == BTRFS_COMPRESSION_NONE) { if (buf_free) RtlCopyMemory(data + bytes_read, buf + bumpoff, read); } else { UINT8 *decomp = NULL, *buf2; ULONG outlen, inlen, off2; UINT32 inpageoff = 0; off2 = (ULONG)(ed2->offset + off); buf2 = buf; inlen = (ULONG)ed2->size; if (ed->compression == BTRFS_COMPRESSION_LZO) { ULONG inoff = sizeof(UINT32); inlen -= sizeof(UINT32); // If reading a few sectors in, skip to the interesting bit while (off2 > LINUX_PAGE_SIZE) { UINT32 partlen; if (inlen < sizeof(UINT32)) break; partlen = *(UINT32*)(buf2 + inoff); if (partlen < inlen) { off2 -= LINUX_PAGE_SIZE; inoff += partlen + sizeof(UINT32); inlen -= partlen + sizeof(UINT32); if (LINUX_PAGE_SIZE - (inoff % LINUX_PAGE_SIZE) < sizeof(UINT32)) inoff = ((inoff / LINUX_PAGE_SIZE) + 1) * LINUX_PAGE_SIZE; } else break; } buf2 = &buf2[inoff]; inpageoff = inoff % LINUX_PAGE_SIZE; } if (off2 != 0) { outlen = off2 + min(read, (UINT32)(ed2->num_bytes - off)); decomp = ExAllocatePoolWithTag(PagedPool, outlen, ALLOC_TAG); if (!decomp) { ERR("out of memory\n"); ExFreePool(buf); Status = STATUS_INSUFFICIENT_RESOURCES; goto exit; } } else outlen = min(read, (UINT32)(ed2->num_bytes - off)); if (ed->compression == BTRFS_COMPRESSION_ZLIB) { Status = zlib_decompress(buf2, inlen, decomp ? decomp : (data + bytes_read), outlen); if (!NT_SUCCESS(Status)) { ERR("zlib_decompress returned %08x\n", Status); ExFreePool(buf); if (decomp) ExFreePool(decomp); goto exit; } } else if (ed->compression == BTRFS_COMPRESSION_LZO) { Status = lzo_decompress(buf2, inlen, decomp ? decomp : (data + bytes_read), outlen, inpageoff); if (!NT_SUCCESS(Status)) { ERR("lzo_decompress returned %08x\n", Status); ExFreePool(buf); if (decomp) ExFreePool(decomp); goto exit; } } else { ERR("unsupported compression type %x\n", ed->compression); Status = STATUS_NOT_SUPPORTED; ExFreePool(buf); if (decomp) ExFreePool(decomp); goto exit; } if (decomp) { RtlCopyMemory(data + bytes_read, decomp + off2, (size_t)min(read, ed2->num_bytes - off)); ExFreePool(decomp); } } if (buf_free) ExFreePool(buf); bytes_read += read; length -= read; break; } case EXTENT_TYPE_PREALLOC: { UINT64 off = start + bytes_read - ext->offset; UINT32 read = (UINT32)(len - off); if (read > length) read = (UINT32)length; RtlZeroMemory(data + bytes_read, read); bytes_read += read; length -= read; break; } default: WARN("Unsupported extent data type %u\n", ed->type); Status = STATUS_NOT_IMPLEMENTED; goto exit; } last_end = ext->offset + len; if (length == 0) break; } nextitem: le = le->Flink; } if (length > 0 && start + bytes_read < fcb->inode_item.st_size) { UINT32 read = (UINT32)min(fcb->inode_item.st_size - start - bytes_read, length); RtlZeroMemory(data + bytes_read, read); bytes_read += read; length -= read; } Status = STATUS_SUCCESS; if (pbr) *pbr = bytes_read; #ifdef DEBUG_STATS time2 = KeQueryPerformanceCounter(NULL); fcb->Vcb->stats.num_reads++; fcb->Vcb->stats.data_read += bytes_read; fcb->Vcb->stats.read_total_time += time2.QuadPart - time1.QuadPart; #endif exit: return Status; } NTSTATUS do_read(PIRP Irp, BOOLEAN wait, ULONG* bytes_read) { PIO_STACK_LOCATION IrpSp = IoGetCurrentIrpStackLocation(Irp); PFILE_OBJECT FileObject = IrpSp->FileObject; fcb* fcb = FileObject->FsContext; UINT8* data = NULL; ULONG length = IrpSp->Parameters.Read.Length, addon = 0; UINT64 start = IrpSp->Parameters.Read.ByteOffset.QuadPart; *bytes_read = 0; if (!fcb || !fcb->Vcb || !fcb->subvol) return STATUS_INTERNAL_ERROR; TRACE("file = %S (fcb = %p)\n", file_desc(FileObject), fcb); TRACE("offset = %llx, length = %x\n", start, length); TRACE("paging_io = %s, no cache = %s\n", Irp->Flags & IRP_PAGING_IO ? "TRUE" : "FALSE", Irp->Flags & IRP_NOCACHE ? "TRUE" : "FALSE"); if (!fcb->ads && fcb->type == BTRFS_TYPE_DIRECTORY) return STATUS_INVALID_DEVICE_REQUEST; if (!(Irp->Flags & IRP_PAGING_IO) && !FsRtlCheckLockForReadAccess(&fcb->lock, Irp)) { WARN("tried to read locked region\n"); return STATUS_FILE_LOCK_CONFLICT; } if (length == 0) { TRACE("tried to read zero bytes\n"); return STATUS_SUCCESS; } if (start >= (UINT64)fcb->Header.FileSize.QuadPart) { TRACE("tried to read with offset after file end (%llx >= %llx)\n", start, fcb->Header.FileSize.QuadPart); return STATUS_END_OF_FILE; } TRACE("FileObject %p fcb %p FileSize = %llx st_size = %llx (%p)\n", FileObject, fcb, fcb->Header.FileSize.QuadPart, fcb->inode_item.st_size, &fcb->inode_item.st_size); if (Irp->Flags & IRP_NOCACHE || !(IrpSp->MinorFunction & IRP_MN_MDL)) { data = map_user_buffer(Irp, fcb->Header.Flags2 & FSRTL_FLAG2_IS_PAGING_FILE ? HighPagePriority : NormalPagePriority); if (Irp->MdlAddress && !data) { ERR("MmGetSystemAddressForMdlSafe returned NULL\n"); return STATUS_INSUFFICIENT_RESOURCES; } if (start >= (UINT64)fcb->Header.ValidDataLength.QuadPart) { length = (ULONG)min(length, min(start + length, (UINT64)fcb->Header.FileSize.QuadPart) - fcb->Header.ValidDataLength.QuadPart); RtlZeroMemory(data, length); Irp->IoStatus.Information = *bytes_read = length; return STATUS_SUCCESS; } if (length + start > (UINT64)fcb->Header.ValidDataLength.QuadPart) { addon = (ULONG)(min(start + length, (UINT64)fcb->Header.FileSize.QuadPart) - fcb->Header.ValidDataLength.QuadPart); RtlZeroMemory(data + (fcb->Header.ValidDataLength.QuadPart - start), addon); length = (ULONG)(fcb->Header.ValidDataLength.QuadPart - start); } } if (!(Irp->Flags & IRP_NOCACHE)) { NTSTATUS Status = STATUS_SUCCESS; _SEH2_TRY { if (!FileObject->PrivateCacheMap) { CC_FILE_SIZES ccfs; ccfs.AllocationSize = fcb->Header.AllocationSize; ccfs.FileSize = fcb->Header.FileSize; ccfs.ValidDataLength = fcb->Header.ValidDataLength; init_file_cache(FileObject, &ccfs); } if (IrpSp->MinorFunction & IRP_MN_MDL) { CcMdlRead(FileObject,&IrpSp->Parameters.Read.ByteOffset, length, &Irp->MdlAddress, &Irp->IoStatus); } else { if (fCcCopyReadEx) { TRACE("CcCopyReadEx(%p, %llx, %x, %u, %p, %p, %p, %p)\n", FileObject, IrpSp->Parameters.Read.ByteOffset.QuadPart, length, wait, data, &Irp->IoStatus, Irp->Tail.Overlay.Thread); TRACE("sizes = %llx, %llx, %llx\n", fcb->Header.AllocationSize, fcb->Header.FileSize, fcb->Header.ValidDataLength); if (!fCcCopyReadEx(FileObject, &IrpSp->Parameters.Read.ByteOffset, length, wait, data, &Irp->IoStatus, Irp->Tail.Overlay.Thread)) { TRACE("CcCopyReadEx could not wait\n"); IoMarkIrpPending(Irp); return STATUS_PENDING; } TRACE("CcCopyReadEx finished\n"); } else { TRACE("CcCopyRead(%p, %llx, %x, %u, %p, %p)\n", FileObject, IrpSp->Parameters.Read.ByteOffset.QuadPart, length, wait, data, &Irp->IoStatus); TRACE("sizes = %llx, %llx, %llx\n", fcb->Header.AllocationSize, fcb->Header.FileSize, fcb->Header.ValidDataLength); if (!CcCopyRead(FileObject, &IrpSp->Parameters.Read.ByteOffset, length, wait, data, &Irp->IoStatus)) { TRACE("CcCopyRead could not wait\n"); IoMarkIrpPending(Irp); return STATUS_PENDING; } TRACE("CcCopyRead finished\n"); } } } _SEH2_EXCEPT (EXCEPTION_EXECUTE_HANDLER) { Status = _SEH2_GetExceptionCode(); } _SEH2_END; if (NT_SUCCESS(Status)) { Status = Irp->IoStatus.Status; Irp->IoStatus.Information += addon; *bytes_read = (ULONG)Irp->IoStatus.Information; } else ERR("EXCEPTION - %08x\n", Status); return Status; } else { NTSTATUS Status; if (!wait) { IoMarkIrpPending(Irp); return STATUS_PENDING; } if (fcb->ads) Status = read_stream(fcb, data, start, length, bytes_read); else Status = read_file(fcb, data, start, length, bytes_read, Irp); *bytes_read += addon; TRACE("read %u bytes\n", *bytes_read); Irp->IoStatus.Information = *bytes_read; if (diskacc && Status != STATUS_PENDING) { PETHREAD thread = NULL; if (Irp->Tail.Overlay.Thread && !IoIsSystemThread(Irp->Tail.Overlay.Thread)) thread = Irp->Tail.Overlay.Thread; else if (!IoIsSystemThread(PsGetCurrentThread())) thread = PsGetCurrentThread(); else if (IoIsSystemThread(PsGetCurrentThread()) && IoGetTopLevelIrp() == Irp) thread = PsGetCurrentThread(); if (thread) fPsUpdateDiskCounters(PsGetThreadProcess(thread), *bytes_read, 0, 1, 0, 0); } return Status; } } _Dispatch_type_(IRP_MJ_READ) _Function_class_(DRIVER_DISPATCH) NTSTATUS drv_read(PDEVICE_OBJECT DeviceObject, PIRP Irp) { device_extension* Vcb = DeviceObject->DeviceExtension; PIO_STACK_LOCATION IrpSp = IoGetCurrentIrpStackLocation(Irp); PFILE_OBJECT FileObject = IrpSp->FileObject; ULONG bytes_read = 0; NTSTATUS Status; BOOL top_level; fcb* fcb; ccb* ccb; BOOLEAN fcb_lock = FALSE, wait; FsRtlEnterFileSystem(); top_level = is_top_level(Irp); TRACE("read\n"); if (Vcb && Vcb->type == VCB_TYPE_VOLUME) { Status = vol_read(DeviceObject, Irp); goto exit2; } else if (!Vcb || Vcb->type != VCB_TYPE_FS) { Status = STATUS_INVALID_PARAMETER; goto end; } Irp->IoStatus.Information = 0; if (IrpSp->MinorFunction & IRP_MN_COMPLETE) { CcMdlReadComplete(IrpSp->FileObject, Irp->MdlAddress); Irp->MdlAddress = NULL; Status = STATUS_SUCCESS; goto exit; } fcb = FileObject->FsContext; if (!fcb) { ERR("fcb was NULL\n"); Status = STATUS_INVALID_PARAMETER; goto exit; } ccb = FileObject->FsContext2; if (!ccb) { ERR("ccb was NULL\n"); Status = STATUS_INVALID_PARAMETER; goto exit; } if (Irp->RequestorMode == UserMode && !(ccb->access & FILE_READ_DATA)) { WARN("insufficient privileges\n"); Status = STATUS_ACCESS_DENIED; goto exit; } if (fcb == Vcb->volume_fcb) { TRACE("reading volume FCB\n"); IoSkipCurrentIrpStackLocation(Irp); Status = IoCallDriver(Vcb->Vpb->RealDevice, Irp); goto exit2; } wait = IoIsOperationSynchronous(Irp); // Don't offload jobs when doing paging IO - otherwise this can lead to // deadlocks in CcCopyRead. if (Irp->Flags & IRP_PAGING_IO) wait = TRUE; if (!(Irp->Flags & IRP_PAGING_IO) && FileObject->SectionObjectPointer->DataSectionObject) { IO_STATUS_BLOCK iosb; CcFlushCache(FileObject->SectionObjectPointer, &IrpSp->Parameters.Read.ByteOffset, IrpSp->Parameters.Read.Length, &iosb); if (!NT_SUCCESS(iosb.Status)) { ERR("CcFlushCache returned %08x\n", iosb.Status); return iosb.Status; } } if (!ExIsResourceAcquiredSharedLite(fcb->Header.Resource)) { if (!ExAcquireResourceSharedLite(fcb->Header.Resource, wait)) { Status = STATUS_PENDING; IoMarkIrpPending(Irp); goto exit; } fcb_lock = TRUE; } Status = do_read(Irp, wait, &bytes_read); if (fcb_lock) ExReleaseResourceLite(fcb->Header.Resource); exit: if (FileObject->Flags & FO_SYNCHRONOUS_IO && !(Irp->Flags & IRP_PAGING_IO)) FileObject->CurrentByteOffset.QuadPart = IrpSp->Parameters.Read.ByteOffset.QuadPart + (NT_SUCCESS(Status) ? bytes_read : 0); end: Irp->IoStatus.Status = Status; TRACE("Irp->IoStatus.Status = %08x\n", Irp->IoStatus.Status); TRACE("Irp->IoStatus.Information = %lu\n", Irp->IoStatus.Information); TRACE("returning %08x\n", Status); if (Status != STATUS_PENDING) IoCompleteRequest(Irp, IO_NO_INCREMENT); else { if (!add_thread_job(Vcb, Irp)) do_read_job(Irp); } exit2: if (top_level) IoSetTopLevelIrp(NULL); FsRtlExitFileSystem(); return Status; }