/* * Registry processing routines. Routines, common for registry * processing frontends. * * Copyright 1999 Sylvain St-Germain * Copyright 2002 Andriy Palamarchuk * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #define REG_VAL_BUF_SIZE 4096 /* maximal number of characters in hexadecimal data line, not including '\' character */ #define REG_FILE_HEX_LINE_LEN 76 /* Globals used by the api setValue */ static LPSTR currentKeyName = NULL; static HKEY currentKeyClass = 0; static HKEY currentKeyHandle = 0; static BOOL bTheKeyIsOpen = FALSE; static const CHAR *app_name = "UNKNOWN"; static const CHAR *reg_class_names[] = { "HKEY_LOCAL_MACHINE", "HKEY_USERS", "HKEY_CLASSES_ROOT", "HKEY_CURRENT_CONFIG", "HKEY_CURRENT_USER", "HKEY_DYN_DATA" }; #define REG_CLASS_NUMBER (sizeof(reg_class_names) / sizeof(reg_class_names[0])) static HKEY reg_class_keys[REG_CLASS_NUMBER] = { HKEY_LOCAL_MACHINE, HKEY_USERS, HKEY_CLASSES_ROOT, HKEY_CURRENT_CONFIG, HKEY_CURRENT_USER, HKEY_DYN_DATA }; /* return values */ #define NOT_ENOUGH_MEMORY 1 #define IO_ERROR 2 /* processing macros */ /* common check of memory allocation results */ #define CHECK_ENOUGH_MEMORY(p) \ if (!(p)) \ { \ fprintf(stderr,"%s: file %s, line %d: Not enough memory\n", \ getAppName(), __FILE__, __LINE__); \ exit(NOT_ENOUGH_MEMORY); \ } /****************************************************************************** * This is a replacement for strsep which is not portable (missing on Solaris). */ #if 0 /* DISABLED */ char* getToken(char** str, const char* delims) { char* token; if (*str==NULL) { /* No more tokens */ return NULL; } token=*str; while (**str!='\0') { if (strchr(delims,**str)!=NULL) { **str='\0'; (*str)++; return token; } (*str)++; } /* There is no other token */ *str=NULL; return token; } #endif /****************************************************************************** * Copies file name from command line string to the buffer. * Rewinds the command line string pointer to the next non-space character * after the file name. * Buffer contains an empty string if no filename was found; * * params: * command_line - command line current position pointer * where *s[0] is the first symbol of the file name. * file_name - buffer to write the file name to. */ void get_file_name(CHAR **command_line, CHAR *file_name) { CHAR *s = *command_line; int pos = 0; /* position of pointer "s" in *command_line */ file_name[0] = 0; if (!s[0]) { return; } if (s[0] == '"') { s++; (*command_line)++; while(s[0] != '"') { if (!s[0]) { fprintf(stderr,"%s: Unexpected end of file name!\n", getAppName()); exit(1); } s++; pos++; } } else { while(s[0] && !isspace(s[0])) { s++; pos++; } } memcpy(file_name, *command_line, pos * sizeof((*command_line)[0])); /* remove the last backslash */ if (file_name[pos - 1] == '\\') { file_name[pos - 1] = '\0'; } else { file_name[pos] = '\0'; } if (s[0]) { s++; pos++; } while(s[0] && isspace(s[0])) { s++; pos++; } (*command_line) += pos; } /****************************************************************************** * Converts a hex representation of a DWORD into a DWORD. */ static BOOL convertHexToDWord(char* str, DWORD *dw) { char dummy; if (strlen(str) > 8 || sscanf(str, "%lx%c", dw, &dummy) != 1) { fprintf(stderr,"%s: ERROR, invalid hex value\n", getAppName()); return FALSE; } return TRUE; } /****************************************************************************** * Converts a hex comma separated values list into a binary string. */ static BYTE* convertHexCSVToHex(char *str, DWORD *size) { char *s; BYTE *d, *data; /* The worst case is 1 digit + 1 comma per byte */ *size=(strlen(str)+1)/2; data=HeapAlloc(GetProcessHeap(), 0, *size); CHECK_ENOUGH_MEMORY(data); s = str; d = data; *size=0; while (*s != '\0') { UINT wc; char dummy; if (s[1] != ',' && s[1] != '\0' && s[2] != ',' && s[2] != '\0') { fprintf(stderr,"%s: ERROR converting CSV hex stream. Invalid sequence at '%s'\n", getAppName(), s); HeapFree(GetProcessHeap(), 0, data); return NULL; } if (sscanf(s, "%x%c", &wc, &dummy) < 1 || dummy != ',') { fprintf(stderr,"%s: ERROR converting CSV hex stream. Invalid value at '%s'\n", getAppName(), s); HeapFree(GetProcessHeap(), 0, data); return NULL; } *d++ =(BYTE)wc; (*size)++; /* Skip one or two digits and any comma */ while (*s && *s!=',') s++; if (*s) s++; } return data; } /****************************************************************************** * This function returns the HKEY associated with the data type encoded in the * value. It modifies the input parameter (key value) in order to skip this * "now useless" data type information. * * Note: Updated based on the algorithm used in 'server/registry.c' */ DWORD getDataType(LPSTR *lpValue, DWORD* parse_type) { struct data_type { const char *tag; int len; int type; int parse_type; }; static const struct data_type data_types[] = { /* actual type */ /* type to assume for parsing */ { "\"", 1, REG_SZ, REG_SZ }, { "str:\"", 5, REG_SZ, REG_SZ }, { "str(2):\"", 8, REG_EXPAND_SZ, REG_SZ }, { "hex:", 4, REG_BINARY, REG_BINARY }, { "dword:", 6, REG_DWORD, REG_DWORD }, { "hex(", 4, -1, REG_BINARY }, { NULL, 0, 0, 0 } }; const struct data_type *ptr; int type; for (ptr = data_types; ptr->tag; ptr++) { if (memcmp( ptr->tag, *lpValue, ptr->len )) continue; /* Found! */ *parse_type = ptr->parse_type; type=ptr->type; *lpValue+=ptr->len; if (type == -1) { char* end; /* "hex(xx):" is special */ type = (int)strtoul( *lpValue , &end, 16 ); if (**lpValue=='\0' || *end!=')' || *(end+1)!=':') { type=REG_NONE; } else { *lpValue=end+2; } } return type; } *parse_type=REG_NONE; return REG_NONE; } /****************************************************************************** * Returns an allocated buffer with a cleaned copy (removed the surrounding * dbl quotes) of the passed value. */ LPSTR getArg( LPSTR arg) { LPSTR tmp = NULL; size_t len; if (arg == NULL) return NULL; /* * Get rid of surrounding quotes */ len = strlen(arg); if( arg[len-1] == '\"' ) arg[len-1] = '\0'; if( arg[0] == '\"' ) arg++; tmp = HeapAlloc(GetProcessHeap(), 0, strlen(arg)+1); CHECK_ENOUGH_MEMORY(tmp); strcpy(tmp, arg); return tmp; } /****************************************************************************** * Replaces escape sequences with the characters. */ static void REGPROC_unescape_string(LPSTR str) { size_t str_idx = 0; /* current character under analysis */ size_t val_idx = 0; /* the last character of the unescaped string */ size_t len = strlen(str); for (str_idx = 0; str_idx < len; str_idx++, val_idx++) { if (str[str_idx] == '\\') { str_idx++; switch (str[str_idx]) { case 'n': str[val_idx] = '\n'; break; case '\\': case '"': str[val_idx] = str[str_idx]; break; default: fprintf(stderr,"Warning! Unrecognized escape sequence: \\%c'\n", str[str_idx]); str[val_idx] = str[str_idx]; break; } } else { str[val_idx] = str[str_idx]; } } str[val_idx] = '\0'; } /****************************************************************************** * Sets the value with name val_name to the data in val_data for the currently * opened key. * * Parameters: * val_name - name of the registry value * val_data - registry value data */ LONG setValue(LPSTR val_name, LPSTR val_data) { LONG res; DWORD dwDataType, dwParseType; LPBYTE lpbData; DWORD dwData, dwLen; if ( (val_name == NULL) || (val_data == NULL) ) return ERROR_INVALID_PARAMETER; if (strcmp(val_data, "-") == 0) { res=RegDeleteValueA(currentKeyHandle,val_name); return (res == ERROR_FILE_NOT_FOUND ? ERROR_SUCCESS : res); } /* Get the data type stored into the value field */ dwDataType = getDataType(&val_data, &dwParseType); if (dwParseType == REG_SZ) /* no conversion for string */ { dwLen = (DWORD) strlen(val_data); if (dwLen>0 && val_data[dwLen-1]=='"') { dwLen--; val_data[dwLen]='\0'; } dwLen++; REGPROC_unescape_string(val_data); lpbData = (LPBYTE)val_data; } else if (dwParseType == REG_DWORD) /* Convert the dword types */ { if (!convertHexToDWord(val_data, &dwData)) return ERROR_INVALID_DATA; lpbData = (BYTE*)&dwData; dwLen = sizeof(dwData); } else if (dwParseType == REG_BINARY) /* Convert the binary data */ { lpbData = convertHexCSVToHex(val_data, &dwLen); if (!lpbData) return ERROR_INVALID_DATA; } else /* unknown format */ { fprintf(stderr,"%s: ERROR, unknown data format\n", getAppName()); return ERROR_INVALID_DATA; } res = RegSetValueExA( currentKeyHandle, val_name, 0, /* Reserved */ dwDataType, lpbData, dwLen); if (dwParseType == REG_BINARY) HeapFree(GetProcessHeap(), 0, lpbData); return res; } /****************************************************************************** * Open the key */ LONG openKey( LPSTR stdInput) { DWORD dwDisp; LONG res; /* Sanity checks */ if (stdInput == NULL) return ERROR_INVALID_PARAMETER; /* Get the registry class */ if (!getRegClass(stdInput, ¤tKeyClass)) /* Sets global variable */ return ERROR_INVALID_PARAMETER; /* Get the key name */ currentKeyName = getRegKeyName(stdInput); /* Sets global variable */ if (currentKeyName == NULL) return ERROR_INVALID_PARAMETER; res = RegCreateKeyExA( currentKeyClass, /* Class */ currentKeyName, /* Sub Key */ 0, /* MUST BE 0 */ NULL, /* object type */ REG_OPTION_NON_VOLATILE, /* option, REG_OPTION_NON_VOLATILE ... */ KEY_ALL_ACCESS, /* access mask, KEY_ALL_ACCESS */ NULL, /* security attribute */ ¤tKeyHandle, /* result */ &dwDisp); /* disposition, REG_CREATED_NEW_KEY or REG_OPENED_EXISTING_KEY */ if (res == ERROR_SUCCESS) bTheKeyIsOpen = TRUE; return res; } /****************************************************************************** * Extracts from [HKEY\some\key\path] or HKEY\some\key\path types of line * the key name (what starts after the first '\') */ LPSTR getRegKeyName(LPSTR lpLine) { LPSTR keyNameBeg; char lpLineCopy[KEY_MAX_LEN]; if (lpLine == NULL) return NULL; strcpy(lpLineCopy, lpLine); keyNameBeg = strchr(lpLineCopy, '\\'); /* The key name start by '\' */ if (keyNameBeg) { keyNameBeg++; if (lpLine[0] == '[') /* need to find matching ']' */ { LPSTR keyNameEnd; keyNameEnd = strrchr(lpLineCopy, ']'); if (keyNameEnd) { *keyNameEnd = '\0'; /* remove ']' from the key name */ } } } else { keyNameBeg = lpLineCopy + strlen(lpLineCopy); /* branch - empty string */ } currentKeyName = HeapAlloc(GetProcessHeap(), 0, strlen(keyNameBeg) + 1); CHECK_ENOUGH_MEMORY(currentKeyName); strcpy(currentKeyName, keyNameBeg); return currentKeyName; } /****************************************************************************** * Extracts from [HKEY\some\key\path] or HKEY\some\key\path types of line * the key class (what ends before the first '\') */ BOOL getRegClass(LPSTR lpClass, HKEY* hkey) { LPSTR classNameEnd; LPSTR classNameBeg; unsigned int i; char lpClassCopy[KEY_MAX_LEN]; if (lpClass == NULL) return FALSE; lstrcpynA(lpClassCopy, lpClass, KEY_MAX_LEN); classNameEnd = strchr(lpClassCopy, '\\'); /* The class name ends by '\' */ if (!classNameEnd) /* or the whole string */ { classNameEnd = lpClassCopy + strlen(lpClassCopy); if (classNameEnd[-1] == ']') { classNameEnd--; } } *classNameEnd = '\0'; /* Isolate the class name */ if (lpClassCopy[0] == '[') { classNameBeg = lpClassCopy + 1; } else { classNameBeg = lpClassCopy; } for (i = 0; i < REG_CLASS_NUMBER; i++) { if (!strcmp(classNameBeg, reg_class_names[i])) { *hkey = reg_class_keys[i]; return TRUE; } } return FALSE; } /****************************************************************************** * Close the currently opened key. */ void closeKey(void) { RegCloseKey(currentKeyHandle); HeapFree(GetProcessHeap(), 0, currentKeyName); /* Allocated by getKeyName */ bTheKeyIsOpen = FALSE; currentKeyName = NULL; currentKeyClass = 0; currentKeyHandle = 0; } /****************************************************************************** * This function is the main entry point to the setValue type of action. It * receives the currently read line and dispatch the work depending on the * context. */ void doSetValue(LPSTR stdInput) { /* * We encountered the end of the file, make sure we * close the opened key and exit */ if (stdInput == NULL) { if (bTheKeyIsOpen != FALSE) closeKey(); return; } if ( stdInput[0] == '[') /* We are reading a new key */ { if ( bTheKeyIsOpen != FALSE ) closeKey(); /* Close the previous key before */ /* delete the key if we encounter '-' at the start of reg key */ if ( stdInput[1] == '-') { int last_chr = strlen(stdInput) - 1; /* skip leading "[-" and get rid of trailing "]" */ if (stdInput[last_chr] == ']') stdInput[last_chr] = '\0'; delete_registry_key(stdInput+2); return; } if ( openKey(stdInput) != ERROR_SUCCESS ) fprintf(stderr,"%s: setValue failed to open key %s\n", getAppName(), stdInput); } else if( ( bTheKeyIsOpen ) && (( stdInput[0] == '@') || /* reading a default @=data pair */ ( stdInput[0] == '\"'))) /* reading a new value=data pair */ { processSetValue(stdInput); } else /* since we are assuming that the */ { /* file format is valid we must */ if ( bTheKeyIsOpen ) /* be reading a blank line which */ closeKey(); /* indicate end of this key processing */ } } /****************************************************************************** * This function is the main entry point to the deleteValue type of action. It * receives the currently read line and dispatch the work depending on the * context. */ void doDeleteValue(LPSTR line) { UNREFERENCED_PARAMETER(line); fprintf(stderr,"%s: deleteValue not yet implemented\n", getAppName()); } /****************************************************************************** * This function is the main entry point to the deleteKey type of action. It * receives the currently read line and dispatch the work depending on the * context. */ void doDeleteKey(LPSTR line) { UNREFERENCED_PARAMETER(line); fprintf(stderr,"%s: deleteKey not yet implemented\n", getAppName()); } /****************************************************************************** * This function is the main entry point to the createKey type of action. It * receives the currently read line and dispatch the work depending on the * context. */ void doCreateKey(LPSTR line) { UNREFERENCED_PARAMETER(line); fprintf(stderr,"%s: createKey not yet implemented\n", getAppName()); } /****************************************************************************** * This function is a wrapper for the setValue function. It prepares the * land and clean the area once completed. * Note: this function modifies the line parameter. * * line - registry file unwrapped line. Should have the registry value name and * complete registry value data. */ void processSetValue(LPSTR line) { LPSTR val_name; /* registry value name */ LPSTR val_data; /* registry value data */ int line_idx = 0; /* current character under analysis */ LONG res; /* get value name */ if (line[line_idx] == '@' && line[line_idx + 1] == '=') { line[line_idx] = '\0'; val_name = line; line_idx++; } else if (line[line_idx] == '\"') { line_idx++; val_name = line + line_idx; while (TRUE) { /* check if the line is unterminated (otherwise it may loop forever!) */ if (line[line_idx] == '\0') { fprintf(stderr,"Warning! unrecognized line:\n%s\n", line); return; } else if (line[line_idx] == '\\') /* skip escaped character */ { line_idx += 2; } else { if (line[line_idx] == '\"') { line[line_idx] = '\0'; line_idx++; break; } else { line_idx++; } } } if (line[line_idx] != '=') { line[line_idx] = '\"'; fprintf(stderr,"Warning! unrecognized line:\n%s\n", line); return; } } else { fprintf(stderr,"Warning! unrecognized line:\n%s\n", line); return; } line_idx++; /* skip the '=' character */ val_data = line + line_idx; REGPROC_unescape_string(val_name); res = setValue(val_name, val_data); if ( res != ERROR_SUCCESS ) fprintf(stderr,"%s: ERROR Key %s not created. Value: %s, Data: %s\n", getAppName(), currentKeyName, val_name, val_data); } /****************************************************************************** * Calls command for each line of a registry file. * Correctly processes comments (in # form), line continuation. * * Parameters: * in - input stream to read from * command - command to be called for each line */ void processRegLines(FILE *in, CommandAPI command) { LPSTR line = NULL; /* line read from input stream */ size_t lineSize = REG_VAL_BUF_SIZE; line = HeapAlloc(GetProcessHeap(), 0, lineSize); CHECK_ENOUGH_MEMORY(line); while (!feof(in)) { LPSTR s; /* The pointer into line for where the current fgets should read */ s = line; for (;;) { size_t size_remaining; int size_to_get; char *s_eol; /* various local uses */ /* Do we need to expand the buffer ? */ assert (s >= line && s <= line + lineSize); size_remaining = lineSize - (s-line); if (size_remaining < 2) /* room for 1 character and the \0 */ { char *new_buffer; size_t new_size = lineSize + REG_VAL_BUF_SIZE; if (new_size > lineSize) /* no arithmetic overflow */ new_buffer = HeapReAlloc (GetProcessHeap(), 0, line, new_size); else new_buffer = NULL; CHECK_ENOUGH_MEMORY(new_buffer); line = new_buffer; s = line + lineSize - size_remaining; lineSize = new_size; size_remaining = lineSize - (s-line); } /* Get as much as possible into the buffer, terminated either by * eof, error, eol or getting the maximum amount. Abort on error. */ size_to_get = (int) (size_remaining > INT_MAX ? INT_MAX : size_remaining); if (NULL == fgets (s, size_to_get, in)) { if (ferror(in)) { perror ("While reading input"); exit (IO_ERROR); } else { assert (feof(in)); *s = '\0'; /* It is not clear to me from the definition that the * contents of the buffer are well defined on detecting * an eof without managing to read anything. */ } } /* If we didn't read the eol nor the eof go around for the rest */ s_eol = strchr (s, '\n'); if (!feof (in) && !s_eol) { s = strchr (s, '\0'); /* It should be s + size_to_get - 1 but this is safer */ continue; } /* If it is a comment line then discard it and go around again */ if (line [0] == '#') { s = line; continue; } /* Remove any line feed. Leave s_eol on the \0 */ if (s_eol) { *s_eol = '\0'; if (s_eol > line && *(s_eol-1) == '\r') *--s_eol = '\0'; } else s_eol = strchr (s, '\0'); /* If there is a concatenating \\ then go around again */ if (s_eol > line && *(s_eol-1) == '\\') { int c; s = s_eol-1; /* The following error protection could be made more self- * correcting but I thought it not worth trying. */ if ((c = fgetc (in)) == EOF || c != ' ' || (c = fgetc (in)) == EOF || c != ' ') fprintf(stderr,"%s: ERROR - invalid continuation.\n", getAppName()); continue; } break; /* That is the full virtual line */ } command(line); } command(NULL); HeapFree(GetProcessHeap(), 0, line); } /****************************************************************************** * This function is the main entry point to the registerDLL action. It * receives the currently read line, then loads and registers the requested DLLs */ void doRegisterDLL(LPSTR stdInput) { HMODULE theLib = 0; UINT retVal = 0; /* Check for valid input */ if (stdInput == NULL) return; /* Load and register the library, then free it */ theLib = LoadLibraryA(stdInput); if (theLib) { FARPROC lpfnDLLRegProc = GetProcAddress(theLib, "DllRegisterServer"); if (lpfnDLLRegProc) retVal = (*lpfnDLLRegProc)(); else fprintf(stderr,"%s: Couldn't find DllRegisterServer proc in '%s'.\n", getAppName(), stdInput); if (retVal != S_OK) fprintf(stderr,"%s: DLLRegisterServer error 0x%x in '%s'.\n", getAppName(), retVal, stdInput); FreeLibrary(theLib); } else { fprintf(stderr,"%s: Could not load DLL '%s'.\n", getAppName(), stdInput); } } /****************************************************************************** * This function is the main entry point to the unregisterDLL action. It * receives the currently read line, then loads and unregisters the requested DLLs */ void doUnregisterDLL(LPSTR stdInput) { HMODULE theLib = 0; UINT retVal = 0; /* Check for valid input */ if (stdInput == NULL) return; /* Load and unregister the library, then free it */ theLib = LoadLibraryA(stdInput); if (theLib) { FARPROC lpfnDLLRegProc = GetProcAddress(theLib, "DllUnregisterServer"); if (lpfnDLLRegProc) retVal = (*lpfnDLLRegProc)(); else fprintf(stderr,"%s: Couldn't find DllUnregisterServer proc in '%s'.\n", getAppName(), stdInput); if (retVal != S_OK) fprintf(stderr,"%s: DLLUnregisterServer error 0x%x in '%s'.\n", getAppName(), retVal, stdInput); FreeLibrary(theLib); } else { fprintf(stderr,"%s: Could not load DLL '%s'.\n", getAppName(), stdInput); } } /**************************************************************************** * REGPROC_print_error * * Print the message for GetLastError */ static void REGPROC_print_error(void) { LPVOID lpMsgBuf; DWORD error_code; int status; error_code = GetLastError (); status = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, NULL, error_code, 0, (LPTSTR) &lpMsgBuf, 0, NULL); if (!status) { fprintf(stderr,"%s: Cannot display message for error %ld, status %ld\n", getAppName(), error_code, GetLastError()); exit(1); } puts(lpMsgBuf); LocalFree((HLOCAL)lpMsgBuf); exit(1); } /****************************************************************************** * Checks whether the buffer has enough room for the string or required size. * Resizes the buffer if necessary. * * Parameters: * buffer - pointer to a buffer for string * len - current length of the buffer in characters. * required_len - length of the string to place to the buffer in characters. * The length does not include the terminating null character. */ static void REGPROC_resize_char_buffer(CHAR **buffer, DWORD *len, DWORD required_len) { required_len++; if (required_len > *len) { *len = required_len; if (!*buffer) *buffer = HeapAlloc(GetProcessHeap(), 0, *len * sizeof(**buffer)); else *buffer = HeapReAlloc(GetProcessHeap(), 0, *buffer, *len * sizeof(**buffer)); CHECK_ENOUGH_MEMORY(*buffer); } } /****************************************************************************** * Prints string str to file */ static void REGPROC_export_string(FILE *file, CHAR *str) { size_t len = strlen(str); size_t i; /* escaping characters */ for (i = 0; i < len; i++) { CHAR c = str[i]; switch (c) { case '\\': fputs("\\\\", file); break; case '\"': fputs("\\\"", file); break; case '\n': fputs("\\\n", file); break; default: fputc(c, file); break; } } } /****************************************************************************** * Writes contents of the registry key to the specified file stream. * * Parameters: * file - writable file stream to export registry branch to. * key - registry branch to export. * reg_key_name_buf - name of the key with registry class. * Is resized if necessary. * reg_key_name_len - length of the buffer for the registry class in characters. * val_name_buf - buffer for storing value name. * Is resized if necessary. * val_name_len - length of the buffer for storing value names in characters. * val_buf - buffer for storing values while extracting. * Is resized if necessary. * val_size - size of the buffer for storing values in bytes. */ static void export_hkey(FILE *file, HKEY key, CHAR **reg_key_name_buf, DWORD *reg_key_name_len, CHAR **val_name_buf, DWORD *val_name_len, BYTE **val_buf, DWORD *val_size) { DWORD max_sub_key_len; DWORD max_val_name_len; DWORD max_val_size; DWORD curr_len; DWORD i; BOOL more_data; LONG ret; /* get size information and resize the buffers if necessary */ if (RegQueryInfoKey(key, NULL, NULL, NULL, NULL, &max_sub_key_len, NULL, NULL, &max_val_name_len, &max_val_size, NULL, NULL ) != ERROR_SUCCESS) { REGPROC_print_error(); } curr_len = (DWORD) strlen(*reg_key_name_buf); REGPROC_resize_char_buffer(reg_key_name_buf, reg_key_name_len, max_sub_key_len + curr_len + 1); REGPROC_resize_char_buffer(val_name_buf, val_name_len, max_val_name_len); if (max_val_size > *val_size) { *val_size = max_val_size; if (!*val_buf) *val_buf = HeapAlloc(GetProcessHeap(), 0, *val_size); else *val_buf = HeapReAlloc(GetProcessHeap(), 0, *val_buf, *val_size); CHECK_ENOUGH_MEMORY(val_buf); } /* output data for the current key */ fputs("\n[", file); fputs(*reg_key_name_buf, file); fputs("]\n", file); /* print all the values */ i = 0; more_data = TRUE; while(more_data) { DWORD value_type; DWORD val_name_len1 = *val_name_len; DWORD val_size1 = *val_size; ret = RegEnumValueA(key, i, *val_name_buf, &val_name_len1, NULL, &value_type, *val_buf, &val_size1); if (ret != ERROR_SUCCESS) { more_data = FALSE; if (ret != ERROR_NO_MORE_ITEMS) { REGPROC_print_error(); } } else { i++; if ((*val_name_buf)[0]) { fputs("\"", file); REGPROC_export_string(file, *val_name_buf); fputs("\"=", file); } else { fputs("@=", file); } switch (value_type) { case REG_SZ: case REG_EXPAND_SZ: fputs("\"", file); REGPROC_export_string(file, (char*) *val_buf); fputs("\"\n", file); break; case REG_DWORD: fprintf(file, "dword:%08lx\n", *((DWORD *)*val_buf)); break; default: fprintf(stderr,"%s: warning - unsupported registry format '%ld', " "treat as binary\n", getAppName(), value_type); fprintf(stderr,"key name: \"%s\"\n", *reg_key_name_buf); fprintf(stderr,"value name:\"%s\"\n\n", *val_name_buf); /* falls through */ case REG_MULTI_SZ: /* falls through */ case REG_BINARY: { DWORD i1; const CHAR *hex_prefix; CHAR buf[20]; int cur_pos; if (value_type == REG_BINARY) { hex_prefix = "hex:"; } else { hex_prefix = buf; sprintf(buf, "hex(%ld):", value_type); } /* position of where the next character will be printed */ /* NOTE: yes, strlen("hex:") is used even for hex(x): */ cur_pos = (int) (strlen("\"\"=") + strlen("hex:") + strlen(*val_name_buf)); fputs(hex_prefix, file); for (i1 = 0; i1 < val_size1; i1++) { fprintf(file, "%02x", (unsigned int)(*val_buf)[i1]); if (i1 + 1 < val_size1) { fputs(",", file); } cur_pos += 3; /* wrap the line */ if (cur_pos > REG_FILE_HEX_LINE_LEN) { fputs("\\\n ", file); cur_pos = 2; } } fputs("\n", file); break; } } } } i = 0; more_data = TRUE; (*reg_key_name_buf)[curr_len] = '\\'; while(more_data) { DWORD buf_len = *reg_key_name_len - curr_len; ret = RegEnumKeyExA(key, i, *reg_key_name_buf + curr_len + 1, &buf_len, NULL, NULL, NULL, NULL); if (ret != ERROR_SUCCESS && ret != ERROR_MORE_DATA) { more_data = FALSE; if (ret != ERROR_NO_MORE_ITEMS) { REGPROC_print_error(); } } else { HKEY subkey; i++; if (RegOpenKeyA(key, *reg_key_name_buf + curr_len + 1, &subkey) == ERROR_SUCCESS) { export_hkey(file, subkey, reg_key_name_buf, reg_key_name_len, val_name_buf, val_name_len, val_buf, val_size); RegCloseKey(subkey); } else { REGPROC_print_error(); } } } (*reg_key_name_buf)[curr_len] = '\0'; } /****************************************************************************** * Open file for export. */ static FILE *REGPROC_open_export_file(const TCHAR *file_name) { FILE *file = _tfopen(file_name, _T("w")); if (!file) { perror(""); /* fprintf(stderr,"%s: Can't open file \"%s\"\n", getAppName(), file_name);*/ exit(1); } fputs("REGEDIT4\n", file); return file; } /****************************************************************************** * Writes contents of the registry key to the specified file stream. * * Parameters: * file_name - name of a file to export registry branch to. * reg_key_name - registry branch to export. The whole registry is exported if * reg_key_name is NULL or contains an empty string. */ BOOL export_registry_key(const TCHAR *file_name, CHAR *reg_key_name) { HKEY reg_key_class; CHAR *reg_key_name_buf; CHAR *val_name_buf; BYTE *val_buf; DWORD reg_key_name_len = KEY_MAX_LEN; DWORD val_name_len = KEY_MAX_LEN; DWORD val_size = REG_VAL_BUF_SIZE; FILE *file = NULL; reg_key_name_buf = HeapAlloc(GetProcessHeap(), 0, reg_key_name_len * sizeof(*reg_key_name_buf)); val_name_buf = HeapAlloc(GetProcessHeap(), 0, val_name_len * sizeof(*val_name_buf)); val_buf = HeapAlloc(GetProcessHeap(), 0, val_size); CHECK_ENOUGH_MEMORY(reg_key_name_buf && val_name_buf && val_buf); if (reg_key_name && reg_key_name[0]) { CHAR *branch_name; HKEY key; REGPROC_resize_char_buffer(®_key_name_buf, ®_key_name_len, (DWORD) strlen(reg_key_name)); strcpy(reg_key_name_buf, reg_key_name); /* open the specified key */ if (!getRegClass(reg_key_name, ®_key_class)) { fprintf(stderr,"%s: Incorrect registry class specification in '%s'\n", getAppName(), reg_key_name); exit(1); } branch_name = getRegKeyName(reg_key_name); CHECK_ENOUGH_MEMORY(branch_name); if (!branch_name[0]) { /* no branch - registry class is specified */ file = REGPROC_open_export_file(file_name); export_hkey(file, reg_key_class, ®_key_name_buf, ®_key_name_len, &val_name_buf, &val_name_len, &val_buf, &val_size); } else if (RegOpenKeyA(reg_key_class, branch_name, &key) == ERROR_SUCCESS) { file = REGPROC_open_export_file(file_name); export_hkey(file, key, ®_key_name_buf, ®_key_name_len, &val_name_buf, &val_name_len, &val_buf, &val_size); RegCloseKey(key); } else { fprintf(stderr,"%s: Can't export. Registry key '%s' does not exist!\n", getAppName(), reg_key_name); REGPROC_print_error(); } HeapFree(GetProcessHeap(), 0, branch_name); } else { unsigned int i; /* export all registry classes */ file = REGPROC_open_export_file(file_name); for (i = 0; i < REG_CLASS_NUMBER; i++) { /* do not export HKEY_CLASSES_ROOT */ if (reg_class_keys[i] != HKEY_CLASSES_ROOT && reg_class_keys[i] != HKEY_CURRENT_USER && reg_class_keys[i] != HKEY_CURRENT_CONFIG && reg_class_keys[i] != HKEY_DYN_DATA) { strcpy(reg_key_name_buf, reg_class_names[i]); export_hkey(file, reg_class_keys[i], ®_key_name_buf, ®_key_name_len, &val_name_buf, &val_name_len, &val_buf, &val_size); } } } if (file) { fclose(file); } HeapFree(GetProcessHeap(), 0, val_buf); return TRUE; } /****************************************************************************** * Reads contents of the specified file into the registry. */ BOOL import_registry_file(LPTSTR filename) { FILE* reg_file = _tfopen(filename, _T("r")); if (reg_file) { unsigned char ch1 = fgetc(reg_file); unsigned char ch2 = fgetc(reg_file); /* detect UTF-16.LE or UTF-16.BE format */ if ((ch1 == 0xff && ch2 == 0xfe) || (ch1 == 0xfe && ch2 == 0xff)) { /* TODO: implement support for UNICODE files! */ } else { /* restore read point to the first line */ fseek(reg_file, 0L, SEEK_SET); processRegLines(reg_file, doSetValue); } fclose(reg_file); return TRUE; } return FALSE; } /****************************************************************************** * Recursive function which removes the registry key with all subkeys. */ static void delete_branch(HKEY key, CHAR **reg_key_name_buf, DWORD *reg_key_name_len) { HKEY branch_key; DWORD max_sub_key_len; DWORD subkeys; DWORD curr_len; LONG ret; long int i; if (RegOpenKeyA(key, *reg_key_name_buf, &branch_key) != ERROR_SUCCESS) { REGPROC_print_error(); } /* get size information and resize the buffers if necessary */ if (RegQueryInfoKey(branch_key, NULL, NULL, NULL, &subkeys, &max_sub_key_len, NULL, NULL, NULL, NULL, NULL, NULL ) != ERROR_SUCCESS) { REGPROC_print_error(); } curr_len = (DWORD) strlen(*reg_key_name_buf); REGPROC_resize_char_buffer(reg_key_name_buf, reg_key_name_len, max_sub_key_len + curr_len + 1); (*reg_key_name_buf)[curr_len] = '\\'; for (i = subkeys - 1; i >= 0; i--) { DWORD buf_len = *reg_key_name_len - curr_len; ret = RegEnumKeyExA(branch_key, i, *reg_key_name_buf + curr_len + 1, &buf_len, NULL, NULL, NULL, NULL); if (ret != ERROR_SUCCESS && ret != ERROR_MORE_DATA && ret != ERROR_NO_MORE_ITEMS) { REGPROC_print_error(); } else { delete_branch(key, reg_key_name_buf, reg_key_name_len); } } (*reg_key_name_buf)[curr_len] = '\0'; RegCloseKey(branch_key); RegDeleteKeyA(key, *reg_key_name_buf); } /****************************************************************************** * Removes the registry key with all subkeys. Parses full key name. * * Parameters: * reg_key_name - full name of registry branch to delete. Ignored if is NULL, * empty, points to register key class, does not exist. */ void delete_registry_key(CHAR *reg_key_name) { CHAR *branch_name; DWORD branch_name_len; HKEY reg_key_class; HKEY branch_key; if (!reg_key_name || !reg_key_name[0]) return; /* open the specified key */ if (!getRegClass(reg_key_name, ®_key_class)) { fprintf(stderr,"%s: Incorrect registry class specification in '%s'\n", getAppName(), reg_key_name); exit(1); } branch_name = getRegKeyName(reg_key_name); CHECK_ENOUGH_MEMORY(branch_name); branch_name_len = (DWORD) strlen(branch_name); if (!branch_name[0]) { fprintf(stderr,"%s: Can't delete registry class '%s'\n", getAppName(), reg_key_name); exit(1); } if (RegOpenKeyA(reg_key_class, branch_name, &branch_key) == ERROR_SUCCESS) { /* check whether the key exists */ RegCloseKey(branch_key); delete_branch(reg_key_class, &branch_name, &branch_name_len); } HeapFree(GetProcessHeap(), 0, branch_name); } /****************************************************************************** * Sets the application name. Then application name is used in the error * reporting. */ void setAppName(const CHAR *name) { app_name = name; } const CHAR *getAppName(void) { return app_name; } LONG RegCopyKey(HKEY hDestKey, LPCTSTR lpDestSubKey, HKEY hSrcKey, LPCTSTR lpSrcSubKey) { LONG lResult; DWORD dwDisposition; HKEY hDestSubKey = NULL; HKEY hSrcSubKey = NULL; DWORD dwIndex, dwType, cbName, cbData; TCHAR szSubKey[256]; TCHAR szValueName[256]; BYTE szValueData[512]; FILETIME ft; /* open the source subkey, if specified */ if (lpSrcSubKey) { lResult = RegOpenKeyEx(hSrcKey, lpSrcSubKey, 0, KEY_ALL_ACCESS, &hSrcSubKey); if (lResult) goto done; hSrcKey = hSrcSubKey; } /* create the destination subkey */ lResult = RegCreateKeyEx(hDestKey, lpDestSubKey, 0, NULL, 0, KEY_WRITE, NULL, &hDestSubKey, &dwDisposition); if (lResult) goto done; /* copy all subkeys */ dwIndex = 0; do { cbName = sizeof(szSubKey) / sizeof(szSubKey[0]); lResult = RegEnumKeyEx(hSrcKey, dwIndex++, szSubKey, &cbName, NULL, NULL, NULL, &ft); if (lResult == ERROR_SUCCESS) { lResult = RegCopyKey(hDestSubKey, szSubKey, hSrcKey, szSubKey); if (lResult) goto done; } } while(lResult == ERROR_SUCCESS); /* copy all subvalues */ dwIndex = 0; do { cbName = sizeof(szValueName) / sizeof(szValueName[0]); cbData = sizeof(szValueData) / sizeof(szValueData[0]); lResult = RegEnumValue(hSrcKey, dwIndex++, szValueName, &cbName, NULL, &dwType, szValueData, &cbData); if (lResult == ERROR_SUCCESS) { lResult = RegSetValueEx(hDestSubKey, szValueName, 0, dwType, szValueData, cbData); if (lResult) goto done; } } while(lResult == ERROR_SUCCESS); lResult = ERROR_SUCCESS; done: if (hSrcSubKey) RegCloseKey(hSrcSubKey); if (hDestSubKey) RegCloseKey(hDestSubKey); if (lResult != ERROR_SUCCESS) SHDeleteKey(hDestKey, lpDestSubKey); return lResult; } LONG RegMoveKey(HKEY hDestKey, LPCTSTR lpDestSubKey, HKEY hSrcKey, LPCTSTR lpSrcSubKey) { LONG lResult; if (!lpSrcSubKey) return ERROR_INVALID_FUNCTION; lResult = RegCopyKey(hDestKey, lpDestSubKey, hSrcKey, lpSrcSubKey); if (lResult == ERROR_SUCCESS) SHDeleteKey(hSrcKey, lpSrcSubKey); return lResult; } LONG RegRenameKey(HKEY hKey, LPCTSTR lpSubKey, LPCTSTR lpNewName) { LPCTSTR s; LPTSTR lpNewSubKey = NULL; LONG Ret = 0; if (!lpSubKey) return Ret; s = _tcsrchr(lpSubKey, _T('\\')); if (s) { s++; lpNewSubKey = (LPTSTR) HeapAlloc(GetProcessHeap(), 0, (s - lpSubKey + _tcslen(lpNewName) + 1) * sizeof(TCHAR)); if (lpNewSubKey != NULL) { memcpy(lpNewSubKey, lpSubKey, (s - lpSubKey) * sizeof(TCHAR)); _tcscpy(lpNewSubKey + (s - lpSubKey), lpNewName); lpNewName = lpNewSubKey; } else return ERROR_NOT_ENOUGH_MEMORY; } Ret = RegMoveKey(hKey, lpNewName, hKey, lpSubKey); if (lpNewSubKey) { HeapFree(GetProcessHeap(), 0, lpNewSubKey); } return Ret; } LONG RegRenameValue(HKEY hKey, LPCTSTR lpSubKey, LPCTSTR lpDestValue, LPCTSTR lpSrcValue) { LONG lResult; HKEY hSubKey = NULL; DWORD dwType, cbData; BYTE data[512]; if (lpSubKey) { lResult = RegOpenKey(hKey, lpSubKey, &hSubKey); if (lResult != ERROR_SUCCESS) goto done; hKey = hSubKey; } cbData = sizeof(data); lResult = RegQueryValueEx(hKey, lpSrcValue, NULL, &dwType, data, &cbData); if (lResult != ERROR_SUCCESS) goto done; lResult = RegSetValueEx(hKey, lpDestValue, 0, dwType, data, cbData); if (lResult != ERROR_SUCCESS) goto done; RegDeleteValue(hKey, lpSrcValue); done: if (hSubKey) RegCloseKey(hSubKey); return lResult; } LONG RegQueryStringValue(HKEY hKey, LPCTSTR lpSubKey, LPCTSTR lpValueName, LPTSTR pszBuffer, DWORD dwBufferLen) { LONG lResult; HKEY hSubKey = NULL; DWORD cbData, dwType; if (lpSubKey) { lResult = RegOpenKey(hKey, lpSubKey, &hSubKey); if (lResult != ERROR_SUCCESS) goto done; hKey = hSubKey; } cbData = (dwBufferLen - 1) * sizeof(*pszBuffer); lResult = RegQueryValueEx(hKey, lpValueName, NULL, &dwType, (LPBYTE) pszBuffer, &cbData); if (lResult != ERROR_SUCCESS) goto done; if (dwType != REG_SZ) { lResult = -1; goto done; } pszBuffer[cbData / sizeof(*pszBuffer)] = '\0'; done: if (lResult != ERROR_SUCCESS) pszBuffer[0] = '\0'; if (hSubKey) RegCloseKey(hSubKey); return lResult; } /****************************************************************************** * Searching */ static LONG RegNextKey(HKEY hKey, LPTSTR lpSubKey, size_t iSubKeyLength) { LONG lResult; LPTSTR s; LPCTSTR pszOriginalKey; TCHAR szKeyName[256]; HKEY hSubKey, hBaseKey; DWORD dwIndex = 0; DWORD cbName; FILETIME ft; BOOL bFoundKey = FALSE; /* Try accessing a subkey */ if (RegOpenKeyEx(hKey, lpSubKey, 0, KEY_ALL_ACCESS, &hSubKey) == ERROR_SUCCESS) { cbName = (DWORD) iSubKeyLength - _tcslen(lpSubKey) - 1; lResult = RegEnumKeyEx(hSubKey, 0, lpSubKey + _tcslen(lpSubKey) + 1, &cbName, NULL, NULL, NULL, &ft); RegCloseKey(hSubKey); if (lResult == ERROR_SUCCESS) { lpSubKey[_tcslen(lpSubKey)] = '\\'; bFoundKey = TRUE; } } if (!bFoundKey) { /* Go up and find the next sibling key */ do { s = _tcsrchr(lpSubKey, TEXT('\\')); if (s) { *s = '\0'; pszOriginalKey = s + 1; hBaseKey = NULL; RegOpenKeyEx(hKey, lpSubKey, 0, KEY_ALL_ACCESS, &hBaseKey); } else { pszOriginalKey = lpSubKey; hBaseKey = hKey; } if (hBaseKey) { dwIndex = 0; do { lResult = RegEnumKey(hBaseKey, dwIndex++, szKeyName, sizeof(szKeyName) / sizeof(szKeyName[0])); } while((lResult == ERROR_SUCCESS) && _tcscmp(szKeyName, pszOriginalKey)); if (lResult == ERROR_SUCCESS) { lResult = RegEnumKey(hBaseKey, dwIndex++, szKeyName, sizeof(szKeyName) / sizeof(szKeyName[0])); if (lResult == ERROR_SUCCESS) { bFoundKey = TRUE; _sntprintf(lpSubKey + _tcslen(lpSubKey), iSubKeyLength - _tcslen(lpSubKey), _T("\\%s"), szKeyName); } } RegCloseKey(hBaseKey); } } while(!bFoundKey); } return bFoundKey ? ERROR_SUCCESS : ERROR_NO_MORE_ITEMS; } static BOOL RegSearchCompare(LPCTSTR s1, LPCTSTR s2, DWORD dwSearchFlags) { BOOL bResult; if (dwSearchFlags & RSF_WHOLESTRING) { if (dwSearchFlags & RSF_MATCHCASE) bResult = !_tcscmp(s1, s2); else bResult = !_tcsicmp(s1, s2); } else { if (dwSearchFlags & RSF_MATCHCASE) bResult = (_tcsstr(s1, s2) != NULL); else { /* My kingdom for _tcsistr() */ bResult = FALSE; while(*s1) { if (!_tcsnicmp(s1, s2, _tcslen(s2))) { bResult = TRUE; break; } s1++; } } } return bResult; } LONG RegSearch(HKEY hKey, LPTSTR lpSubKey, size_t iSubKeyLength, LPCTSTR pszSearchString, DWORD dwValueIndex, DWORD dwSearchFlags, BOOL (*pfnCallback)(LPVOID), LPVOID lpParam) { LONG lResult; LPCTSTR s; UNREFERENCED_PARAMETER(dwValueIndex); if (dwSearchFlags & (RSF_LOOKATVALUES | RSF_LOOKATDATA)) return ERROR_CALL_NOT_IMPLEMENTED; /* NYI */ do { if (pfnCallback) { if (pfnCallback(lpParam)) return ERROR_OPERATION_ABORTED; } lResult = RegNextKey(hKey, lpSubKey, iSubKeyLength); if (lResult != ERROR_SUCCESS) return lResult; s = _tcsrchr(lpSubKey, TEXT('\\')); s = s ? s + 1 : lpSubKey; } while(!(dwSearchFlags & RSF_LOOKATKEYS) || !RegSearchCompare(s, pszSearchString, dwSearchFlags)); return ERROR_SUCCESS; } /****************************************************************************** * Key naming and parsing */ BOOL RegKeyGetName(LPTSTR pszDest, size_t iDestLength, HKEY hRootKey, LPCTSTR lpSubKey) { LPCTSTR pszRootKey; if (hRootKey == HKEY_CLASSES_ROOT) pszRootKey = TEXT("HKEY_CLASSES_ROOT"); else if (hRootKey == HKEY_CURRENT_USER) pszRootKey = TEXT("HKEY_CURRENT_USER"); else if (hRootKey == HKEY_LOCAL_MACHINE) pszRootKey = TEXT("HKEY_LOCAL_MACHINE"); else if (hRootKey == HKEY_USERS) pszRootKey = TEXT("HKEY_USERS"); else if (hRootKey == HKEY_CURRENT_CONFIG) pszRootKey = TEXT("HKEY_CURRENT_CONFIG"); else if (hRootKey == HKEY_DYN_DATA) pszRootKey = TEXT("HKEY_DYN_DATA"); else return FALSE; if (lpSubKey[0]) _sntprintf(pszDest, iDestLength, TEXT("%s\\%s"), pszRootKey, lpSubKey); else _sntprintf(pszDest, iDestLength, TEXT("%s"), pszRootKey); return TRUE; }