/* * Copyright (c) 2003 * Francois Dumont * * This material is provided "as is", with absolutely no warranty expressed * or implied. Any use is at your own risk. * * Permission to use or copy this software for any purpose is hereby granted * without fee, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef _STLP_POINTERS_SPEC_TOOLS_H #define _STLP_POINTERS_SPEC_TOOLS_H #ifndef _STLP_TYPE_TRAITS_H # include #endif _STLP_BEGIN_NAMESPACE //Some usefull declarations: template struct less; _STLP_MOVE_TO_PRIV_NAMESPACE template struct _BinaryPredWrapper; /* * Since the compiler only allows at most one non-trivial * implicit conversion we can make use of a shim class to * be sure that functions below doesn't accept classes with * implicit pointer conversion operators */ struct _VoidPointerShim { _VoidPointerShim(void*); }; struct _ConstVoidPointerShim { _ConstVoidPointerShim(const void*); }; struct _VolatileVoidPointerShim { _VolatileVoidPointerShim(volatile void*); }; struct _ConstVolatileVoidPointerShim { _ConstVolatileVoidPointerShim(const volatile void*); }; //The dispatch functions: template char _UseVoidPtrStorageType(const __false_type& /*POD*/, const _Tp&); char _UseVoidPtrStorageType(const __true_type& /*POD*/, ...); char* _UseVoidPtrStorageType(const __true_type& /*POD*/, _VoidPointerShim); template char _UseConstVoidPtrStorageType(const __false_type& /*POD*/, const _Tp&); char _UseConstVoidPtrStorageType(const __true_type& /*POD*/, ...); char* _UseConstVoidPtrStorageType(const __true_type& /*POD*/, _ConstVoidPointerShim); template char _UseVolatileVoidPtrStorageType(const __false_type& /*POD*/, const _Tp&); char _UseVolatileVoidPtrStorageType(const __true_type& /*POD*/, ...); char* _UseVolatileVoidPtrStorageType(const __true_type& /*POD*/, _VolatileVoidPointerShim); template char _UseConstVolatileVoidPtrStorageType(const __false_type& /*POD*/, const _Tp&); char _UseConstVolatileVoidPtrStorageType(const __true_type& /*POD*/, ...); char* _UseConstVolatileVoidPtrStorageType(const __true_type& /*POD*/, _ConstVolatileVoidPointerShim); #if defined (_STLP_CLASS_PARTIAL_SPECIALIZATION) /* Thanks to class partial specialization the pointer specialization feature can even be used in * presence of incomplete type: * struct MyStruct { * typedef vector MyStructContainer; * typedef MyStructContainer::iterator MyStructIterator; * }; */ template struct _StorageType { typedef _Tp _QualifiedType; typedef _Tp _Type; enum { use_const_volatile_void_ptr = 0 }; }; template struct _StorageType<_Tp*> { // Even if we detect a pointer type we use dispatch function to consider if it can be stored as a void*. // For instance function pointer might not necessarily be convertible to void*. enum { use_void_ptr = (sizeof(_UseVoidPtrStorageType(__true_type(), __STATIC_CAST(_Tp*, 0))) == sizeof(char*)) }; enum { use_const_volatile_void_ptr = use_void_ptr }; typedef typename __select::_Ret _QualifiedType; typedef _QualifiedType _Type; }; template struct _StorageType<_Tp const*> { enum { use_void_ptr = (sizeof(_UseConstVoidPtrStorageType(__true_type(), __STATIC_CAST(const _Tp*, 0))) == sizeof(char*)) }; enum { use_const_volatile_void_ptr = use_void_ptr }; typedef typename __select::_Ret _QualifiedType; typedef typename __select::_Ret _Type; }; template struct _StorageType<_Tp volatile*> { enum { use_void_ptr = (sizeof(_UseVolatileVoidPtrStorageType(__true_type(), __STATIC_CAST(_Tp volatile*, 0))) == sizeof(char*)) }; enum { use_const_volatile_void_ptr = use_void_ptr }; typedef typename __select::_Ret _QualifiedType; typedef typename __select::_Ret _Type; }; template struct _StorageType<_Tp const volatile*> { enum { use_void_ptr = (sizeof(_UseConstVolatileVoidPtrStorageType(__true_type(), __STATIC_CAST(_Tp const volatile*, 0))) == sizeof(char*)) }; enum { use_const_volatile_void_ptr = use_void_ptr }; typedef typename __select::_Ret _QualifiedType; typedef typename __select::_Ret _Type; }; #else template struct _StorageType { typedef typename __type_traits<_Tp>::is_POD_type _PODType; #if !defined (__BORLANDC__) || (__BORLANDC__ != 0x560) static _Tp __null_rep(); #else static _Tp __null_rep; #endif enum { use_void_ptr = (sizeof(_UseVoidPtrStorageType(_PODType(), __null_rep())) == sizeof(char*)) }; enum { use_const_void_ptr = (sizeof(_UseConstVoidPtrStorageType(_PODType(), __null_rep())) == sizeof(char*)) }; enum { use_volatile_void_ptr = (sizeof(_UseVolatileVoidPtrStorageType(_PODType(), __null_rep())) == sizeof(char*)) }; enum { use_const_volatile_void_ptr = (sizeof(_UseConstVolatileVoidPtrStorageType(_PODType(), __null_rep())) == sizeof(char*)) }; typedef typename __select::_Ret >::_Ret >::_Ret >::_Ret _QualifiedType; #if !defined (_STLP_CLASS_PARTIAL_SPECIALIZATION) /* If the compiler do not support the iterator_traits structure we cannot wrap * iterators pass to container template methods. The iterator dereferenced value * has to be storable without any cast in the chosen storage type. To guaranty * that the void pointer has to be correctly qualified. */ typedef _QualifiedType _Type; #else /* With iterator_traits we can wrap passed iterators and make the necessary casts. * We can always use a simple void* storage type: */ typedef typename __select::_Ret _Type; #endif }; #endif template struct _AssocStorageTypes { typedef _StorageType<_Tp> _StorageTypeInfo; typedef typename _StorageTypeInfo::_Type _SType; //We need to also check that the comparison functor used to instanciate the assoc container //is the default Standard less implementation: enum { ptr_type = _StorageTypeInfo::use_const_volatile_void_ptr }; typedef typename _IsSTLportClass<_Compare>::_Ret _STLportLess; enum { is_default_less = __type2bool<_STLportLess>::_Ret }; typedef typename __select::_Ret _KeyStorageType; typedef typename __select, _Compare>::_Ret _CompareStorageType; }; #if defined (_STLP_CLASS_PARTIAL_SPECIALIZATION) /* * Base struct to deal with qualifiers */ template struct _VoidCastTraitsAux { typedef _QualifiedStorageT void_cv_type; typedef _StorageT void_type; static void_type * uncv_ptr(void_cv_type *__ptr) { return __ptr; } static void_type const* uncv_cptr(void_cv_type const*__ptr) { return __ptr; } static void_type ** uncv_pptr(void_cv_type **__ptr) { return __ptr; } static void_type & uncv_ref(void_cv_type & __ref) { return __ref; } static void_type const& uncv_cref(void_cv_type const& __ref) { return __ref; } static void_cv_type* cv_ptr(void_type *__ptr) { return __ptr; } static void_cv_type const* cv_cptr(void_type const*__ptr) { return __ptr; } static void_cv_type ** cv_pptr(void_type **__ptr) { return __ptr; } static void_cv_type & cv_ref(void_type & __ref) { return __ref; } static void_cv_type const& cv_cref(void_type const& __ref) { return __ref; } }; template struct _VoidCastTraitsAuxBase { typedef _VoidCVType* void_cv_type; typedef void* void_type; static void_type* uncv_ptr(void_cv_type *__ptr) { return __CONST_CAST(void_type*, __ptr); } static void_type const* uncv_cptr(void_cv_type const*__ptr) { return __CONST_CAST(void_type const*, __ptr); } static void_type** uncv_pptr(void_cv_type **__ptr) { return __CONST_CAST(void_type**, __ptr); } static void_type& uncv_ref(void_cv_type &__ref) { return __CONST_CAST(void_type&, __ref); } static void_type const& uncv_cref(void_cv_type const& __ptr) { return __CONST_CAST(void_type const&, __ptr); } // The reverse versions static void_cv_type * cv_ptr(void_type *__ptr) { return __CONST_CAST(void_cv_type *, __ptr); } static void_cv_type const* cv_cptr(void_type const*__ptr) { return __CONST_CAST(void_cv_type const*, __ptr); } static void_cv_type ** cv_pptr(void_type **__ptr) { return __CONST_CAST(void_cv_type**, __ptr); } static void_cv_type & cv_ref(void_type &__ref) { return __CONST_CAST(void_cv_type &, __ref); } static void_cv_type const& cv_cref(void_type const& __ref) { return __CONST_CAST(void_cv_type const&, __ref); } }; _STLP_TEMPLATE_NULL struct _VoidCastTraitsAux : _VoidCastTraitsAuxBase {}; _STLP_TEMPLATE_NULL struct _VoidCastTraitsAux : _VoidCastTraitsAuxBase {}; _STLP_TEMPLATE_NULL struct _VoidCastTraitsAux : _VoidCastTraitsAuxBase {}; template struct _CastTraits { typedef _ValueT value_type; typedef typename _StorageType<_ValueT>::_QualifiedType _QualifiedStorageT; typedef _VoidCastTraitsAux<_StorageT, _QualifiedStorageT> cv_traits; typedef typename cv_traits::void_type void_type; typedef typename cv_traits::void_cv_type void_cv_type; static value_type * to_value_type_ptr(void_type *__ptr) { return __REINTERPRET_CAST(value_type *, cv_traits::cv_ptr(__ptr)); } static value_type const* to_value_type_cptr(void_type const*__ptr) { return __REINTERPRET_CAST(value_type const*, cv_traits::cv_cptr(__ptr)); } static value_type ** to_value_type_pptr(void_type **__ptr) { return __REINTERPRET_CAST(value_type **, cv_traits::cv_pptr(__ptr)); } static value_type & to_value_type_ref(void_type &__ref) { return __REINTERPRET_CAST(value_type &, cv_traits::cv_ref(__ref)); } static value_type const& to_value_type_cref(void_type const& __ptr) { return __REINTERPRET_CAST(value_type const&, cv_traits::cv_cref(__ptr)); } // Reverse versions static void_type * to_storage_type_ptr(value_type *__ptr) { return cv_traits::uncv_ptr(__REINTERPRET_CAST(void_cv_type *, __ptr)); } static void_type const* to_storage_type_cptr(value_type const*__ptr) { return cv_traits::uncv_cptr(__REINTERPRET_CAST(void_cv_type const*, __ptr)); } static void_type ** to_storage_type_pptr(value_type **__ptr) { return cv_traits::uncv_pptr(__REINTERPRET_CAST(void_cv_type **, __ptr)); } static void_type const& to_storage_type_cref(value_type const& __ref) { return cv_traits::uncv_cref(__REINTERPRET_CAST(void_cv_type const&, __ref)); } //Method used to treat set container template method extension static void_type const& to_storage_type_crefT(value_type const& __ref) { return to_storage_type_cref(__ref); } }; template struct _CastTraits<_Tp, _Tp> { typedef _Tp storage_type; typedef _Tp value_type; static value_type * to_value_type_ptr(storage_type *__ptr) { return __ptr; } static value_type const* to_value_type_cptr(storage_type const*__ptr) { return __ptr; } static value_type ** to_value_type_pptr(storage_type **__ptr) { return __ptr; } static value_type & to_value_type_ref(storage_type &__ref) { return __ref; } static value_type const& to_value_type_cref(storage_type const&__ref) { return __ref; } // Reverse versions static storage_type * to_storage_type_ptr(value_type *__ptr) { return __ptr; } static storage_type const* to_storage_type_cptr(value_type const*__ptr) { return __ptr; } static storage_type ** to_storage_type_pptr(value_type **__ptr) { return __ptr; } static storage_type const& to_storage_type_cref(value_type const& __ref) { return __ref; } //Method used to treat set container template method extension template static _Tp1 const& to_storage_type_crefT(_Tp1 const& __ref) { return __ref; } }; #define _STLP_USE_ITERATOR_WRAPPER template struct _IteWrapper { typedef _CastTraits<_StorageT, _ValueT> cast_traits; typedef iterator_traits<_Iterator> _IteTraits; typedef typename _IteTraits::iterator_category iterator_category; typedef _StorageT value_type; typedef typename _IteTraits::difference_type difference_type; typedef value_type* pointer; typedef value_type const& const_reference; //This wrapper won't be used for input so to avoid surprise //the reference type will be a const reference: typedef const_reference reference; typedef _IteWrapper<_StorageT, _ValueT, _Iterator> _Self; typedef _Self _Ite; _IteWrapper(_Iterator &__ite) : _M_ite(__ite) {} const_reference operator*() const { return cast_traits::to_storage_type_cref(*_M_ite); } _Self& operator= (_Self const& __rhs) { _M_ite = __rhs._M_ite; return *this; } _Self& operator++() { ++_M_ite; return *this; } _Self& operator--() { --_M_ite; return *this; } _Self& operator += (difference_type __offset) { _M_ite += __offset; return *this; } difference_type operator -(_Self const& __other) const { return _M_ite - __other._M_ite; } bool operator == (_Self const& __other) const { return _M_ite == __other._M_ite; } bool operator != (_Self const& __other) const { return _M_ite != __other._M_ite; } bool operator < (_Self const& __rhs) const { return _M_ite < __rhs._M_ite; } private: _Iterator _M_ite; }; template struct _IteWrapper<_Tp, _Tp, _Iterator> { typedef _Iterator _Ite; }; #else /* * In this config the storage type is qualified in respect of the * value_type qualification. Simple reinterpret_cast is enough. */ template struct _CastTraits { typedef _StorageT storage_type; typedef _ValueT value_type; static value_type * to_value_type_ptr(storage_type *__ptr) { return __REINTERPRET_CAST(value_type*, __ptr); } static value_type const* to_value_type_cptr(storage_type const*__ptr) { return __REINTERPRET_CAST(value_type const*, __ptr); } static value_type ** to_value_type_pptr(storage_type **__ptr) { return __REINTERPRET_CAST(value_type **, __ptr); } static value_type & to_value_type_ref(storage_type &__ref) { return __REINTERPRET_CAST(value_type&, __ref); } static value_type const& to_value_type_cref(storage_type const&__ref) { return __REINTERPRET_CAST(value_type const&, __ref); } // Reverse versions static storage_type * to_storage_type_ptr(value_type *__ptr) { return __REINTERPRET_CAST(storage_type*, __ptr); } static storage_type const* to_storage_type_cptr(value_type const*__ptr) { return __REINTERPRET_CAST(storage_type const*, __ptr); } static storage_type ** to_storage_type_pptr(value_type **__ptr) { return __REINTERPRET_CAST(storage_type **, __ptr); } static storage_type const& to_storage_type_cref(value_type const&__ref) { return __REINTERPRET_CAST(storage_type const&, __ref); } template static _Tp1 const& to_storage_type_crefT(_Tp1 const& __ref) { return __ref; } }; #endif //Wrapper functors: template struct _UnaryPredWrapper { typedef _CastTraits<_StorageT, _ValueT> cast_traits; _UnaryPredWrapper (_UnaryPredicate const& __pred) : _M_pred(__pred) {} bool operator () (_StorageT const& __ref) const { return _M_pred(cast_traits::to_value_type_cref(__ref)); } private: _UnaryPredicate _M_pred; }; template struct _BinaryPredWrapper { typedef _CastTraits<_StorageT, _ValueT> cast_traits; _BinaryPredWrapper () {} _BinaryPredWrapper (_BinaryPredicate const& __pred) : _M_pred(__pred) {} _BinaryPredicate get_pred() const { return _M_pred; } bool operator () (_StorageT const& __fst, _StorageT const& __snd) const { return _M_pred(cast_traits::to_value_type_cref(__fst), cast_traits::to_value_type_cref(__snd)); } //Cast operator used to transparently access underlying predicate //in set::key_comp() method operator _BinaryPredicate() const { return _M_pred; } private: _BinaryPredicate _M_pred; }; _STLP_MOVE_TO_STD_NAMESPACE _STLP_END_NAMESPACE #endif /* _STLP_POINTERS_SPEC_TOOLS_H */