/* * RPC transport layer * * Copyright 2001 Ove Kåven, TransGaming Technologies * Copyright 2003 Mike Hearn * Copyright 2004 Filip Navara * Copyright 2006 Mike McCormack * Copyright 2006 Damjan Jovanovic * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA * */ #include "ntstatus.h" #define WIN32_NO_STATUS #ifdef __REACTOS__ #define NONAMELESSUNION #endif #include "ws2tcpip.h" #include #include #include #include #include "windef.h" #include "winbase.h" #include "winnls.h" #include "winerror.h" #include "wininet.h" #include "wine/winternl.h" #include "winioctl.h" #include "rpc.h" #include "rpcndr.h" #include "wine/debug.h" #include "rpc_binding.h" #include "rpc_assoc.h" #include "rpc_message.h" #include "rpc_server.h" #include "epm_towers.h" #define DEFAULT_NCACN_HTTP_TIMEOUT (60 * 1000) WINE_DEFAULT_DEBUG_CHANNEL(rpc); #ifdef __REACTOS__ /* FIXME: Inspect */ BOOL WINAPI CancelIoEx(HANDLE handle, LPOVERLAPPED lpOverlapped) { IO_STATUS_BLOCK io_status; NtCancelIoFile(handle, &io_status); if (io_status.u.Status) { SetLastError( RtlNtStatusToDosError( io_status.u.Status ) ); return FALSE; } return TRUE; } #endif static RpcConnection *rpcrt4_spawn_connection(RpcConnection *old_connection); /**** ncacn_np support ****/ typedef struct _RpcConnection_np { RpcConnection common; HANDLE pipe; HANDLE listen_event; char *listen_pipe; IO_STATUS_BLOCK io_status; HANDLE event_cache; BOOL read_closed; } RpcConnection_np; static RpcConnection *rpcrt4_conn_np_alloc(void) { RpcConnection_np *npc = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(RpcConnection_np)); return &npc->common; } static HANDLE get_np_event(RpcConnection_np *connection) { HANDLE event = InterlockedExchangePointer(&connection->event_cache, NULL); return event ? event : CreateEventW(NULL, TRUE, FALSE, NULL); } static void release_np_event(RpcConnection_np *connection, HANDLE event) { event = InterlockedExchangePointer(&connection->event_cache, event); if (event) CloseHandle(event); } static RPC_STATUS rpcrt4_conn_create_pipe(RpcConnection *conn) { RpcConnection_np *connection = (RpcConnection_np *) conn; TRACE("listening on %s\n", connection->listen_pipe); connection->pipe = CreateNamedPipeA(connection->listen_pipe, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED, PIPE_TYPE_MESSAGE | PIPE_READMODE_MESSAGE, PIPE_UNLIMITED_INSTANCES, RPC_MAX_PACKET_SIZE, RPC_MAX_PACKET_SIZE, 5000, NULL); if (connection->pipe == INVALID_HANDLE_VALUE) { WARN("CreateNamedPipe failed with error %d\n", GetLastError()); if (GetLastError() == ERROR_FILE_EXISTS) return RPC_S_DUPLICATE_ENDPOINT; else return RPC_S_CANT_CREATE_ENDPOINT; } return RPC_S_OK; } static RPC_STATUS rpcrt4_conn_open_pipe(RpcConnection *Connection, LPCSTR pname, BOOL wait) { RpcConnection_np *npc = (RpcConnection_np *) Connection; HANDLE pipe; DWORD err, dwMode; TRACE("connecting to %s\n", pname); while (TRUE) { DWORD dwFlags = 0; if (Connection->QOS) { dwFlags = SECURITY_SQOS_PRESENT; switch (Connection->QOS->qos->ImpersonationType) { case RPC_C_IMP_LEVEL_DEFAULT: /* FIXME: what to do here? */ break; case RPC_C_IMP_LEVEL_ANONYMOUS: dwFlags |= SECURITY_ANONYMOUS; break; case RPC_C_IMP_LEVEL_IDENTIFY: dwFlags |= SECURITY_IDENTIFICATION; break; case RPC_C_IMP_LEVEL_IMPERSONATE: dwFlags |= SECURITY_IMPERSONATION; break; case RPC_C_IMP_LEVEL_DELEGATE: dwFlags |= SECURITY_DELEGATION; break; } if (Connection->QOS->qos->IdentityTracking == RPC_C_QOS_IDENTITY_DYNAMIC) dwFlags |= SECURITY_CONTEXT_TRACKING; } pipe = CreateFileA(pname, GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, dwFlags | FILE_FLAG_OVERLAPPED, 0); if (pipe != INVALID_HANDLE_VALUE) break; err = GetLastError(); if (err == ERROR_PIPE_BUSY) { if (WaitNamedPipeA(pname, NMPWAIT_USE_DEFAULT_WAIT)) { TRACE("retrying busy server\n"); continue; } TRACE("connection failed, error=%x\n", err); return RPC_S_SERVER_TOO_BUSY; } if (!wait || !WaitNamedPipeA(pname, NMPWAIT_WAIT_FOREVER)) { err = GetLastError(); WARN("connection failed, error=%x\n", err); return RPC_S_SERVER_UNAVAILABLE; } } /* success */ /* pipe is connected; change to message-read mode. */ dwMode = PIPE_READMODE_MESSAGE; SetNamedPipeHandleState(pipe, &dwMode, NULL, NULL); npc->pipe = pipe; return RPC_S_OK; } static char *ncalrpc_pipe_name(const char *endpoint) { static const char prefix[] = "\\\\.\\pipe\\lrpc\\"; char *pipe_name; /* protseq=ncalrpc: supposed to use NT LPC ports, * but we'll implement it with named pipes for now */ pipe_name = I_RpcAllocate(sizeof(prefix) + strlen(endpoint)); strcat(strcpy(pipe_name, prefix), endpoint); return pipe_name; } static RPC_STATUS rpcrt4_ncalrpc_open(RpcConnection* Connection) { RpcConnection_np *npc = (RpcConnection_np *) Connection; RPC_STATUS r; LPSTR pname; /* already connected? */ if (npc->pipe) return RPC_S_OK; pname = ncalrpc_pipe_name(Connection->Endpoint); r = rpcrt4_conn_open_pipe(Connection, pname, TRUE); I_RpcFree(pname); return r; } static RPC_STATUS rpcrt4_protseq_ncalrpc_open_endpoint(RpcServerProtseq* protseq, const char *endpoint) { RPC_STATUS r; RpcConnection *Connection; char generated_endpoint[22]; if (!endpoint) { static LONG lrpc_nameless_id; DWORD process_id = GetCurrentProcessId(); ULONG id = InterlockedIncrement(&lrpc_nameless_id); snprintf(generated_endpoint, sizeof(generated_endpoint), "LRPC%08x.%08x", process_id, id); endpoint = generated_endpoint; } r = RPCRT4_CreateConnection(&Connection, TRUE, protseq->Protseq, NULL, endpoint, NULL, NULL, NULL, NULL); if (r != RPC_S_OK) return r; ((RpcConnection_np*)Connection)->listen_pipe = ncalrpc_pipe_name(Connection->Endpoint); r = rpcrt4_conn_create_pipe(Connection); EnterCriticalSection(&protseq->cs); list_add_head(&protseq->listeners, &Connection->protseq_entry); Connection->protseq = protseq; LeaveCriticalSection(&protseq->cs); return r; } #ifdef __REACTOS__ static char *ncacn_pipe_name(const char *server, const char *endpoint) #else static char *ncacn_pipe_name(const char *endpoint) #endif { #ifdef __REACTOS__ static const char prefix[] = "\\\\"; static const char local[] = "."; char ComputerName[MAX_COMPUTERNAME_LENGTH + 1]; #else static const char prefix[] = "\\\\."; #endif char *pipe_name; #ifdef __REACTOS__ DWORD bufLen = ARRAYSIZE(ComputerName); GetComputerNameA(ComputerName, &bufLen); if (server == NULL || *server == 0 || stricmp(ComputerName, server) == 0) server = local; #endif /* protseq=ncacn_np: named pipes */ #ifdef __REACTOS__ pipe_name = I_RpcAllocate(sizeof(prefix) + strlen(server) + strlen(endpoint)); strcpy(pipe_name, prefix); strcat(pipe_name, server); strcat(pipe_name, endpoint); #else pipe_name = I_RpcAllocate(sizeof(prefix) + strlen(endpoint)); strcat(strcpy(pipe_name, prefix), endpoint); #endif return pipe_name; } static RPC_STATUS rpcrt4_ncacn_np_open(RpcConnection* Connection) { RpcConnection_np *npc = (RpcConnection_np *) Connection; RPC_STATUS r; LPSTR pname; /* already connected? */ if (npc->pipe) return RPC_S_OK; #ifdef __REACTOS__ pname = ncacn_pipe_name(Connection->NetworkAddr, Connection->Endpoint); #else pname = ncacn_pipe_name(Connection->Endpoint); #endif r = rpcrt4_conn_open_pipe(Connection, pname, FALSE); I_RpcFree(pname); return r; } static RPC_STATUS rpcrt4_protseq_ncacn_np_open_endpoint(RpcServerProtseq *protseq, const char *endpoint) { RPC_STATUS r; RpcConnection *Connection; char generated_endpoint[26]; if (!endpoint) { static LONG np_nameless_id; DWORD process_id = GetCurrentProcessId(); ULONG id = InterlockedExchangeAdd(&np_nameless_id, 1 ); snprintf(generated_endpoint, sizeof(generated_endpoint), "\\\\pipe\\\\%08x.%03x", process_id, id); endpoint = generated_endpoint; } r = RPCRT4_CreateConnection(&Connection, TRUE, protseq->Protseq, NULL, endpoint, NULL, NULL, NULL, NULL); if (r != RPC_S_OK) return r; #ifdef __REACTOS__ ((RpcConnection_np*)Connection)->listen_pipe = ncacn_pipe_name(NULL, Connection->Endpoint); #else ((RpcConnection_np*)Connection)->listen_pipe = ncacn_pipe_name(Connection->Endpoint); #endif r = rpcrt4_conn_create_pipe(Connection); EnterCriticalSection(&protseq->cs); list_add_head(&protseq->listeners, &Connection->protseq_entry); Connection->protseq = protseq; LeaveCriticalSection(&protseq->cs); return r; } static void rpcrt4_conn_np_handoff(RpcConnection_np *old_npc, RpcConnection_np *new_npc) { /* because of the way named pipes work, we'll transfer the connected pipe * to the child, then reopen the server binding to continue listening */ new_npc->pipe = old_npc->pipe; old_npc->pipe = 0; assert(!old_npc->listen_event); } static RPC_STATUS rpcrt4_ncacn_np_handoff(RpcConnection *old_conn, RpcConnection *new_conn) { DWORD len = MAX_COMPUTERNAME_LENGTH + 1; RPC_STATUS status; rpcrt4_conn_np_handoff((RpcConnection_np *)old_conn, (RpcConnection_np *)new_conn); status = rpcrt4_conn_create_pipe(old_conn); /* Store the local computer name as the NetworkAddr for ncacn_np as long as * we don't support named pipes over the network. */ new_conn->NetworkAddr = HeapAlloc(GetProcessHeap(), 0, len); if (!GetComputerNameA(new_conn->NetworkAddr, &len)) { ERR("Failed to retrieve the computer name, error %u\n", GetLastError()); return RPC_S_OUT_OF_RESOURCES; } return status; } static RPC_STATUS is_pipe_listening(const char *pipe_name) { return WaitNamedPipeA(pipe_name, 1) ? RPC_S_OK : RPC_S_NOT_LISTENING; } static RPC_STATUS rpcrt4_ncacn_np_is_server_listening(const char *endpoint) { char *pipe_name; RPC_STATUS status; #ifdef __REACTOS__ pipe_name = ncacn_pipe_name(NULL, endpoint); #else pipe_name = ncacn_pipe_name(endpoint); #endif status = is_pipe_listening(pipe_name); I_RpcFree(pipe_name); return status; } static RPC_STATUS rpcrt4_ncalrpc_np_is_server_listening(const char *endpoint) { char *pipe_name; RPC_STATUS status; pipe_name = ncalrpc_pipe_name(endpoint); status = is_pipe_listening(pipe_name); I_RpcFree(pipe_name); return status; } static RPC_STATUS rpcrt4_ncalrpc_handoff(RpcConnection *old_conn, RpcConnection *new_conn) { DWORD len = MAX_COMPUTERNAME_LENGTH + 1; RPC_STATUS status; TRACE("%s\n", old_conn->Endpoint); rpcrt4_conn_np_handoff((RpcConnection_np *)old_conn, (RpcConnection_np *)new_conn); status = rpcrt4_conn_create_pipe(old_conn); /* Store the local computer name as the NetworkAddr for ncalrpc. */ new_conn->NetworkAddr = HeapAlloc(GetProcessHeap(), 0, len); if (!GetComputerNameA(new_conn->NetworkAddr, &len)) { ERR("Failed to retrieve the computer name, error %u\n", GetLastError()); return RPC_S_OUT_OF_RESOURCES; } return status; } static int rpcrt4_conn_np_read(RpcConnection *conn, void *buffer, unsigned int count) { RpcConnection_np *connection = (RpcConnection_np *) conn; HANDLE event; NTSTATUS status; event = get_np_event(connection); if (!event) return -1; if (connection->read_closed) status = STATUS_CANCELLED; else status = NtReadFile(connection->pipe, event, NULL, NULL, &connection->io_status, buffer, count, NULL, NULL); if (status == STATUS_PENDING) { /* check read_closed again before waiting to avoid a race */ if (connection->read_closed) { IO_STATUS_BLOCK io_status; #ifdef __REACTOS__ /* FIXME: We should also cancel I/O for other threads */ NtCancelIoFile(connection->pipe, &io_status); #else NtCancelIoFileEx(connection->pipe, &connection->io_status, &io_status); #endif } WaitForSingleObject(event, INFINITE); status = connection->io_status.u.Status; } release_np_event(connection, event); return status && status != STATUS_BUFFER_OVERFLOW ? -1 : connection->io_status.Information; } static int rpcrt4_conn_np_write(RpcConnection *conn, const void *buffer, unsigned int count) { RpcConnection_np *connection = (RpcConnection_np *) conn; IO_STATUS_BLOCK io_status; HANDLE event; NTSTATUS status; event = get_np_event(connection); if (!event) return -1; status = NtWriteFile(connection->pipe, event, NULL, NULL, &io_status, buffer, count, NULL, NULL); if (status == STATUS_PENDING) { WaitForSingleObject(event, INFINITE); status = io_status.u.Status; } release_np_event(connection, event); if (status) return -1; assert(io_status.Information == count); return count; } static int rpcrt4_conn_np_close(RpcConnection *conn) { RpcConnection_np *connection = (RpcConnection_np *) conn; if (connection->pipe) { FlushFileBuffers(connection->pipe); CloseHandle(connection->pipe); connection->pipe = 0; } if (connection->listen_event) { CloseHandle(connection->listen_event); connection->listen_event = 0; } if (connection->event_cache) { CloseHandle(connection->event_cache); connection->event_cache = 0; } return 0; } static void rpcrt4_conn_np_close_read(RpcConnection *conn) { RpcConnection_np *connection = (RpcConnection_np*)conn; IO_STATUS_BLOCK io_status; connection->read_closed = TRUE; #ifdef __REACTOS__ /* FIXME: We should also cancel I/O for other threads */ NtCancelIoFile(connection->pipe, &io_status); #else NtCancelIoFileEx(connection->pipe, &connection->io_status, &io_status); #endif } static void rpcrt4_conn_np_cancel_call(RpcConnection *conn) { RpcConnection_np *connection = (RpcConnection_np *)conn; CancelIoEx(connection->pipe, NULL); } static int rpcrt4_conn_np_wait_for_incoming_data(RpcConnection *conn) { return rpcrt4_conn_np_read(conn, NULL, 0); } static size_t rpcrt4_ncacn_np_get_top_of_tower(unsigned char *tower_data, const char *networkaddr, const char *endpoint) { twr_empty_floor_t *smb_floor; twr_empty_floor_t *nb_floor; size_t size; size_t networkaddr_size; size_t endpoint_size; TRACE("(%p, %s, %s)\n", tower_data, networkaddr, endpoint); networkaddr_size = networkaddr ? strlen(networkaddr) + 1 : 1; endpoint_size = endpoint ? strlen(endpoint) + 1 : 1; size = sizeof(*smb_floor) + endpoint_size + sizeof(*nb_floor) + networkaddr_size; if (!tower_data) return size; smb_floor = (twr_empty_floor_t *)tower_data; tower_data += sizeof(*smb_floor); smb_floor->count_lhs = sizeof(smb_floor->protid); smb_floor->protid = EPM_PROTOCOL_SMB; smb_floor->count_rhs = endpoint_size; if (endpoint) memcpy(tower_data, endpoint, endpoint_size); else tower_data[0] = 0; tower_data += endpoint_size; nb_floor = (twr_empty_floor_t *)tower_data; tower_data += sizeof(*nb_floor); nb_floor->count_lhs = sizeof(nb_floor->protid); nb_floor->protid = EPM_PROTOCOL_NETBIOS; nb_floor->count_rhs = networkaddr_size; if (networkaddr) memcpy(tower_data, networkaddr, networkaddr_size); else tower_data[0] = 0; return size; } static RPC_STATUS rpcrt4_ncacn_np_parse_top_of_tower(const unsigned char *tower_data, size_t tower_size, char **networkaddr, char **endpoint) { const twr_empty_floor_t *smb_floor = (const twr_empty_floor_t *)tower_data; const twr_empty_floor_t *nb_floor; TRACE("(%p, %d, %p, %p)\n", tower_data, (int)tower_size, networkaddr, endpoint); if (tower_size < sizeof(*smb_floor)) return EPT_S_NOT_REGISTERED; tower_data += sizeof(*smb_floor); tower_size -= sizeof(*smb_floor); if ((smb_floor->count_lhs != sizeof(smb_floor->protid)) || (smb_floor->protid != EPM_PROTOCOL_SMB) || (smb_floor->count_rhs > tower_size) || (tower_data[smb_floor->count_rhs - 1] != '\0')) return EPT_S_NOT_REGISTERED; if (endpoint) { *endpoint = I_RpcAllocate(smb_floor->count_rhs); if (!*endpoint) return RPC_S_OUT_OF_RESOURCES; memcpy(*endpoint, tower_data, smb_floor->count_rhs); } tower_data += smb_floor->count_rhs; tower_size -= smb_floor->count_rhs; if (tower_size < sizeof(*nb_floor)) return EPT_S_NOT_REGISTERED; nb_floor = (const twr_empty_floor_t *)tower_data; tower_data += sizeof(*nb_floor); tower_size -= sizeof(*nb_floor); if ((nb_floor->count_lhs != sizeof(nb_floor->protid)) || (nb_floor->protid != EPM_PROTOCOL_NETBIOS) || (nb_floor->count_rhs > tower_size) || (tower_data[nb_floor->count_rhs - 1] != '\0')) return EPT_S_NOT_REGISTERED; if (networkaddr) { *networkaddr = I_RpcAllocate(nb_floor->count_rhs); if (!*networkaddr) { if (endpoint) { I_RpcFree(*endpoint); *endpoint = NULL; } return RPC_S_OUT_OF_RESOURCES; } memcpy(*networkaddr, tower_data, nb_floor->count_rhs); } return RPC_S_OK; } static RPC_STATUS rpcrt4_conn_np_impersonate_client(RpcConnection *conn) { RpcConnection_np *npc = (RpcConnection_np *)conn; BOOL ret; TRACE("(%p)\n", conn); if (conn->AuthInfo && SecIsValidHandle(&conn->ctx)) return RPCRT4_default_impersonate_client(conn); ret = ImpersonateNamedPipeClient(npc->pipe); if (!ret) { DWORD error = GetLastError(); WARN("ImpersonateNamedPipeClient failed with error %u\n", error); switch (error) { case ERROR_CANNOT_IMPERSONATE: return RPC_S_NO_CONTEXT_AVAILABLE; } } return RPC_S_OK; } static RPC_STATUS rpcrt4_conn_np_revert_to_self(RpcConnection *conn) { BOOL ret; TRACE("(%p)\n", conn); if (conn->AuthInfo && SecIsValidHandle(&conn->ctx)) return RPCRT4_default_revert_to_self(conn); ret = RevertToSelf(); if (!ret) { WARN("RevertToSelf failed with error %u\n", GetLastError()); return RPC_S_NO_CONTEXT_AVAILABLE; } return RPC_S_OK; } typedef struct _RpcServerProtseq_np { RpcServerProtseq common; HANDLE mgr_event; } RpcServerProtseq_np; static RpcServerProtseq *rpcrt4_protseq_np_alloc(void) { RpcServerProtseq_np *ps = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(*ps)); if (ps) ps->mgr_event = CreateEventW(NULL, FALSE, FALSE, NULL); return &ps->common; } static void rpcrt4_protseq_np_signal_state_changed(RpcServerProtseq *protseq) { RpcServerProtseq_np *npps = CONTAINING_RECORD(protseq, RpcServerProtseq_np, common); SetEvent(npps->mgr_event); } static void *rpcrt4_protseq_np_get_wait_array(RpcServerProtseq *protseq, void *prev_array, unsigned int *count) { HANDLE *objs = prev_array; RpcConnection_np *conn; RpcServerProtseq_np *npps = CONTAINING_RECORD(protseq, RpcServerProtseq_np, common); EnterCriticalSection(&protseq->cs); /* open and count connections */ *count = 1; LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_np, common.protseq_entry) { if (!conn->pipe && rpcrt4_conn_create_pipe(&conn->common) != RPC_S_OK) continue; if (!conn->listen_event) { NTSTATUS status; HANDLE event; event = get_np_event(conn); if (!event) continue; status = NtFsControlFile(conn->pipe, event, NULL, NULL, &conn->io_status, FSCTL_PIPE_LISTEN, NULL, 0, NULL, 0); switch (status) { case STATUS_SUCCESS: case STATUS_PIPE_CONNECTED: conn->io_status.u.Status = status; SetEvent(event); break; case STATUS_PENDING: break; default: ERR("pipe listen error %x\n", status); continue; } conn->listen_event = event; } (*count)++; } /* make array of connections */ if (objs) objs = HeapReAlloc(GetProcessHeap(), 0, objs, *count*sizeof(HANDLE)); else objs = HeapAlloc(GetProcessHeap(), 0, *count*sizeof(HANDLE)); if (!objs) { ERR("couldn't allocate objs\n"); LeaveCriticalSection(&protseq->cs); return NULL; } objs[0] = npps->mgr_event; *count = 1; LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_np, common.protseq_entry) { if (conn->listen_event) objs[(*count)++] = conn->listen_event; } LeaveCriticalSection(&protseq->cs); return objs; } static void rpcrt4_protseq_np_free_wait_array(RpcServerProtseq *protseq, void *array) { HeapFree(GetProcessHeap(), 0, array); } static int rpcrt4_protseq_np_wait_for_new_connection(RpcServerProtseq *protseq, unsigned int count, void *wait_array) { HANDLE b_handle; HANDLE *objs = wait_array; DWORD res; RpcConnection *cconn = NULL; RpcConnection_np *conn; if (!objs) return -1; do { /* an alertable wait isn't strictly necessary, but due to our * overlapped I/O implementation in Wine we need to free some memory * by the file user APC being called, even if no completion routine was * specified at the time of starting the async operation */ res = WaitForMultipleObjectsEx(count, objs, FALSE, INFINITE, TRUE); } while (res == WAIT_IO_COMPLETION); if (res == WAIT_OBJECT_0) return 0; else if (res == WAIT_FAILED) { ERR("wait failed with error %d\n", GetLastError()); return -1; } else { b_handle = objs[res - WAIT_OBJECT_0]; /* find which connection got a RPC */ EnterCriticalSection(&protseq->cs); LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_np, common.protseq_entry) { if (b_handle == conn->listen_event) { release_np_event(conn, conn->listen_event); conn->listen_event = NULL; if (conn->io_status.u.Status == STATUS_SUCCESS || conn->io_status.u.Status == STATUS_PIPE_CONNECTED) cconn = rpcrt4_spawn_connection(&conn->common); else ERR("listen failed %x\n", conn->io_status.u.Status); break; } } LeaveCriticalSection(&protseq->cs); if (!cconn) { ERR("failed to locate connection for handle %p\n", b_handle); return -1; } RPCRT4_new_client(cconn); return 1; } } static size_t rpcrt4_ncalrpc_get_top_of_tower(unsigned char *tower_data, const char *networkaddr, const char *endpoint) { twr_empty_floor_t *pipe_floor; size_t size; size_t endpoint_size; TRACE("(%p, %s, %s)\n", tower_data, networkaddr, endpoint); endpoint_size = strlen(endpoint) + 1; size = sizeof(*pipe_floor) + endpoint_size; if (!tower_data) return size; pipe_floor = (twr_empty_floor_t *)tower_data; tower_data += sizeof(*pipe_floor); pipe_floor->count_lhs = sizeof(pipe_floor->protid); pipe_floor->protid = EPM_PROTOCOL_PIPE; pipe_floor->count_rhs = endpoint_size; memcpy(tower_data, endpoint, endpoint_size); return size; } static RPC_STATUS rpcrt4_ncalrpc_parse_top_of_tower(const unsigned char *tower_data, size_t tower_size, char **networkaddr, char **endpoint) { const twr_empty_floor_t *pipe_floor = (const twr_empty_floor_t *)tower_data; TRACE("(%p, %d, %p, %p)\n", tower_data, (int)tower_size, networkaddr, endpoint); if (tower_size < sizeof(*pipe_floor)) return EPT_S_NOT_REGISTERED; tower_data += sizeof(*pipe_floor); tower_size -= sizeof(*pipe_floor); if ((pipe_floor->count_lhs != sizeof(pipe_floor->protid)) || (pipe_floor->protid != EPM_PROTOCOL_PIPE) || (pipe_floor->count_rhs > tower_size) || (tower_data[pipe_floor->count_rhs - 1] != '\0')) return EPT_S_NOT_REGISTERED; if (networkaddr) *networkaddr = NULL; if (endpoint) { *endpoint = I_RpcAllocate(pipe_floor->count_rhs); if (!*endpoint) return RPC_S_OUT_OF_RESOURCES; memcpy(*endpoint, tower_data, pipe_floor->count_rhs); } return RPC_S_OK; } static BOOL rpcrt4_ncalrpc_is_authorized(RpcConnection *conn) { return FALSE; } static RPC_STATUS rpcrt4_ncalrpc_authorize(RpcConnection *conn, BOOL first_time, unsigned char *in_buffer, unsigned int in_size, unsigned char *out_buffer, unsigned int *out_size) { /* since this protocol is local to the machine there is no need to * authenticate the caller */ *out_size = 0; return RPC_S_OK; } static RPC_STATUS rpcrt4_ncalrpc_secure_packet(RpcConnection *conn, enum secure_packet_direction dir, RpcPktHdr *hdr, unsigned int hdr_size, unsigned char *stub_data, unsigned int stub_data_size, RpcAuthVerifier *auth_hdr, unsigned char *auth_value, unsigned int auth_value_size) { /* since this protocol is local to the machine there is no need to secure * the packet */ return RPC_S_OK; } static RPC_STATUS rpcrt4_ncalrpc_inquire_auth_client( RpcConnection *conn, RPC_AUTHZ_HANDLE *privs, RPC_WSTR *server_princ_name, ULONG *authn_level, ULONG *authn_svc, ULONG *authz_svc, ULONG flags) { TRACE("(%p, %p, %p, %p, %p, %p, 0x%x)\n", conn, privs, server_princ_name, authn_level, authn_svc, authz_svc, flags); if (privs) { FIXME("privs not implemented\n"); *privs = NULL; } if (server_princ_name) { FIXME("server_princ_name not implemented\n"); *server_princ_name = NULL; } if (authn_level) *authn_level = RPC_C_AUTHN_LEVEL_PKT_PRIVACY; if (authn_svc) *authn_svc = RPC_C_AUTHN_WINNT; if (authz_svc) { FIXME("authorization service not implemented\n"); *authz_svc = RPC_C_AUTHZ_NONE; } if (flags) FIXME("flags 0x%x not implemented\n", flags); return RPC_S_OK; } /**** ncacn_ip_tcp support ****/ static size_t rpcrt4_ip_tcp_get_top_of_tower(unsigned char *tower_data, const char *networkaddr, unsigned char tcp_protid, const char *endpoint) { twr_tcp_floor_t *tcp_floor; twr_ipv4_floor_t *ipv4_floor; struct addrinfo *ai; struct addrinfo hints; int ret; size_t size = sizeof(*tcp_floor) + sizeof(*ipv4_floor); TRACE("(%p, %s, %s)\n", tower_data, networkaddr, endpoint); if (!tower_data) return size; tcp_floor = (twr_tcp_floor_t *)tower_data; tower_data += sizeof(*tcp_floor); ipv4_floor = (twr_ipv4_floor_t *)tower_data; tcp_floor->count_lhs = sizeof(tcp_floor->protid); tcp_floor->protid = tcp_protid; tcp_floor->count_rhs = sizeof(tcp_floor->port); ipv4_floor->count_lhs = sizeof(ipv4_floor->protid); ipv4_floor->protid = EPM_PROTOCOL_IP; ipv4_floor->count_rhs = sizeof(ipv4_floor->ipv4addr); hints.ai_flags = AI_NUMERICHOST; /* FIXME: only support IPv4 at the moment. how is IPv6 represented by the EPM? */ hints.ai_family = PF_INET; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; hints.ai_addrlen = 0; hints.ai_addr = NULL; hints.ai_canonname = NULL; hints.ai_next = NULL; ret = getaddrinfo(networkaddr, endpoint, &hints, &ai); if (ret) { ret = getaddrinfo("0.0.0.0", endpoint, &hints, &ai); if (ret) { ERR("getaddrinfo failed: %s\n", gai_strerror(ret)); return 0; } } if (ai->ai_family == PF_INET) { const struct sockaddr_in *sin = (const struct sockaddr_in *)ai->ai_addr; tcp_floor->port = sin->sin_port; ipv4_floor->ipv4addr = sin->sin_addr.s_addr; } else { ERR("unexpected protocol family %d\n", ai->ai_family); freeaddrinfo(ai); return 0; } freeaddrinfo(ai); return size; } static RPC_STATUS rpcrt4_ip_tcp_parse_top_of_tower(const unsigned char *tower_data, size_t tower_size, char **networkaddr, unsigned char tcp_protid, char **endpoint) { const twr_tcp_floor_t *tcp_floor = (const twr_tcp_floor_t *)tower_data; const twr_ipv4_floor_t *ipv4_floor; struct in_addr in_addr; TRACE("(%p, %d, %p, %p)\n", tower_data, (int)tower_size, networkaddr, endpoint); if (tower_size < sizeof(*tcp_floor)) return EPT_S_NOT_REGISTERED; tower_data += sizeof(*tcp_floor); tower_size -= sizeof(*tcp_floor); if (tower_size < sizeof(*ipv4_floor)) return EPT_S_NOT_REGISTERED; ipv4_floor = (const twr_ipv4_floor_t *)tower_data; if ((tcp_floor->count_lhs != sizeof(tcp_floor->protid)) || (tcp_floor->protid != tcp_protid) || (tcp_floor->count_rhs != sizeof(tcp_floor->port)) || (ipv4_floor->count_lhs != sizeof(ipv4_floor->protid)) || (ipv4_floor->protid != EPM_PROTOCOL_IP) || (ipv4_floor->count_rhs != sizeof(ipv4_floor->ipv4addr))) return EPT_S_NOT_REGISTERED; if (endpoint) { *endpoint = I_RpcAllocate(6 /* sizeof("65535") + 1 */); if (!*endpoint) return RPC_S_OUT_OF_RESOURCES; sprintf(*endpoint, "%u", ntohs(tcp_floor->port)); } if (networkaddr) { *networkaddr = I_RpcAllocate(INET_ADDRSTRLEN); if (!*networkaddr) { if (endpoint) { I_RpcFree(*endpoint); *endpoint = NULL; } return RPC_S_OUT_OF_RESOURCES; } in_addr.s_addr = ipv4_floor->ipv4addr; if (!inet_ntop(AF_INET, &in_addr, *networkaddr, INET_ADDRSTRLEN)) { ERR("inet_ntop: %u\n", WSAGetLastError()); I_RpcFree(*networkaddr); *networkaddr = NULL; if (endpoint) { I_RpcFree(*endpoint); *endpoint = NULL; } return EPT_S_NOT_REGISTERED; } } return RPC_S_OK; } typedef struct _RpcConnection_tcp { RpcConnection common; int sock; HANDLE sock_event; HANDLE cancel_event; } RpcConnection_tcp; static BOOL rpcrt4_sock_wait_init(RpcConnection_tcp *tcpc) { static BOOL wsa_inited; if (!wsa_inited) { WSADATA wsadata; WSAStartup(MAKEWORD(2, 2), &wsadata); /* Note: WSAStartup can be called more than once so we don't bother with * making accesses to wsa_inited thread-safe */ wsa_inited = TRUE; } tcpc->sock_event = CreateEventW(NULL, FALSE, FALSE, NULL); tcpc->cancel_event = CreateEventW(NULL, FALSE, FALSE, NULL); if (!tcpc->sock_event || !tcpc->cancel_event) { ERR("event creation failed\n"); if (tcpc->sock_event) CloseHandle(tcpc->sock_event); return FALSE; } return TRUE; } static BOOL rpcrt4_sock_wait_for_recv(RpcConnection_tcp *tcpc) { HANDLE wait_handles[2]; DWORD res; if (WSAEventSelect(tcpc->sock, tcpc->sock_event, FD_READ | FD_CLOSE) == SOCKET_ERROR) { ERR("WSAEventSelect() failed with error %d\n", WSAGetLastError()); return FALSE; } wait_handles[0] = tcpc->sock_event; wait_handles[1] = tcpc->cancel_event; res = WaitForMultipleObjects(2, wait_handles, FALSE, INFINITE); switch (res) { case WAIT_OBJECT_0: return TRUE; case WAIT_OBJECT_0 + 1: return FALSE; default: ERR("WaitForMultipleObjects() failed with error %d\n", GetLastError()); return FALSE; } } static BOOL rpcrt4_sock_wait_for_send(RpcConnection_tcp *tcpc) { DWORD res; if (WSAEventSelect(tcpc->sock, tcpc->sock_event, FD_WRITE | FD_CLOSE) == SOCKET_ERROR) { ERR("WSAEventSelect() failed with error %d\n", WSAGetLastError()); return FALSE; } res = WaitForSingleObject(tcpc->sock_event, INFINITE); switch (res) { case WAIT_OBJECT_0: return TRUE; default: ERR("WaitForMultipleObjects() failed with error %d\n", GetLastError()); return FALSE; } } static RpcConnection *rpcrt4_conn_tcp_alloc(void) { RpcConnection_tcp *tcpc; tcpc = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(RpcConnection_tcp)); if (tcpc == NULL) return NULL; tcpc->sock = -1; if (!rpcrt4_sock_wait_init(tcpc)) { HeapFree(GetProcessHeap(), 0, tcpc); return NULL; } return &tcpc->common; } static RPC_STATUS rpcrt4_ncacn_ip_tcp_open(RpcConnection* Connection) { RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection; int sock; int ret; struct addrinfo *ai; struct addrinfo *ai_cur; struct addrinfo hints; TRACE("(%s, %s)\n", Connection->NetworkAddr, Connection->Endpoint); if (tcpc->sock != -1) return RPC_S_OK; hints.ai_flags = 0; hints.ai_family = PF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; hints.ai_addrlen = 0; hints.ai_addr = NULL; hints.ai_canonname = NULL; hints.ai_next = NULL; ret = getaddrinfo(Connection->NetworkAddr, Connection->Endpoint, &hints, &ai); if (ret) { ERR("getaddrinfo for %s:%s failed: %s\n", Connection->NetworkAddr, Connection->Endpoint, gai_strerror(ret)); return RPC_S_SERVER_UNAVAILABLE; } for (ai_cur = ai; ai_cur; ai_cur = ai_cur->ai_next) { int val; u_long nonblocking; if (ai_cur->ai_family != AF_INET && ai_cur->ai_family != AF_INET6) { TRACE("skipping non-IP/IPv6 address family\n"); continue; } if (TRACE_ON(rpc)) { char host[256]; char service[256]; getnameinfo(ai_cur->ai_addr, ai_cur->ai_addrlen, host, sizeof(host), service, sizeof(service), NI_NUMERICHOST | NI_NUMERICSERV); TRACE("trying %s:%s\n", host, service); } sock = socket(ai_cur->ai_family, ai_cur->ai_socktype, ai_cur->ai_protocol); if (sock == -1) { WARN("socket() failed: %u\n", WSAGetLastError()); continue; } if (0>connect(sock, ai_cur->ai_addr, ai_cur->ai_addrlen)) { WARN("connect() failed: %u\n", WSAGetLastError()); closesocket(sock); continue; } /* RPC depends on having minimal latency so disable the Nagle algorithm */ val = 1; setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val)); nonblocking = 1; ioctlsocket(sock, FIONBIO, &nonblocking); tcpc->sock = sock; freeaddrinfo(ai); TRACE("connected\n"); return RPC_S_OK; } freeaddrinfo(ai); ERR("couldn't connect to %s:%s\n", Connection->NetworkAddr, Connection->Endpoint); return RPC_S_SERVER_UNAVAILABLE; } static RPC_STATUS rpcrt4_protseq_ncacn_ip_tcp_open_endpoint(RpcServerProtseq *protseq, const char *endpoint) { RPC_STATUS status = RPC_S_CANT_CREATE_ENDPOINT; int sock; int ret; struct addrinfo *ai; struct addrinfo *ai_cur; struct addrinfo hints; TRACE("(%p, %s)\n", protseq, endpoint); hints.ai_flags = AI_PASSIVE /* for non-localhost addresses */; hints.ai_family = PF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; hints.ai_addrlen = 0; hints.ai_addr = NULL; hints.ai_canonname = NULL; hints.ai_next = NULL; ret = getaddrinfo(NULL, endpoint ? endpoint : "0", &hints, &ai); if (ret) { ERR("getaddrinfo for port %s failed: %s\n", endpoint, gai_strerror(ret)); if ((ret == EAI_SERVICE) || (ret == EAI_NONAME)) return RPC_S_INVALID_ENDPOINT_FORMAT; return RPC_S_CANT_CREATE_ENDPOINT; } for (ai_cur = ai; ai_cur; ai_cur = ai_cur->ai_next) { RpcConnection_tcp *tcpc; RPC_STATUS create_status; struct sockaddr_storage sa; socklen_t sa_len; char service[NI_MAXSERV]; u_long nonblocking; if (ai_cur->ai_family != AF_INET && ai_cur->ai_family != AF_INET6) { TRACE("skipping non-IP/IPv6 address family\n"); continue; } if (TRACE_ON(rpc)) { char host[256]; getnameinfo(ai_cur->ai_addr, ai_cur->ai_addrlen, host, sizeof(host), service, sizeof(service), NI_NUMERICHOST | NI_NUMERICSERV); TRACE("trying %s:%s\n", host, service); } sock = socket(ai_cur->ai_family, ai_cur->ai_socktype, ai_cur->ai_protocol); if (sock == -1) { WARN("socket() failed: %u\n", WSAGetLastError()); status = RPC_S_CANT_CREATE_ENDPOINT; continue; } ret = bind(sock, ai_cur->ai_addr, ai_cur->ai_addrlen); if (ret < 0) { WARN("bind failed: %u\n", WSAGetLastError()); closesocket(sock); if (WSAGetLastError() == WSAEADDRINUSE) status = RPC_S_DUPLICATE_ENDPOINT; else status = RPC_S_CANT_CREATE_ENDPOINT; continue; } sa_len = sizeof(sa); if (getsockname(sock, (struct sockaddr *)&sa, &sa_len)) { WARN("getsockname() failed: %u\n", WSAGetLastError()); closesocket(sock); status = RPC_S_CANT_CREATE_ENDPOINT; continue; } ret = getnameinfo((struct sockaddr *)&sa, sa_len, NULL, 0, service, sizeof(service), NI_NUMERICSERV); if (ret) { WARN("getnameinfo failed: %s\n", gai_strerror(ret)); closesocket(sock); status = RPC_S_CANT_CREATE_ENDPOINT; continue; } create_status = RPCRT4_CreateConnection((RpcConnection **)&tcpc, TRUE, protseq->Protseq, NULL, service, NULL, NULL, NULL, NULL); if (create_status != RPC_S_OK) { closesocket(sock); status = create_status; continue; } tcpc->sock = sock; ret = listen(sock, protseq->MaxCalls); if (ret < 0) { WARN("listen failed: %u\n", WSAGetLastError()); RPCRT4_ReleaseConnection(&tcpc->common); status = RPC_S_OUT_OF_RESOURCES; continue; } /* need a non-blocking socket, otherwise accept() has a potential * race-condition (poll() says it is readable, connection drops, * and accept() blocks until the next connection comes...) */ nonblocking = 1; ret = ioctlsocket(sock, FIONBIO, &nonblocking); if (ret < 0) { WARN("couldn't make socket non-blocking, error %d\n", ret); RPCRT4_ReleaseConnection(&tcpc->common); status = RPC_S_OUT_OF_RESOURCES; continue; } EnterCriticalSection(&protseq->cs); list_add_tail(&protseq->listeners, &tcpc->common.protseq_entry); tcpc->common.protseq = protseq; LeaveCriticalSection(&protseq->cs); freeaddrinfo(ai); /* since IPv4 and IPv6 share the same port space, we only need one * successful bind to listen for both */ TRACE("listening on %s\n", endpoint); return RPC_S_OK; } freeaddrinfo(ai); ERR("couldn't listen on port %s\n", endpoint); return status; } static RPC_STATUS rpcrt4_conn_tcp_handoff(RpcConnection *old_conn, RpcConnection *new_conn) { int ret; struct sockaddr_in address; socklen_t addrsize; RpcConnection_tcp *server = (RpcConnection_tcp*) old_conn; RpcConnection_tcp *client = (RpcConnection_tcp*) new_conn; u_long nonblocking; addrsize = sizeof(address); ret = accept(server->sock, (struct sockaddr*) &address, &addrsize); if (ret < 0) { ERR("Failed to accept a TCP connection: error %d\n", ret); return RPC_S_OUT_OF_RESOURCES; } nonblocking = 1; ioctlsocket(ret, FIONBIO, &nonblocking); client->sock = ret; client->common.NetworkAddr = HeapAlloc(GetProcessHeap(), 0, INET6_ADDRSTRLEN); ret = getnameinfo((struct sockaddr*)&address, addrsize, client->common.NetworkAddr, INET6_ADDRSTRLEN, NULL, 0, NI_NUMERICHOST); if (ret != 0) { ERR("Failed to retrieve the IP address, error %d\n", ret); return RPC_S_OUT_OF_RESOURCES; } TRACE("Accepted a new TCP connection from %s\n", client->common.NetworkAddr); return RPC_S_OK; } static int rpcrt4_conn_tcp_read(RpcConnection *Connection, void *buffer, unsigned int count) { RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection; int bytes_read = 0; while (bytes_read != count) { int r = recv(tcpc->sock, (char *)buffer + bytes_read, count - bytes_read, 0); if (!r) return -1; else if (r > 0) bytes_read += r; else if (WSAGetLastError() == WSAEINTR) continue; else if (WSAGetLastError() != WSAEWOULDBLOCK) { WARN("recv() failed: %u\n", WSAGetLastError()); return -1; } else { if (!rpcrt4_sock_wait_for_recv(tcpc)) return -1; } } TRACE("%d %p %u -> %d\n", tcpc->sock, buffer, count, bytes_read); return bytes_read; } static int rpcrt4_conn_tcp_write(RpcConnection *Connection, const void *buffer, unsigned int count) { RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection; int bytes_written = 0; while (bytes_written != count) { int r = send(tcpc->sock, (const char *)buffer + bytes_written, count - bytes_written, 0); if (r >= 0) bytes_written += r; else if (WSAGetLastError() == WSAEINTR) continue; else if (WSAGetLastError() != WSAEWOULDBLOCK) return -1; else { if (!rpcrt4_sock_wait_for_send(tcpc)) return -1; } } TRACE("%d %p %u -> %d\n", tcpc->sock, buffer, count, bytes_written); return bytes_written; } static int rpcrt4_conn_tcp_close(RpcConnection *conn) { RpcConnection_tcp *connection = (RpcConnection_tcp *) conn; TRACE("%d\n", connection->sock); if (connection->sock != -1) closesocket(connection->sock); connection->sock = -1; CloseHandle(connection->sock_event); CloseHandle(connection->cancel_event); return 0; } static void rpcrt4_conn_tcp_close_read(RpcConnection *conn) { RpcConnection_tcp *connection = (RpcConnection_tcp *) conn; shutdown(connection->sock, SD_RECEIVE); } static void rpcrt4_conn_tcp_cancel_call(RpcConnection *conn) { RpcConnection_tcp *connection = (RpcConnection_tcp *) conn; TRACE("%p\n", connection); SetEvent(connection->cancel_event); } static RPC_STATUS rpcrt4_conn_tcp_is_server_listening(const char *endpoint) { FIXME("\n"); return RPC_S_ACCESS_DENIED; } static int rpcrt4_conn_tcp_wait_for_incoming_data(RpcConnection *Connection) { RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection; TRACE("%p\n", Connection); if (!rpcrt4_sock_wait_for_recv(tcpc)) return -1; return 0; } static size_t rpcrt4_ncacn_ip_tcp_get_top_of_tower(unsigned char *tower_data, const char *networkaddr, const char *endpoint) { return rpcrt4_ip_tcp_get_top_of_tower(tower_data, networkaddr, EPM_PROTOCOL_TCP, endpoint); } typedef struct _RpcServerProtseq_sock { RpcServerProtseq common; HANDLE mgr_event; } RpcServerProtseq_sock; static RpcServerProtseq *rpcrt4_protseq_sock_alloc(void) { RpcServerProtseq_sock *ps = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(*ps)); if (ps) { static BOOL wsa_inited; if (!wsa_inited) { WSADATA wsadata; WSAStartup(MAKEWORD(2, 2), &wsadata); /* Note: WSAStartup can be called more than once so we don't bother with * making accesses to wsa_inited thread-safe */ wsa_inited = TRUE; } ps->mgr_event = CreateEventW(NULL, FALSE, FALSE, NULL); } return &ps->common; } static void rpcrt4_protseq_sock_signal_state_changed(RpcServerProtseq *protseq) { RpcServerProtseq_sock *sockps = CONTAINING_RECORD(protseq, RpcServerProtseq_sock, common); SetEvent(sockps->mgr_event); } static void *rpcrt4_protseq_sock_get_wait_array(RpcServerProtseq *protseq, void *prev_array, unsigned int *count) { HANDLE *objs = prev_array; RpcConnection_tcp *conn; RpcServerProtseq_sock *sockps = CONTAINING_RECORD(protseq, RpcServerProtseq_sock, common); EnterCriticalSection(&protseq->cs); /* open and count connections */ *count = 1; LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_tcp, common.protseq_entry) { if (conn->sock != -1) (*count)++; } /* make array of connections */ if (objs) objs = HeapReAlloc(GetProcessHeap(), 0, objs, *count*sizeof(HANDLE)); else objs = HeapAlloc(GetProcessHeap(), 0, *count*sizeof(HANDLE)); if (!objs) { ERR("couldn't allocate objs\n"); LeaveCriticalSection(&protseq->cs); return NULL; } objs[0] = sockps->mgr_event; *count = 1; LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_tcp, common.protseq_entry) { if (conn->sock != -1) { int res = WSAEventSelect(conn->sock, conn->sock_event, FD_ACCEPT); if (res == SOCKET_ERROR) ERR("WSAEventSelect() failed with error %d\n", WSAGetLastError()); else { objs[*count] = conn->sock_event; (*count)++; } } } LeaveCriticalSection(&protseq->cs); return objs; } static void rpcrt4_protseq_sock_free_wait_array(RpcServerProtseq *protseq, void *array) { HeapFree(GetProcessHeap(), 0, array); } static int rpcrt4_protseq_sock_wait_for_new_connection(RpcServerProtseq *protseq, unsigned int count, void *wait_array) { HANDLE b_handle; HANDLE *objs = wait_array; DWORD res; RpcConnection *cconn = NULL; RpcConnection_tcp *conn; if (!objs) return -1; do { /* an alertable wait isn't strictly necessary, but due to our * overlapped I/O implementation in Wine we need to free some memory * by the file user APC being called, even if no completion routine was * specified at the time of starting the async operation */ res = WaitForMultipleObjectsEx(count, objs, FALSE, INFINITE, TRUE); } while (res == WAIT_IO_COMPLETION); if (res == WAIT_OBJECT_0) return 0; if (res == WAIT_FAILED) { ERR("wait failed with error %d\n", GetLastError()); return -1; } b_handle = objs[res - WAIT_OBJECT_0]; /* find which connection got a RPC */ EnterCriticalSection(&protseq->cs); LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_tcp, common.protseq_entry) { if (b_handle == conn->sock_event) { cconn = rpcrt4_spawn_connection(&conn->common); break; } } LeaveCriticalSection(&protseq->cs); if (!cconn) { ERR("failed to locate connection for handle %p\n", b_handle); return -1; } RPCRT4_new_client(cconn); return 1; } static RPC_STATUS rpcrt4_ncacn_ip_tcp_parse_top_of_tower(const unsigned char *tower_data, size_t tower_size, char **networkaddr, char **endpoint) { return rpcrt4_ip_tcp_parse_top_of_tower(tower_data, tower_size, networkaddr, EPM_PROTOCOL_TCP, endpoint); } /**** ncacn_http support ****/ /* 60 seconds is the period native uses */ #define HTTP_IDLE_TIME 60000 /* reference counted to avoid a race between a cancelled call's connection * being destroyed and the asynchronous InternetReadFileEx call being * completed */ typedef struct _RpcHttpAsyncData { LONG refs; HANDLE completion_event; WORD async_result; INTERNET_BUFFERSW inet_buffers; CRITICAL_SECTION cs; } RpcHttpAsyncData; static ULONG RpcHttpAsyncData_AddRef(RpcHttpAsyncData *data) { return InterlockedIncrement(&data->refs); } static ULONG RpcHttpAsyncData_Release(RpcHttpAsyncData *data) { ULONG refs = InterlockedDecrement(&data->refs); if (!refs) { TRACE("destroying async data %p\n", data); CloseHandle(data->completion_event); HeapFree(GetProcessHeap(), 0, data->inet_buffers.lpvBuffer); data->cs.DebugInfo->Spare[0] = 0; DeleteCriticalSection(&data->cs); HeapFree(GetProcessHeap(), 0, data); } return refs; } static void prepare_async_request(RpcHttpAsyncData *async_data) { ResetEvent(async_data->completion_event); RpcHttpAsyncData_AddRef(async_data); } static RPC_STATUS wait_async_request(RpcHttpAsyncData *async_data, BOOL call_ret, HANDLE cancel_event) { HANDLE handles[2] = { async_data->completion_event, cancel_event }; DWORD res; if(call_ret) { RpcHttpAsyncData_Release(async_data); return RPC_S_OK; } if(GetLastError() != ERROR_IO_PENDING) { RpcHttpAsyncData_Release(async_data); ERR("Request failed with error %d\n", GetLastError()); return RPC_S_SERVER_UNAVAILABLE; } res = WaitForMultipleObjects(2, handles, FALSE, DEFAULT_NCACN_HTTP_TIMEOUT); if(res != WAIT_OBJECT_0) { TRACE("Cancelled\n"); return RPC_S_CALL_CANCELLED; } if(async_data->async_result) { ERR("Async request failed with error %d\n", async_data->async_result); return RPC_S_SERVER_UNAVAILABLE; } return RPC_S_OK; } struct authinfo { DWORD scheme; CredHandle cred; CtxtHandle ctx; TimeStamp exp; ULONG attr; ULONG max_token; char *data; unsigned int data_len; BOOL finished; /* finished authenticating */ }; typedef struct _RpcConnection_http { RpcConnection common; HINTERNET app_info; HINTERNET session; HINTERNET in_request; HINTERNET out_request; WCHAR *servername; HANDLE timer_cancelled; HANDLE cancel_event; DWORD last_sent_time; ULONG bytes_received; ULONG flow_control_mark; /* send a control packet to the server when this many bytes received */ ULONG flow_control_increment; /* number of bytes to increment flow_control_mark by */ UUID connection_uuid; UUID in_pipe_uuid; UUID out_pipe_uuid; RpcHttpAsyncData *async_data; } RpcConnection_http; static RpcConnection *rpcrt4_ncacn_http_alloc(void) { RpcConnection_http *httpc; httpc = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(*httpc)); if (!httpc) return NULL; httpc->async_data = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(RpcHttpAsyncData)); if (!httpc->async_data) { HeapFree(GetProcessHeap(), 0, httpc); return NULL; } TRACE("async data = %p\n", httpc->async_data); httpc->cancel_event = CreateEventW(NULL, FALSE, FALSE, NULL); httpc->async_data->refs = 1; httpc->async_data->inet_buffers.dwStructSize = sizeof(INTERNET_BUFFERSW); InitializeCriticalSection(&httpc->async_data->cs); httpc->async_data->cs.DebugInfo->Spare[0] = (DWORD_PTR)(__FILE__ ": RpcHttpAsyncData.cs"); return &httpc->common; } typedef struct _HttpTimerThreadData { PVOID timer_param; DWORD *last_sent_time; HANDLE timer_cancelled; } HttpTimerThreadData; static VOID rpcrt4_http_keep_connection_active_timer_proc(PVOID param, BOOLEAN dummy) { HINTERNET in_request = param; RpcPktHdr *idle_pkt; idle_pkt = RPCRT4_BuildHttpHeader(NDR_LOCAL_DATA_REPRESENTATION, 0x0001, 0, 0); if (idle_pkt) { DWORD bytes_written; InternetWriteFile(in_request, idle_pkt, idle_pkt->common.frag_len, &bytes_written); RPCRT4_FreeHeader(idle_pkt); } } static inline DWORD rpcrt4_http_timer_calc_timeout(DWORD *last_sent_time) { DWORD cur_time = GetTickCount(); DWORD cached_last_sent_time = *last_sent_time; return HTTP_IDLE_TIME - (cur_time - cached_last_sent_time > HTTP_IDLE_TIME ? 0 : cur_time - cached_last_sent_time); } static DWORD CALLBACK rpcrt4_http_timer_thread(PVOID param) { HttpTimerThreadData *data_in = param; HttpTimerThreadData data; DWORD timeout; data = *data_in; HeapFree(GetProcessHeap(), 0, data_in); for (timeout = HTTP_IDLE_TIME; WaitForSingleObject(data.timer_cancelled, timeout) == WAIT_TIMEOUT; timeout = rpcrt4_http_timer_calc_timeout(data.last_sent_time)) { /* are we too soon after last send? */ if (GetTickCount() - *data.last_sent_time < HTTP_IDLE_TIME) continue; rpcrt4_http_keep_connection_active_timer_proc(data.timer_param, TRUE); } CloseHandle(data.timer_cancelled); return 0; } static VOID WINAPI rpcrt4_http_internet_callback( HINTERNET hInternet, DWORD_PTR dwContext, DWORD dwInternetStatus, LPVOID lpvStatusInformation, DWORD dwStatusInformationLength) { RpcHttpAsyncData *async_data = (RpcHttpAsyncData *)dwContext; switch (dwInternetStatus) { case INTERNET_STATUS_REQUEST_COMPLETE: TRACE("INTERNET_STATUS_REQUEST_COMPLETED\n"); if (async_data) { INTERNET_ASYNC_RESULT *async_result = lpvStatusInformation; async_data->async_result = async_result->dwResult ? ERROR_SUCCESS : async_result->dwError; SetEvent(async_data->completion_event); RpcHttpAsyncData_Release(async_data); } break; } } static RPC_STATUS rpcrt4_http_check_response(HINTERNET hor) { BOOL ret; DWORD status_code; DWORD size; DWORD index; WCHAR buf[32]; WCHAR *status_text = buf; TRACE("\n"); index = 0; size = sizeof(status_code); ret = HttpQueryInfoW(hor, HTTP_QUERY_STATUS_CODE|HTTP_QUERY_FLAG_NUMBER, &status_code, &size, &index); if (!ret) return GetLastError(); if (status_code == HTTP_STATUS_OK) return RPC_S_OK; index = 0; size = sizeof(buf); ret = HttpQueryInfoW(hor, HTTP_QUERY_STATUS_TEXT, status_text, &size, &index); if (!ret && GetLastError() == ERROR_INSUFFICIENT_BUFFER) { status_text = HeapAlloc(GetProcessHeap(), 0, size); ret = HttpQueryInfoW(hor, HTTP_QUERY_STATUS_TEXT, status_text, &size, &index); } ERR("server returned: %d %s\n", status_code, ret ? debugstr_w(status_text) : ""); if(status_text != buf) HeapFree(GetProcessHeap(), 0, status_text); if (status_code == HTTP_STATUS_DENIED) return ERROR_ACCESS_DENIED; return RPC_S_SERVER_UNAVAILABLE; } static RPC_STATUS rpcrt4_http_internet_connect(RpcConnection_http *httpc) { static const WCHAR wszUserAgent[] = {'M','S','R','P','C',0}; LPWSTR proxy = NULL; LPWSTR user = NULL; LPWSTR password = NULL; LPWSTR servername = NULL; const WCHAR *option; INTERNET_PORT port; if (httpc->common.QOS && (httpc->common.QOS->qos->AdditionalSecurityInfoType == RPC_C_AUTHN_INFO_TYPE_HTTP)) { const RPC_HTTP_TRANSPORT_CREDENTIALS_W *http_cred = httpc->common.QOS->qos->u.HttpCredentials; if (http_cred->TransportCredentials) { WCHAR *p; const SEC_WINNT_AUTH_IDENTITY_W *cred = http_cred->TransportCredentials; ULONG len = cred->DomainLength + 1 + cred->UserLength; user = HeapAlloc(GetProcessHeap(), 0, (len + 1) * sizeof(WCHAR)); if (!user) return RPC_S_OUT_OF_RESOURCES; p = user; if (cred->DomainLength) { memcpy(p, cred->Domain, cred->DomainLength * sizeof(WCHAR)); p += cred->DomainLength; *p = '\\'; p++; } memcpy(p, cred->User, cred->UserLength * sizeof(WCHAR)); p[cred->UserLength] = 0; password = RPCRT4_strndupW(cred->Password, cred->PasswordLength); } } for (option = httpc->common.NetworkOptions; option; option = (wcschr(option, ',') ? wcschr(option, ',')+1 : NULL)) { static const WCHAR wszRpcProxy[] = {'R','p','c','P','r','o','x','y','=',0}; static const WCHAR wszHttpProxy[] = {'H','t','t','p','P','r','o','x','y','=',0}; if (!_wcsnicmp(option, wszRpcProxy, ARRAY_SIZE(wszRpcProxy)-1)) { const WCHAR *value_start = option + ARRAY_SIZE(wszRpcProxy)-1; const WCHAR *value_end; const WCHAR *p; value_end = wcschr(option, ','); if (!value_end) value_end = value_start + lstrlenW(value_start); for (p = value_start; p < value_end; p++) if (*p == ':') { port = wcstol(p+1, NULL, 10); value_end = p; break; } TRACE("RpcProxy value is %s\n", debugstr_wn(value_start, value_end-value_start)); servername = RPCRT4_strndupW(value_start, value_end-value_start); } else if (!_wcsnicmp(option, wszHttpProxy, ARRAY_SIZE(wszHttpProxy)-1)) { const WCHAR *value_start = option + ARRAY_SIZE(wszHttpProxy)-1; const WCHAR *value_end; value_end = wcschr(option, ','); if (!value_end) value_end = value_start + lstrlenW(value_start); TRACE("HttpProxy value is %s\n", debugstr_wn(value_start, value_end-value_start)); proxy = RPCRT4_strndupW(value_start, value_end-value_start); } else FIXME("unhandled option %s\n", debugstr_w(option)); } httpc->app_info = InternetOpenW(wszUserAgent, proxy ? INTERNET_OPEN_TYPE_PROXY : INTERNET_OPEN_TYPE_PRECONFIG, NULL, NULL, INTERNET_FLAG_ASYNC); if (!httpc->app_info) { HeapFree(GetProcessHeap(), 0, password); HeapFree(GetProcessHeap(), 0, user); HeapFree(GetProcessHeap(), 0, proxy); HeapFree(GetProcessHeap(), 0, servername); ERR("InternetOpenW failed with error %d\n", GetLastError()); return RPC_S_SERVER_UNAVAILABLE; } InternetSetStatusCallbackW(httpc->app_info, rpcrt4_http_internet_callback); /* if no RpcProxy option specified, set the HTTP server address to the * RPC server address */ if (!servername) { servername = HeapAlloc(GetProcessHeap(), 0, (strlen(httpc->common.NetworkAddr) + 1)*sizeof(WCHAR)); if (!servername) { HeapFree(GetProcessHeap(), 0, password); HeapFree(GetProcessHeap(), 0, user); HeapFree(GetProcessHeap(), 0, proxy); return RPC_S_OUT_OF_RESOURCES; } MultiByteToWideChar(CP_ACP, 0, httpc->common.NetworkAddr, -1, servername, strlen(httpc->common.NetworkAddr) + 1); } port = (httpc->common.QOS && (httpc->common.QOS->qos->AdditionalSecurityInfoType == RPC_C_AUTHN_INFO_TYPE_HTTP) && (httpc->common.QOS->qos->u.HttpCredentials->Flags & RPC_C_HTTP_FLAG_USE_SSL)) ? INTERNET_DEFAULT_HTTPS_PORT : INTERNET_DEFAULT_HTTP_PORT; httpc->session = InternetConnectW(httpc->app_info, servername, port, user, password, INTERNET_SERVICE_HTTP, 0, 0); HeapFree(GetProcessHeap(), 0, password); HeapFree(GetProcessHeap(), 0, user); HeapFree(GetProcessHeap(), 0, proxy); if (!httpc->session) { ERR("InternetConnectW failed with error %d\n", GetLastError()); HeapFree(GetProcessHeap(), 0, servername); return RPC_S_SERVER_UNAVAILABLE; } httpc->servername = servername; return RPC_S_OK; } static int rpcrt4_http_async_read(HINTERNET req, RpcHttpAsyncData *async_data, HANDLE cancel_event, void *buffer, unsigned int count) { char *buf = buffer; BOOL ret; unsigned int bytes_left = count; RPC_STATUS status = RPC_S_OK; async_data->inet_buffers.lpvBuffer = HeapAlloc(GetProcessHeap(), 0, count); while (bytes_left) { async_data->inet_buffers.dwBufferLength = bytes_left; prepare_async_request(async_data); ret = InternetReadFileExW(req, &async_data->inet_buffers, IRF_ASYNC, 0); status = wait_async_request(async_data, ret, cancel_event); if (status != RPC_S_OK) { if (status == RPC_S_CALL_CANCELLED) TRACE("call cancelled\n"); break; } if (!async_data->inet_buffers.dwBufferLength) break; memcpy(buf, async_data->inet_buffers.lpvBuffer, async_data->inet_buffers.dwBufferLength); bytes_left -= async_data->inet_buffers.dwBufferLength; buf += async_data->inet_buffers.dwBufferLength; } HeapFree(GetProcessHeap(), 0, async_data->inet_buffers.lpvBuffer); async_data->inet_buffers.lpvBuffer = NULL; TRACE("%p %p %u -> %u\n", req, buffer, count, status); return status == RPC_S_OK ? count : -1; } static RPC_STATUS send_echo_request(HINTERNET req, RpcHttpAsyncData *async_data, HANDLE cancel_event) { BYTE buf[20]; BOOL ret; RPC_STATUS status; TRACE("sending echo request to server\n"); prepare_async_request(async_data); ret = HttpSendRequestW(req, NULL, 0, NULL, 0); status = wait_async_request(async_data, ret, cancel_event); if (status != RPC_S_OK) return status; status = rpcrt4_http_check_response(req); if (status != RPC_S_OK) return status; rpcrt4_http_async_read(req, async_data, cancel_event, buf, sizeof(buf)); /* FIXME: do something with retrieved data */ return RPC_S_OK; } static RPC_STATUS insert_content_length_header(HINTERNET request, DWORD len) { static const WCHAR fmtW[] = {'C','o','n','t','e','n','t','-','L','e','n','g','t','h',':',' ','%','u','\r','\n',0}; WCHAR header[ARRAY_SIZE(fmtW) + 10]; swprintf(header, fmtW, len); if ((HttpAddRequestHeadersW(request, header, -1, HTTP_ADDREQ_FLAG_REPLACE | HTTP_ADDREQ_FLAG_ADD))) return RPC_S_OK; return RPC_S_SERVER_UNAVAILABLE; } /* prepare the in pipe for use by RPC packets */ static RPC_STATUS rpcrt4_http_prepare_in_pipe(HINTERNET in_request, RpcHttpAsyncData *async_data, HANDLE cancel_event, const UUID *connection_uuid, const UUID *in_pipe_uuid, const UUID *association_uuid, BOOL authorized) { BOOL ret; RPC_STATUS status; RpcPktHdr *hdr; INTERNET_BUFFERSW buffers_in; DWORD bytes_written; if (!authorized) { /* ask wininet to authorize, if necessary */ status = send_echo_request(in_request, async_data, cancel_event); if (status != RPC_S_OK) return status; } memset(&buffers_in, 0, sizeof(buffers_in)); buffers_in.dwStructSize = sizeof(buffers_in); /* FIXME: get this from the registry */ buffers_in.dwBufferTotal = 1024 * 1024 * 1024; /* 1Gb */ status = insert_content_length_header(in_request, buffers_in.dwBufferTotal); if (status != RPC_S_OK) return status; prepare_async_request(async_data); ret = HttpSendRequestExW(in_request, &buffers_in, NULL, 0, 0); status = wait_async_request(async_data, ret, cancel_event); if (status != RPC_S_OK) return status; TRACE("sending HTTP connect header to server\n"); hdr = RPCRT4_BuildHttpConnectHeader(FALSE, connection_uuid, in_pipe_uuid, association_uuid); if (!hdr) return RPC_S_OUT_OF_RESOURCES; ret = InternetWriteFile(in_request, hdr, hdr->common.frag_len, &bytes_written); RPCRT4_FreeHeader(hdr); if (!ret) { ERR("InternetWriteFile failed with error %d\n", GetLastError()); return RPC_S_SERVER_UNAVAILABLE; } return RPC_S_OK; } static RPC_STATUS rpcrt4_http_read_http_packet(HINTERNET request, RpcHttpAsyncData *async_data, HANDLE cancel_event, RpcPktHdr *hdr, BYTE **data) { unsigned short data_len; unsigned int size; if (rpcrt4_http_async_read(request, async_data, cancel_event, hdr, sizeof(hdr->common)) < 0) return RPC_S_SERVER_UNAVAILABLE; if (hdr->common.ptype != PKT_HTTP || hdr->common.frag_len < sizeof(hdr->http)) { ERR("wrong packet type received %d or wrong frag_len %d\n", hdr->common.ptype, hdr->common.frag_len); return RPC_S_PROTOCOL_ERROR; } size = sizeof(hdr->http) - sizeof(hdr->common); if (rpcrt4_http_async_read(request, async_data, cancel_event, &hdr->common + 1, size) < 0) return RPC_S_SERVER_UNAVAILABLE; data_len = hdr->common.frag_len - sizeof(hdr->http); if (data_len) { *data = HeapAlloc(GetProcessHeap(), 0, data_len); if (!*data) return RPC_S_OUT_OF_RESOURCES; if (rpcrt4_http_async_read(request, async_data, cancel_event, *data, data_len) < 0) { HeapFree(GetProcessHeap(), 0, *data); return RPC_S_SERVER_UNAVAILABLE; } } else *data = NULL; if (!RPCRT4_IsValidHttpPacket(hdr, *data, data_len)) { ERR("invalid http packet\n"); HeapFree(GetProcessHeap(), 0, *data); return RPC_S_PROTOCOL_ERROR; } return RPC_S_OK; } /* prepare the out pipe for use by RPC packets */ static RPC_STATUS rpcrt4_http_prepare_out_pipe(HINTERNET out_request, RpcHttpAsyncData *async_data, HANDLE cancel_event, const UUID *connection_uuid, const UUID *out_pipe_uuid, ULONG *flow_control_increment, BOOL authorized) { BOOL ret; RPC_STATUS status; RpcPktHdr *hdr; BYTE *data_from_server; RpcPktHdr pkt_from_server; ULONG field1, field3; BYTE buf[20]; if (!authorized) { /* ask wininet to authorize, if necessary */ status = send_echo_request(out_request, async_data, cancel_event); if (status != RPC_S_OK) return status; } else rpcrt4_http_async_read(out_request, async_data, cancel_event, buf, sizeof(buf)); hdr = RPCRT4_BuildHttpConnectHeader(TRUE, connection_uuid, out_pipe_uuid, NULL); if (!hdr) return RPC_S_OUT_OF_RESOURCES; status = insert_content_length_header(out_request, hdr->common.frag_len); if (status != RPC_S_OK) { RPCRT4_FreeHeader(hdr); return status; } TRACE("sending HTTP connect header to server\n"); prepare_async_request(async_data); ret = HttpSendRequestW(out_request, NULL, 0, hdr, hdr->common.frag_len); status = wait_async_request(async_data, ret, cancel_event); RPCRT4_FreeHeader(hdr); if (status != RPC_S_OK) return status; status = rpcrt4_http_check_response(out_request); if (status != RPC_S_OK) return status; status = rpcrt4_http_read_http_packet(out_request, async_data, cancel_event, &pkt_from_server, &data_from_server); if (status != RPC_S_OK) return status; status = RPCRT4_ParseHttpPrepareHeader1(&pkt_from_server, data_from_server, &field1); HeapFree(GetProcessHeap(), 0, data_from_server); if (status != RPC_S_OK) return status; TRACE("received (%d) from first prepare header\n", field1); for (;;) { status = rpcrt4_http_read_http_packet(out_request, async_data, cancel_event, &pkt_from_server, &data_from_server); if (status != RPC_S_OK) return status; if (pkt_from_server.http.flags != 0x0001) break; TRACE("http idle packet, waiting for real packet\n"); HeapFree(GetProcessHeap(), 0, data_from_server); if (pkt_from_server.http.num_data_items != 0) { ERR("HTTP idle packet should have no data items instead of %d\n", pkt_from_server.http.num_data_items); return RPC_S_PROTOCOL_ERROR; } } status = RPCRT4_ParseHttpPrepareHeader2(&pkt_from_server, data_from_server, &field1, flow_control_increment, &field3); HeapFree(GetProcessHeap(), 0, data_from_server); if (status != RPC_S_OK) return status; TRACE("received (0x%08x 0x%08x %d) from second prepare header\n", field1, *flow_control_increment, field3); return RPC_S_OK; } static UINT encode_base64(const char *bin, unsigned int len, WCHAR *base64) { static const char enc[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; UINT i = 0, x; while (len > 0) { /* first 6 bits, all from bin[0] */ base64[i++] = enc[(bin[0] & 0xfc) >> 2]; x = (bin[0] & 3) << 4; /* next 6 bits, 2 from bin[0] and 4 from bin[1] */ if (len == 1) { base64[i++] = enc[x]; base64[i++] = '='; base64[i++] = '='; break; } base64[i++] = enc[x | ((bin[1] & 0xf0) >> 4)]; x = (bin[1] & 0x0f) << 2; /* next 6 bits 4 from bin[1] and 2 from bin[2] */ if (len == 2) { base64[i++] = enc[x]; base64[i++] = '='; break; } base64[i++] = enc[x | ((bin[2] & 0xc0) >> 6)]; /* last 6 bits, all from bin [2] */ base64[i++] = enc[bin[2] & 0x3f]; bin += 3; len -= 3; } base64[i] = 0; return i; } static inline char decode_char( WCHAR c ) { if (c >= 'A' && c <= 'Z') return c - 'A'; if (c >= 'a' && c <= 'z') return c - 'a' + 26; if (c >= '0' && c <= '9') return c - '0' + 52; if (c == '+') return 62; if (c == '/') return 63; return 64; } static unsigned int decode_base64( const WCHAR *base64, unsigned int len, char *buf ) { unsigned int i = 0; char c0, c1, c2, c3; const WCHAR *p = base64; while (len > 4) { if ((c0 = decode_char( p[0] )) > 63) return 0; if ((c1 = decode_char( p[1] )) > 63) return 0; if ((c2 = decode_char( p[2] )) > 63) return 0; if ((c3 = decode_char( p[3] )) > 63) return 0; if (buf) { buf[i + 0] = (c0 << 2) | (c1 >> 4); buf[i + 1] = (c1 << 4) | (c2 >> 2); buf[i + 2] = (c2 << 6) | c3; } len -= 4; i += 3; p += 4; } if (p[2] == '=') { if ((c0 = decode_char( p[0] )) > 63) return 0; if ((c1 = decode_char( p[1] )) > 63) return 0; if (buf) buf[i] = (c0 << 2) | (c1 >> 4); i++; } else if (p[3] == '=') { if ((c0 = decode_char( p[0] )) > 63) return 0; if ((c1 = decode_char( p[1] )) > 63) return 0; if ((c2 = decode_char( p[2] )) > 63) return 0; if (buf) { buf[i + 0] = (c0 << 2) | (c1 >> 4); buf[i + 1] = (c1 << 4) | (c2 >> 2); } i += 2; } else { if ((c0 = decode_char( p[0] )) > 63) return 0; if ((c1 = decode_char( p[1] )) > 63) return 0; if ((c2 = decode_char( p[2] )) > 63) return 0; if ((c3 = decode_char( p[3] )) > 63) return 0; if (buf) { buf[i + 0] = (c0 << 2) | (c1 >> 4); buf[i + 1] = (c1 << 4) | (c2 >> 2); buf[i + 2] = (c2 << 6) | c3; } i += 3; } return i; } static struct authinfo *alloc_authinfo(void) { struct authinfo *ret; if (!(ret = HeapAlloc(GetProcessHeap(), 0, sizeof(*ret) ))) return NULL; SecInvalidateHandle(&ret->cred); SecInvalidateHandle(&ret->ctx); memset(&ret->exp, 0, sizeof(ret->exp)); ret->scheme = 0; ret->attr = 0; ret->max_token = 0; ret->data = NULL; ret->data_len = 0; ret->finished = FALSE; return ret; } static void destroy_authinfo(struct authinfo *info) { if (!info) return; if (SecIsValidHandle(&info->ctx)) DeleteSecurityContext(&info->ctx); if (SecIsValidHandle(&info->cred)) FreeCredentialsHandle(&info->cred); HeapFree(GetProcessHeap(), 0, info->data); HeapFree(GetProcessHeap(), 0, info); } static const WCHAR basicW[] = {'B','a','s','i','c',0}; static const WCHAR ntlmW[] = {'N','T','L','M',0}; static const WCHAR passportW[] = {'P','a','s','s','p','o','r','t',0}; static const WCHAR digestW[] = {'D','i','g','e','s','t',0}; static const WCHAR negotiateW[] = {'N','e','g','o','t','i','a','t','e',0}; static const struct { const WCHAR *str; unsigned int len; DWORD scheme; } auth_schemes[] = { { basicW, ARRAY_SIZE(basicW) - 1, RPC_C_HTTP_AUTHN_SCHEME_BASIC }, { ntlmW, ARRAY_SIZE(ntlmW) - 1, RPC_C_HTTP_AUTHN_SCHEME_NTLM }, { passportW, ARRAY_SIZE(passportW) - 1, RPC_C_HTTP_AUTHN_SCHEME_PASSPORT }, { digestW, ARRAY_SIZE(digestW) - 1, RPC_C_HTTP_AUTHN_SCHEME_DIGEST }, { negotiateW, ARRAY_SIZE(negotiateW) - 1, RPC_C_HTTP_AUTHN_SCHEME_NEGOTIATE } }; static DWORD auth_scheme_from_header( const WCHAR *header ) { unsigned int i; for (i = 0; i < ARRAY_SIZE(auth_schemes); i++) { if (!_wcsnicmp( header, auth_schemes[i].str, auth_schemes[i].len ) && (header[auth_schemes[i].len] == ' ' || !header[auth_schemes[i].len])) return auth_schemes[i].scheme; } return 0; } static BOOL get_authvalue(HINTERNET request, DWORD scheme, WCHAR *buffer, DWORD buflen) { DWORD len, index = 0; for (;;) { len = buflen; if (!HttpQueryInfoW(request, HTTP_QUERY_WWW_AUTHENTICATE, buffer, &len, &index)) return FALSE; if (auth_scheme_from_header(buffer) == scheme) break; } return TRUE; } static RPC_STATUS do_authorization(HINTERNET request, SEC_WCHAR *servername, const RPC_HTTP_TRANSPORT_CREDENTIALS_W *creds, struct authinfo **auth_ptr) { struct authinfo *info = *auth_ptr; SEC_WINNT_AUTH_IDENTITY_W *id = creds->TransportCredentials; RPC_STATUS status = RPC_S_SERVER_UNAVAILABLE; if ((!info && !(info = alloc_authinfo()))) return RPC_S_SERVER_UNAVAILABLE; switch (creds->AuthnSchemes[0]) { case RPC_C_HTTP_AUTHN_SCHEME_BASIC: { int userlen = WideCharToMultiByte(CP_UTF8, 0, id->User, id->UserLength, NULL, 0, NULL, NULL); int passlen = WideCharToMultiByte(CP_UTF8, 0, id->Password, id->PasswordLength, NULL, 0, NULL, NULL); info->data_len = userlen + passlen + 1; if (!(info->data = HeapAlloc(GetProcessHeap(), 0, info->data_len))) { status = RPC_S_OUT_OF_MEMORY; break; } WideCharToMultiByte(CP_UTF8, 0, id->User, id->UserLength, info->data, userlen, NULL, NULL); info->data[userlen] = ':'; WideCharToMultiByte(CP_UTF8, 0, id->Password, id->PasswordLength, info->data + userlen + 1, passlen, NULL, NULL); info->scheme = RPC_C_HTTP_AUTHN_SCHEME_BASIC; info->finished = TRUE; status = RPC_S_OK; break; } case RPC_C_HTTP_AUTHN_SCHEME_NTLM: case RPC_C_HTTP_AUTHN_SCHEME_NEGOTIATE: { static SEC_WCHAR ntlmW[] = {'N','T','L','M',0}, negotiateW[] = {'N','e','g','o','t','i','a','t','e',0}; SECURITY_STATUS ret; SecBufferDesc out_desc, in_desc; SecBuffer out, in; ULONG flags = ISC_REQ_CONNECTION|ISC_REQ_USE_DCE_STYLE|ISC_REQ_MUTUAL_AUTH|ISC_REQ_DELEGATE; SEC_WCHAR *scheme; int scheme_len; const WCHAR *p; WCHAR auth_value[2048]; DWORD size = sizeof(auth_value); BOOL first = FALSE; if (creds->AuthnSchemes[0] == RPC_C_HTTP_AUTHN_SCHEME_NTLM) scheme = ntlmW; else scheme = negotiateW; scheme_len = lstrlenW( scheme ); if (!*auth_ptr) { TimeStamp exp; SecPkgInfoW *pkg_info; ret = AcquireCredentialsHandleW(NULL, scheme, SECPKG_CRED_OUTBOUND, NULL, id, NULL, NULL, &info->cred, &exp); if (ret != SEC_E_OK) break; ret = QuerySecurityPackageInfoW(scheme, &pkg_info); if (ret != SEC_E_OK) break; info->max_token = pkg_info->cbMaxToken; FreeContextBuffer(pkg_info); first = TRUE; } else { if (info->finished || !get_authvalue(request, creds->AuthnSchemes[0], auth_value, size)) break; if (auth_scheme_from_header(auth_value) != info->scheme) { ERR("authentication scheme changed\n"); break; } } in.BufferType = SECBUFFER_TOKEN; in.cbBuffer = 0; in.pvBuffer = NULL; in_desc.ulVersion = 0; in_desc.cBuffers = 1; in_desc.pBuffers = ∈ p = auth_value + scheme_len; if (!first && *p == ' ') { int len = lstrlenW(++p); in.cbBuffer = decode_base64(p, len, NULL); if (!(in.pvBuffer = HeapAlloc(GetProcessHeap(), 0, in.cbBuffer))) break; decode_base64(p, len, in.pvBuffer); } out.BufferType = SECBUFFER_TOKEN; out.cbBuffer = info->max_token; if (!(out.pvBuffer = HeapAlloc(GetProcessHeap(), 0, out.cbBuffer))) { HeapFree(GetProcessHeap(), 0, in.pvBuffer); break; } out_desc.ulVersion = 0; out_desc.cBuffers = 1; out_desc.pBuffers = &out; ret = InitializeSecurityContextW(first ? &info->cred : NULL, first ? NULL : &info->ctx, first ? servername : NULL, flags, 0, SECURITY_NETWORK_DREP, in.pvBuffer ? &in_desc : NULL, 0, &info->ctx, &out_desc, &info->attr, &info->exp); HeapFree(GetProcessHeap(), 0, in.pvBuffer); if (ret == SEC_E_OK) { HeapFree(GetProcessHeap(), 0, info->data); info->data = out.pvBuffer; info->data_len = out.cbBuffer; info->finished = TRUE; TRACE("sending last auth packet\n"); status = RPC_S_OK; } else if (ret == SEC_I_CONTINUE_NEEDED) { HeapFree(GetProcessHeap(), 0, info->data); info->data = out.pvBuffer; info->data_len = out.cbBuffer; TRACE("sending next auth packet\n"); status = RPC_S_OK; } else { ERR("InitializeSecurityContextW failed with error 0x%08x\n", ret); HeapFree(GetProcessHeap(), 0, out.pvBuffer); break; } info->scheme = creds->AuthnSchemes[0]; break; } default: FIXME("scheme %u not supported\n", creds->AuthnSchemes[0]); break; } if (status != RPC_S_OK) { destroy_authinfo(info); *auth_ptr = NULL; return status; } *auth_ptr = info; return RPC_S_OK; } static RPC_STATUS insert_authorization_header(HINTERNET request, ULONG scheme, char *data, int data_len) { static const WCHAR authW[] = {'A','u','t','h','o','r','i','z','a','t','i','o','n',':',' '}; static const WCHAR basicW[] = {'B','a','s','i','c',' '}; static const WCHAR negotiateW[] = {'N','e','g','o','t','i','a','t','e',' '}; static const WCHAR ntlmW[] = {'N','T','L','M',' '}; int scheme_len, auth_len = ARRAY_SIZE(authW), len = ((data_len + 2) * 4) / 3; const WCHAR *scheme_str; WCHAR *header, *ptr; RPC_STATUS status = RPC_S_SERVER_UNAVAILABLE; switch (scheme) { case RPC_C_HTTP_AUTHN_SCHEME_BASIC: scheme_str = basicW; scheme_len = ARRAY_SIZE(basicW); break; case RPC_C_HTTP_AUTHN_SCHEME_NEGOTIATE: scheme_str = negotiateW; scheme_len = ARRAY_SIZE(negotiateW); break; case RPC_C_HTTP_AUTHN_SCHEME_NTLM: scheme_str = ntlmW; scheme_len = ARRAY_SIZE(ntlmW); break; default: ERR("unknown scheme %u\n", scheme); return RPC_S_SERVER_UNAVAILABLE; } if ((header = HeapAlloc(GetProcessHeap(), 0, (auth_len + scheme_len + len + 2) * sizeof(WCHAR)))) { memcpy(header, authW, auth_len * sizeof(WCHAR)); ptr = header + auth_len; memcpy(ptr, scheme_str, scheme_len * sizeof(WCHAR)); ptr += scheme_len; len = encode_base64(data, data_len, ptr); ptr[len++] = '\r'; ptr[len++] = '\n'; ptr[len] = 0; if (HttpAddRequestHeadersW(request, header, -1, HTTP_ADDREQ_FLAG_ADD|HTTP_ADDREQ_FLAG_REPLACE)) status = RPC_S_OK; HeapFree(GetProcessHeap(), 0, header); } return status; } static void drain_content(HINTERNET request, RpcHttpAsyncData *async_data, HANDLE cancel_event) { DWORD count, len = 0, size = sizeof(len); char buf[2048]; HttpQueryInfoW(request, HTTP_QUERY_FLAG_NUMBER|HTTP_QUERY_CONTENT_LENGTH, &len, &size, NULL); if (!len) return; for (;;) { count = min(sizeof(buf), len); if (rpcrt4_http_async_read(request, async_data, cancel_event, buf, count) <= 0) return; len -= count; } } static RPC_STATUS authorize_request(RpcConnection_http *httpc, HINTERNET request) { static const WCHAR authW[] = {'A','u','t','h','o','r','i','z','a','t','i','o','n',':','\r','\n',0}; struct authinfo *info = NULL; RPC_STATUS status; BOOL ret; for (;;) { status = do_authorization(request, httpc->servername, httpc->common.QOS->qos->u.HttpCredentials, &info); if (status != RPC_S_OK) break; status = insert_authorization_header(request, info->scheme, info->data, info->data_len); if (status != RPC_S_OK) break; prepare_async_request(httpc->async_data); ret = HttpSendRequestW(request, NULL, 0, NULL, 0); status = wait_async_request(httpc->async_data, ret, httpc->cancel_event); if (status != RPC_S_OK || info->finished) break; status = rpcrt4_http_check_response(request); if (status != RPC_S_OK && status != ERROR_ACCESS_DENIED) break; drain_content(request, httpc->async_data, httpc->cancel_event); } if (info->scheme != RPC_C_HTTP_AUTHN_SCHEME_BASIC) HttpAddRequestHeadersW(request, authW, -1, HTTP_ADDREQ_FLAG_REPLACE | HTTP_ADDREQ_FLAG_ADD); destroy_authinfo(info); return status; } static BOOL has_credentials(RpcConnection_http *httpc) { RPC_HTTP_TRANSPORT_CREDENTIALS_W *creds; SEC_WINNT_AUTH_IDENTITY_W *id; if (!httpc->common.QOS || httpc->common.QOS->qos->AdditionalSecurityInfoType != RPC_C_AUTHN_INFO_TYPE_HTTP) return FALSE; creds = httpc->common.QOS->qos->u.HttpCredentials; if (creds->AuthenticationTarget != RPC_C_HTTP_AUTHN_TARGET_SERVER || !creds->NumberOfAuthnSchemes) return FALSE; id = creds->TransportCredentials; if (!id || !id->User || !id->Password) return FALSE; return TRUE; } static BOOL is_secure(RpcConnection_http *httpc) { return httpc->common.QOS && (httpc->common.QOS->qos->AdditionalSecurityInfoType == RPC_C_AUTHN_INFO_TYPE_HTTP) && (httpc->common.QOS->qos->u.HttpCredentials->Flags & RPC_C_HTTP_FLAG_USE_SSL); } static RPC_STATUS set_auth_cookie(RpcConnection_http *httpc, const WCHAR *value) { static WCHAR httpW[] = {'h','t','t','p',0}; static WCHAR httpsW[] = {'h','t','t','p','s',0}; URL_COMPONENTSW uc; DWORD len; WCHAR *url; BOOL ret; if (!value) return RPC_S_OK; uc.dwStructSize = sizeof(uc); uc.lpszScheme = is_secure(httpc) ? httpsW : httpW; uc.dwSchemeLength = 0; uc.lpszHostName = httpc->servername; uc.dwHostNameLength = 0; uc.nPort = 0; uc.lpszUserName = NULL; uc.dwUserNameLength = 0; uc.lpszPassword = NULL; uc.dwPasswordLength = 0; uc.lpszUrlPath = NULL; uc.dwUrlPathLength = 0; uc.lpszExtraInfo = NULL; uc.dwExtraInfoLength = 0; if (!InternetCreateUrlW(&uc, 0, NULL, &len) && (GetLastError() != ERROR_INSUFFICIENT_BUFFER)) return RPC_S_SERVER_UNAVAILABLE; if (!(url = HeapAlloc(GetProcessHeap(), 0, len))) return RPC_S_OUT_OF_MEMORY; len = len / sizeof(WCHAR) - 1; if (!InternetCreateUrlW(&uc, 0, url, &len)) { HeapFree(GetProcessHeap(), 0, url); return RPC_S_SERVER_UNAVAILABLE; } ret = InternetSetCookieW(url, NULL, value); HeapFree(GetProcessHeap(), 0, url); if (!ret) return RPC_S_SERVER_UNAVAILABLE; return RPC_S_OK; } static RPC_STATUS rpcrt4_ncacn_http_open(RpcConnection* Connection) { RpcConnection_http *httpc = (RpcConnection_http *)Connection; static const WCHAR wszVerbIn[] = {'R','P','C','_','I','N','_','D','A','T','A',0}; static const WCHAR wszVerbOut[] = {'R','P','C','_','O','U','T','_','D','A','T','A',0}; static const WCHAR wszRpcProxyPrefix[] = {'/','r','p','c','/','r','p','c','p','r','o','x','y','.','d','l','l','?',0}; static const WCHAR wszColon[] = {':',0}; static const WCHAR wszAcceptType[] = {'a','p','p','l','i','c','a','t','i','o','n','/','r','p','c',0}; LPCWSTR wszAcceptTypes[] = { wszAcceptType, NULL }; DWORD flags; WCHAR *url; RPC_STATUS status; BOOL secure, credentials; HttpTimerThreadData *timer_data; HANDLE thread; TRACE("(%s, %s)\n", Connection->NetworkAddr, Connection->Endpoint); if (Connection->server) { ERR("ncacn_http servers not supported yet\n"); return RPC_S_SERVER_UNAVAILABLE; } if (httpc->in_request) return RPC_S_OK; httpc->async_data->completion_event = CreateEventW(NULL, FALSE, FALSE, NULL); UuidCreate(&httpc->connection_uuid); UuidCreate(&httpc->in_pipe_uuid); UuidCreate(&httpc->out_pipe_uuid); status = rpcrt4_http_internet_connect(httpc); if (status != RPC_S_OK) return status; url = HeapAlloc(GetProcessHeap(), 0, sizeof(wszRpcProxyPrefix) + (strlen(Connection->NetworkAddr) + 1 + strlen(Connection->Endpoint))*sizeof(WCHAR)); if (!url) return RPC_S_OUT_OF_MEMORY; memcpy(url, wszRpcProxyPrefix, sizeof(wszRpcProxyPrefix)); MultiByteToWideChar(CP_ACP, 0, Connection->NetworkAddr, -1, url+ARRAY_SIZE(wszRpcProxyPrefix)-1, strlen(Connection->NetworkAddr)+1); lstrcatW(url, wszColon); MultiByteToWideChar(CP_ACP, 0, Connection->Endpoint, -1, url+lstrlenW(url), strlen(Connection->Endpoint)+1); secure = is_secure(httpc); credentials = has_credentials(httpc); flags = INTERNET_FLAG_KEEP_CONNECTION | INTERNET_FLAG_PRAGMA_NOCACHE | INTERNET_FLAG_NO_CACHE_WRITE | INTERNET_FLAG_NO_AUTO_REDIRECT; if (secure) flags |= INTERNET_FLAG_SECURE; if (credentials) flags |= INTERNET_FLAG_NO_AUTH; status = set_auth_cookie(httpc, Connection->CookieAuth); if (status != RPC_S_OK) { HeapFree(GetProcessHeap(), 0, url); return status; } httpc->in_request = HttpOpenRequestW(httpc->session, wszVerbIn, url, NULL, NULL, wszAcceptTypes, flags, (DWORD_PTR)httpc->async_data); if (!httpc->in_request) { ERR("HttpOpenRequestW failed with error %d\n", GetLastError()); HeapFree(GetProcessHeap(), 0, url); return RPC_S_SERVER_UNAVAILABLE; } if (credentials) { status = authorize_request(httpc, httpc->in_request); if (status != RPC_S_OK) { HeapFree(GetProcessHeap(), 0, url); return status; } status = rpcrt4_http_check_response(httpc->in_request); if (status != RPC_S_OK) { HeapFree(GetProcessHeap(), 0, url); return status; } drain_content(httpc->in_request, httpc->async_data, httpc->cancel_event); } httpc->out_request = HttpOpenRequestW(httpc->session, wszVerbOut, url, NULL, NULL, wszAcceptTypes, flags, (DWORD_PTR)httpc->async_data); HeapFree(GetProcessHeap(), 0, url); if (!httpc->out_request) { ERR("HttpOpenRequestW failed with error %d\n", GetLastError()); return RPC_S_SERVER_UNAVAILABLE; } if (credentials) { status = authorize_request(httpc, httpc->out_request); if (status != RPC_S_OK) return status; } status = rpcrt4_http_prepare_in_pipe(httpc->in_request, httpc->async_data, httpc->cancel_event, &httpc->connection_uuid, &httpc->in_pipe_uuid, &Connection->assoc->http_uuid, credentials); if (status != RPC_S_OK) return status; status = rpcrt4_http_prepare_out_pipe(httpc->out_request, httpc->async_data, httpc->cancel_event, &httpc->connection_uuid, &httpc->out_pipe_uuid, &httpc->flow_control_increment, credentials); if (status != RPC_S_OK) return status; httpc->flow_control_mark = httpc->flow_control_increment / 2; httpc->last_sent_time = GetTickCount(); httpc->timer_cancelled = CreateEventW(NULL, FALSE, FALSE, NULL); timer_data = HeapAlloc(GetProcessHeap(), 0, sizeof(*timer_data)); if (!timer_data) return ERROR_OUTOFMEMORY; timer_data->timer_param = httpc->in_request; timer_data->last_sent_time = &httpc->last_sent_time; timer_data->timer_cancelled = httpc->timer_cancelled; /* FIXME: should use CreateTimerQueueTimer when implemented */ thread = CreateThread(NULL, 0, rpcrt4_http_timer_thread, timer_data, 0, NULL); if (!thread) { HeapFree(GetProcessHeap(), 0, timer_data); return GetLastError(); } CloseHandle(thread); return RPC_S_OK; } static RPC_STATUS rpcrt4_ncacn_http_handoff(RpcConnection *old_conn, RpcConnection *new_conn) { assert(0); return RPC_S_SERVER_UNAVAILABLE; } static int rpcrt4_ncacn_http_read(RpcConnection *Connection, void *buffer, unsigned int count) { RpcConnection_http *httpc = (RpcConnection_http *) Connection; return rpcrt4_http_async_read(httpc->out_request, httpc->async_data, httpc->cancel_event, buffer, count); } static RPC_STATUS rpcrt4_ncacn_http_receive_fragment(RpcConnection *Connection, RpcPktHdr **Header, void **Payload) { RpcConnection_http *httpc = (RpcConnection_http *) Connection; RPC_STATUS status; DWORD hdr_length; LONG dwRead; RpcPktCommonHdr common_hdr; *Header = NULL; TRACE("(%p, %p, %p)\n", Connection, Header, Payload); again: /* read packet common header */ dwRead = rpcrt4_ncacn_http_read(Connection, &common_hdr, sizeof(common_hdr)); if (dwRead != sizeof(common_hdr)) { WARN("Short read of header, %d bytes\n", dwRead); status = RPC_S_PROTOCOL_ERROR; goto fail; } if (!memcmp(&common_hdr, "HTTP/1.1", sizeof("HTTP/1.1")) || !memcmp(&common_hdr, "HTTP/1.0", sizeof("HTTP/1.0"))) { FIXME("server returned %s\n", debugstr_a((const char *)&common_hdr)); status = RPC_S_PROTOCOL_ERROR; goto fail; } status = RPCRT4_ValidateCommonHeader(&common_hdr); if (status != RPC_S_OK) goto fail; hdr_length = RPCRT4_GetHeaderSize((RpcPktHdr*)&common_hdr); if (hdr_length == 0) { WARN("header length == 0\n"); status = RPC_S_PROTOCOL_ERROR; goto fail; } *Header = HeapAlloc(GetProcessHeap(), 0, hdr_length); if (!*Header) { status = RPC_S_OUT_OF_RESOURCES; goto fail; } memcpy(*Header, &common_hdr, sizeof(common_hdr)); /* read the rest of packet header */ dwRead = rpcrt4_ncacn_http_read(Connection, &(*Header)->common + 1, hdr_length - sizeof(common_hdr)); if (dwRead != hdr_length - sizeof(common_hdr)) { WARN("bad header length, %d bytes, hdr_length %d\n", dwRead, hdr_length); status = RPC_S_PROTOCOL_ERROR; goto fail; } if (common_hdr.frag_len - hdr_length) { *Payload = HeapAlloc(GetProcessHeap(), 0, common_hdr.frag_len - hdr_length); if (!*Payload) { status = RPC_S_OUT_OF_RESOURCES; goto fail; } dwRead = rpcrt4_ncacn_http_read(Connection, *Payload, common_hdr.frag_len - hdr_length); if (dwRead != common_hdr.frag_len - hdr_length) { WARN("bad data length, %d/%d\n", dwRead, common_hdr.frag_len - hdr_length); status = RPC_S_PROTOCOL_ERROR; goto fail; } } else *Payload = NULL; if ((*Header)->common.ptype == PKT_HTTP) { if (!RPCRT4_IsValidHttpPacket(*Header, *Payload, common_hdr.frag_len - hdr_length)) { ERR("invalid http packet of length %d bytes\n", (*Header)->common.frag_len); status = RPC_S_PROTOCOL_ERROR; goto fail; } if ((*Header)->http.flags == 0x0001) { TRACE("http idle packet, waiting for real packet\n"); if ((*Header)->http.num_data_items != 0) { ERR("HTTP idle packet should have no data items instead of %d\n", (*Header)->http.num_data_items); status = RPC_S_PROTOCOL_ERROR; goto fail; } } else if ((*Header)->http.flags == 0x0002) { ULONG bytes_transmitted; ULONG flow_control_increment; UUID pipe_uuid; status = RPCRT4_ParseHttpFlowControlHeader(*Header, *Payload, Connection->server, &bytes_transmitted, &flow_control_increment, &pipe_uuid); if (status != RPC_S_OK) goto fail; TRACE("received http flow control header (0x%x, 0x%x, %s)\n", bytes_transmitted, flow_control_increment, debugstr_guid(&pipe_uuid)); /* FIXME: do something with parsed data */ } else { FIXME("unrecognised http packet with flags 0x%04x\n", (*Header)->http.flags); status = RPC_S_PROTOCOL_ERROR; goto fail; } RPCRT4_FreeHeader(*Header); *Header = NULL; HeapFree(GetProcessHeap(), 0, *Payload); *Payload = NULL; goto again; } /* success */ status = RPC_S_OK; httpc->bytes_received += common_hdr.frag_len; TRACE("httpc->bytes_received = 0x%x\n", httpc->bytes_received); if (httpc->bytes_received > httpc->flow_control_mark) { RpcPktHdr *hdr = RPCRT4_BuildHttpFlowControlHeader(httpc->common.server, httpc->bytes_received, httpc->flow_control_increment, &httpc->out_pipe_uuid); if (hdr) { DWORD bytes_written; BOOL ret2; TRACE("sending flow control packet at 0x%x\n", httpc->bytes_received); ret2 = InternetWriteFile(httpc->in_request, hdr, hdr->common.frag_len, &bytes_written); RPCRT4_FreeHeader(hdr); if (ret2) httpc->flow_control_mark = httpc->bytes_received + httpc->flow_control_increment / 2; } } fail: if (status != RPC_S_OK) { RPCRT4_FreeHeader(*Header); *Header = NULL; HeapFree(GetProcessHeap(), 0, *Payload); *Payload = NULL; } return status; } static int rpcrt4_ncacn_http_write(RpcConnection *Connection, const void *buffer, unsigned int count) { RpcConnection_http *httpc = (RpcConnection_http *) Connection; DWORD bytes_written; BOOL ret; httpc->last_sent_time = ~0U; /* disable idle packet sending */ ret = InternetWriteFile(httpc->in_request, buffer, count, &bytes_written); httpc->last_sent_time = GetTickCount(); TRACE("%p %p %u -> %s\n", httpc->in_request, buffer, count, ret ? "TRUE" : "FALSE"); return ret ? bytes_written : -1; } static int rpcrt4_ncacn_http_close(RpcConnection *Connection) { RpcConnection_http *httpc = (RpcConnection_http *) Connection; TRACE("\n"); SetEvent(httpc->timer_cancelled); if (httpc->in_request) InternetCloseHandle(httpc->in_request); httpc->in_request = NULL; if (httpc->out_request) InternetCloseHandle(httpc->out_request); httpc->out_request = NULL; if (httpc->app_info) InternetCloseHandle(httpc->app_info); httpc->app_info = NULL; if (httpc->session) InternetCloseHandle(httpc->session); httpc->session = NULL; RpcHttpAsyncData_Release(httpc->async_data); if (httpc->cancel_event) CloseHandle(httpc->cancel_event); HeapFree(GetProcessHeap(), 0, httpc->servername); httpc->servername = NULL; return 0; } static void rpcrt4_ncacn_http_close_read(RpcConnection *conn) { rpcrt4_ncacn_http_close(conn); /* FIXME */ } static void rpcrt4_ncacn_http_cancel_call(RpcConnection *Connection) { RpcConnection_http *httpc = (RpcConnection_http *) Connection; SetEvent(httpc->cancel_event); } static RPC_STATUS rpcrt4_ncacn_http_is_server_listening(const char *endpoint) { FIXME("\n"); return RPC_S_ACCESS_DENIED; } static int rpcrt4_ncacn_http_wait_for_incoming_data(RpcConnection *Connection) { RpcConnection_http *httpc = (RpcConnection_http *) Connection; BOOL ret; RPC_STATUS status; prepare_async_request(httpc->async_data); ret = InternetQueryDataAvailable(httpc->out_request, &httpc->async_data->inet_buffers.dwBufferLength, IRF_ASYNC, 0); status = wait_async_request(httpc->async_data, ret, httpc->cancel_event); return status == RPC_S_OK ? 0 : -1; } static size_t rpcrt4_ncacn_http_get_top_of_tower(unsigned char *tower_data, const char *networkaddr, const char *endpoint) { return rpcrt4_ip_tcp_get_top_of_tower(tower_data, networkaddr, EPM_PROTOCOL_HTTP, endpoint); } static RPC_STATUS rpcrt4_ncacn_http_parse_top_of_tower(const unsigned char *tower_data, size_t tower_size, char **networkaddr, char **endpoint) { return rpcrt4_ip_tcp_parse_top_of_tower(tower_data, tower_size, networkaddr, EPM_PROTOCOL_HTTP, endpoint); } static const struct connection_ops conn_protseq_list[] = { { "ncacn_np", { EPM_PROTOCOL_NCACN, EPM_PROTOCOL_SMB }, rpcrt4_conn_np_alloc, rpcrt4_ncacn_np_open, rpcrt4_ncacn_np_handoff, rpcrt4_conn_np_read, rpcrt4_conn_np_write, rpcrt4_conn_np_close, rpcrt4_conn_np_close_read, rpcrt4_conn_np_cancel_call, rpcrt4_ncacn_np_is_server_listening, rpcrt4_conn_np_wait_for_incoming_data, rpcrt4_ncacn_np_get_top_of_tower, rpcrt4_ncacn_np_parse_top_of_tower, NULL, RPCRT4_default_is_authorized, RPCRT4_default_authorize, RPCRT4_default_secure_packet, rpcrt4_conn_np_impersonate_client, rpcrt4_conn_np_revert_to_self, RPCRT4_default_inquire_auth_client, }, { "ncalrpc", { EPM_PROTOCOL_NCALRPC, EPM_PROTOCOL_PIPE }, rpcrt4_conn_np_alloc, rpcrt4_ncalrpc_open, rpcrt4_ncalrpc_handoff, rpcrt4_conn_np_read, rpcrt4_conn_np_write, rpcrt4_conn_np_close, rpcrt4_conn_np_close_read, rpcrt4_conn_np_cancel_call, rpcrt4_ncalrpc_np_is_server_listening, rpcrt4_conn_np_wait_for_incoming_data, rpcrt4_ncalrpc_get_top_of_tower, rpcrt4_ncalrpc_parse_top_of_tower, NULL, rpcrt4_ncalrpc_is_authorized, rpcrt4_ncalrpc_authorize, rpcrt4_ncalrpc_secure_packet, rpcrt4_conn_np_impersonate_client, rpcrt4_conn_np_revert_to_self, rpcrt4_ncalrpc_inquire_auth_client, }, { "ncacn_ip_tcp", { EPM_PROTOCOL_NCACN, EPM_PROTOCOL_TCP }, rpcrt4_conn_tcp_alloc, rpcrt4_ncacn_ip_tcp_open, rpcrt4_conn_tcp_handoff, rpcrt4_conn_tcp_read, rpcrt4_conn_tcp_write, rpcrt4_conn_tcp_close, rpcrt4_conn_tcp_close_read, rpcrt4_conn_tcp_cancel_call, rpcrt4_conn_tcp_is_server_listening, rpcrt4_conn_tcp_wait_for_incoming_data, rpcrt4_ncacn_ip_tcp_get_top_of_tower, rpcrt4_ncacn_ip_tcp_parse_top_of_tower, NULL, RPCRT4_default_is_authorized, RPCRT4_default_authorize, RPCRT4_default_secure_packet, RPCRT4_default_impersonate_client, RPCRT4_default_revert_to_self, RPCRT4_default_inquire_auth_client, }, { "ncacn_http", { EPM_PROTOCOL_NCACN, EPM_PROTOCOL_HTTP }, rpcrt4_ncacn_http_alloc, rpcrt4_ncacn_http_open, rpcrt4_ncacn_http_handoff, rpcrt4_ncacn_http_read, rpcrt4_ncacn_http_write, rpcrt4_ncacn_http_close, rpcrt4_ncacn_http_close_read, rpcrt4_ncacn_http_cancel_call, rpcrt4_ncacn_http_is_server_listening, rpcrt4_ncacn_http_wait_for_incoming_data, rpcrt4_ncacn_http_get_top_of_tower, rpcrt4_ncacn_http_parse_top_of_tower, rpcrt4_ncacn_http_receive_fragment, RPCRT4_default_is_authorized, RPCRT4_default_authorize, RPCRT4_default_secure_packet, RPCRT4_default_impersonate_client, RPCRT4_default_revert_to_self, RPCRT4_default_inquire_auth_client, }, }; static const struct protseq_ops protseq_list[] = { { "ncacn_np", rpcrt4_protseq_np_alloc, rpcrt4_protseq_np_signal_state_changed, rpcrt4_protseq_np_get_wait_array, rpcrt4_protseq_np_free_wait_array, rpcrt4_protseq_np_wait_for_new_connection, rpcrt4_protseq_ncacn_np_open_endpoint, }, { "ncalrpc", rpcrt4_protseq_np_alloc, rpcrt4_protseq_np_signal_state_changed, rpcrt4_protseq_np_get_wait_array, rpcrt4_protseq_np_free_wait_array, rpcrt4_protseq_np_wait_for_new_connection, rpcrt4_protseq_ncalrpc_open_endpoint, }, { "ncacn_ip_tcp", rpcrt4_protseq_sock_alloc, rpcrt4_protseq_sock_signal_state_changed, rpcrt4_protseq_sock_get_wait_array, rpcrt4_protseq_sock_free_wait_array, rpcrt4_protseq_sock_wait_for_new_connection, rpcrt4_protseq_ncacn_ip_tcp_open_endpoint, }, }; const struct protseq_ops *rpcrt4_get_protseq_ops(const char *protseq) { unsigned int i; for(i = 0; i < ARRAY_SIZE(protseq_list); i++) if (!strcmp(protseq_list[i].name, protseq)) return &protseq_list[i]; return NULL; } static const struct connection_ops *rpcrt4_get_conn_protseq_ops(const char *protseq) { unsigned int i; for(i = 0; i < ARRAY_SIZE(conn_protseq_list); i++) if (!strcmp(conn_protseq_list[i].name, protseq)) return &conn_protseq_list[i]; return NULL; } /**** interface to rest of code ****/ RPC_STATUS RPCRT4_OpenClientConnection(RpcConnection* Connection) { TRACE("(Connection == ^%p)\n", Connection); assert(!Connection->server); return Connection->ops->open_connection_client(Connection); } RPC_STATUS RPCRT4_CloseConnection(RpcConnection* Connection) { TRACE("(Connection == ^%p)\n", Connection); if (SecIsValidHandle(&Connection->ctx)) { DeleteSecurityContext(&Connection->ctx); SecInvalidateHandle(&Connection->ctx); } rpcrt4_conn_close(Connection); return RPC_S_OK; } RPC_STATUS RPCRT4_CreateConnection(RpcConnection** Connection, BOOL server, LPCSTR Protseq, LPCSTR NetworkAddr, LPCSTR Endpoint, LPCWSTR NetworkOptions, RpcAuthInfo* AuthInfo, RpcQualityOfService *QOS, LPCWSTR CookieAuth) { static LONG next_id; const struct connection_ops *ops; RpcConnection* NewConnection; ops = rpcrt4_get_conn_protseq_ops(Protseq); if (!ops) { FIXME("not supported for protseq %s\n", Protseq); return RPC_S_PROTSEQ_NOT_SUPPORTED; } NewConnection = ops->alloc(); NewConnection->ref = 1; NewConnection->server = server; NewConnection->ops = ops; NewConnection->NetworkAddr = RPCRT4_strdupA(NetworkAddr); NewConnection->Endpoint = RPCRT4_strdupA(Endpoint); NewConnection->NetworkOptions = RPCRT4_strdupW(NetworkOptions); NewConnection->CookieAuth = RPCRT4_strdupW(CookieAuth); NewConnection->MaxTransmissionSize = RPC_MAX_PACKET_SIZE; NewConnection->NextCallId = 1; SecInvalidateHandle(&NewConnection->ctx); if (AuthInfo) RpcAuthInfo_AddRef(AuthInfo); NewConnection->AuthInfo = AuthInfo; NewConnection->auth_context_id = InterlockedIncrement( &next_id ); if (QOS) RpcQualityOfService_AddRef(QOS); NewConnection->QOS = QOS; list_init(&NewConnection->conn_pool_entry); list_init(&NewConnection->protseq_entry); TRACE("connection: %p\n", NewConnection); *Connection = NewConnection; return RPC_S_OK; } static RpcConnection *rpcrt4_spawn_connection(RpcConnection *old_connection) { RpcConnection *connection; RPC_STATUS err; err = RPCRT4_CreateConnection(&connection, old_connection->server, rpcrt4_conn_get_name(old_connection), old_connection->NetworkAddr, old_connection->Endpoint, NULL, old_connection->AuthInfo, old_connection->QOS, old_connection->CookieAuth); if (err != RPC_S_OK) return NULL; rpcrt4_conn_handoff(old_connection, connection); if (old_connection->protseq) { EnterCriticalSection(&old_connection->protseq->cs); connection->protseq = old_connection->protseq; list_add_tail(&old_connection->protseq->connections, &connection->protseq_entry); LeaveCriticalSection(&old_connection->protseq->cs); } return connection; } void rpcrt4_conn_release_and_wait(RpcConnection *connection) { HANDLE event = NULL; if (connection->ref > 1) event = connection->wait_release = CreateEventW(NULL, TRUE, FALSE, NULL); RPCRT4_ReleaseConnection(connection); if(event) { WaitForSingleObject(event, INFINITE); CloseHandle(event); } } RpcConnection *RPCRT4_GrabConnection(RpcConnection *connection) { LONG ref = InterlockedIncrement(&connection->ref); TRACE("%p ref=%u\n", connection, ref); return connection; } void RPCRT4_ReleaseConnection(RpcConnection *connection) { LONG ref; /* protseq stores a list of active connections, but does not own references to them. * It may need to grab a connection from the list, which could lead to a race if * connection is being released, but not yet removed from the list. We handle that * by synchronizing on CS here. */ if (connection->protseq) { EnterCriticalSection(&connection->protseq->cs); ref = InterlockedDecrement(&connection->ref); if (!ref) list_remove(&connection->protseq_entry); LeaveCriticalSection(&connection->protseq->cs); } else { ref = InterlockedDecrement(&connection->ref); } TRACE("%p ref=%u\n", connection, ref); if (!ref) { RPCRT4_CloseConnection(connection); RPCRT4_strfree(connection->Endpoint); RPCRT4_strfree(connection->NetworkAddr); HeapFree(GetProcessHeap(), 0, connection->NetworkOptions); HeapFree(GetProcessHeap(), 0, connection->CookieAuth); if (connection->AuthInfo) RpcAuthInfo_Release(connection->AuthInfo); if (connection->QOS) RpcQualityOfService_Release(connection->QOS); /* server-only */ if (connection->server_binding) RPCRT4_ReleaseBinding(connection->server_binding); else if (connection->assoc) RpcAssoc_ConnectionReleased(connection->assoc); if (connection->wait_release) SetEvent(connection->wait_release); HeapFree(GetProcessHeap(), 0, connection); } } RPC_STATUS RPCRT4_IsServerListening(const char *protseq, const char *endpoint) { const struct connection_ops *ops; ops = rpcrt4_get_conn_protseq_ops(protseq); if (!ops) { FIXME("not supported for protseq %s\n", protseq); return RPC_S_INVALID_BINDING; } return ops->is_server_listening(endpoint); } RPC_STATUS RpcTransport_GetTopOfTower(unsigned char *tower_data, size_t *tower_size, const char *protseq, const char *networkaddr, const char *endpoint) { twr_empty_floor_t *protocol_floor; const struct connection_ops *protseq_ops = rpcrt4_get_conn_protseq_ops(protseq); *tower_size = 0; if (!protseq_ops) return RPC_S_INVALID_RPC_PROTSEQ; if (!tower_data) { *tower_size = sizeof(*protocol_floor); *tower_size += protseq_ops->get_top_of_tower(NULL, networkaddr, endpoint); return RPC_S_OK; } protocol_floor = (twr_empty_floor_t *)tower_data; protocol_floor->count_lhs = sizeof(protocol_floor->protid); protocol_floor->protid = protseq_ops->epm_protocols[0]; protocol_floor->count_rhs = 0; tower_data += sizeof(*protocol_floor); *tower_size = protseq_ops->get_top_of_tower(tower_data, networkaddr, endpoint); if (!*tower_size) return EPT_S_NOT_REGISTERED; *tower_size += sizeof(*protocol_floor); return RPC_S_OK; } RPC_STATUS RpcTransport_ParseTopOfTower(const unsigned char *tower_data, size_t tower_size, char **protseq, char **networkaddr, char **endpoint) { const twr_empty_floor_t *protocol_floor; const twr_empty_floor_t *floor4; const struct connection_ops *protseq_ops = NULL; RPC_STATUS status; unsigned int i; if (tower_size < sizeof(*protocol_floor)) return EPT_S_NOT_REGISTERED; protocol_floor = (const twr_empty_floor_t *)tower_data; tower_data += sizeof(*protocol_floor); tower_size -= sizeof(*protocol_floor); if ((protocol_floor->count_lhs != sizeof(protocol_floor->protid)) || (protocol_floor->count_rhs > tower_size)) return EPT_S_NOT_REGISTERED; tower_data += protocol_floor->count_rhs; tower_size -= protocol_floor->count_rhs; floor4 = (const twr_empty_floor_t *)tower_data; if ((tower_size < sizeof(*floor4)) || (floor4->count_lhs != sizeof(floor4->protid))) return EPT_S_NOT_REGISTERED; for(i = 0; i < ARRAY_SIZE(conn_protseq_list); i++) if ((protocol_floor->protid == conn_protseq_list[i].epm_protocols[0]) && (floor4->protid == conn_protseq_list[i].epm_protocols[1])) { protseq_ops = &conn_protseq_list[i]; break; } if (!protseq_ops) return EPT_S_NOT_REGISTERED; status = protseq_ops->parse_top_of_tower(tower_data, tower_size, networkaddr, endpoint); if ((status == RPC_S_OK) && protseq) { *protseq = I_RpcAllocate(strlen(protseq_ops->name) + 1); strcpy(*protseq, protseq_ops->name); } return status; } /*********************************************************************** * RpcNetworkIsProtseqValidW (RPCRT4.@) * * Checks if the given protocol sequence is known by the RPC system. * If it is, returns RPC_S_OK, otherwise RPC_S_PROTSEQ_NOT_SUPPORTED. * */ RPC_STATUS WINAPI RpcNetworkIsProtseqValidW(RPC_WSTR protseq) { char ps[0x10]; WideCharToMultiByte(CP_ACP, 0, protseq, -1, ps, sizeof ps, NULL, NULL); if (rpcrt4_get_conn_protseq_ops(ps)) return RPC_S_OK; FIXME("Unknown protseq %s\n", debugstr_w(protseq)); return RPC_S_INVALID_RPC_PROTSEQ; } /*********************************************************************** * RpcNetworkIsProtseqValidA (RPCRT4.@) */ RPC_STATUS WINAPI RpcNetworkIsProtseqValidA(RPC_CSTR protseq) { UNICODE_STRING protseqW; if (RtlCreateUnicodeStringFromAsciiz(&protseqW, (char*)protseq)) { RPC_STATUS ret = RpcNetworkIsProtseqValidW(protseqW.Buffer); RtlFreeUnicodeString(&protseqW); return ret; } return RPC_S_OUT_OF_MEMORY; } /*********************************************************************** * RpcProtseqVectorFreeA (RPCRT4.@) */ RPC_STATUS WINAPI RpcProtseqVectorFreeA(RPC_PROTSEQ_VECTORA **protseqs) { TRACE("(%p)\n", protseqs); if (*protseqs) { unsigned int i; for (i = 0; i < (*protseqs)->Count; i++) HeapFree(GetProcessHeap(), 0, (*protseqs)->Protseq[i]); HeapFree(GetProcessHeap(), 0, *protseqs); *protseqs = NULL; } return RPC_S_OK; } /*********************************************************************** * RpcProtseqVectorFreeW (RPCRT4.@) */ RPC_STATUS WINAPI RpcProtseqVectorFreeW(RPC_PROTSEQ_VECTORW **protseqs) { TRACE("(%p)\n", protseqs); if (*protseqs) { unsigned int i; for (i = 0; i < (*protseqs)->Count; i++) HeapFree(GetProcessHeap(), 0, (*protseqs)->Protseq[i]); HeapFree(GetProcessHeap(), 0, *protseqs); *protseqs = NULL; } return RPC_S_OK; } /*********************************************************************** * RpcNetworkInqProtseqsW (RPCRT4.@) */ RPC_STATUS WINAPI RpcNetworkInqProtseqsW( RPC_PROTSEQ_VECTORW** protseqs ) { RPC_PROTSEQ_VECTORW *pvector; unsigned int i; RPC_STATUS status = RPC_S_OUT_OF_MEMORY; TRACE("(%p)\n", protseqs); *protseqs = HeapAlloc(GetProcessHeap(), 0, sizeof(RPC_PROTSEQ_VECTORW)+(sizeof(unsigned short*)*ARRAY_SIZE(protseq_list))); if (!*protseqs) goto end; pvector = *protseqs; pvector->Count = 0; for (i = 0; i < ARRAY_SIZE(protseq_list); i++) { pvector->Protseq[i] = HeapAlloc(GetProcessHeap(), 0, (strlen(protseq_list[i].name)+1)*sizeof(unsigned short)); if (pvector->Protseq[i] == NULL) goto end; MultiByteToWideChar(CP_ACP, 0, (CHAR*)protseq_list[i].name, -1, (WCHAR*)pvector->Protseq[i], strlen(protseq_list[i].name) + 1); pvector->Count++; } status = RPC_S_OK; end: if (status != RPC_S_OK) RpcProtseqVectorFreeW(protseqs); return status; } /*********************************************************************** * RpcNetworkInqProtseqsA (RPCRT4.@) */ RPC_STATUS WINAPI RpcNetworkInqProtseqsA(RPC_PROTSEQ_VECTORA** protseqs) { RPC_PROTSEQ_VECTORA *pvector; unsigned int i; RPC_STATUS status = RPC_S_OUT_OF_MEMORY; TRACE("(%p)\n", protseqs); *protseqs = HeapAlloc(GetProcessHeap(), 0, sizeof(RPC_PROTSEQ_VECTORW)+(sizeof(unsigned char*)*ARRAY_SIZE(protseq_list))); if (!*protseqs) goto end; pvector = *protseqs; pvector->Count = 0; for (i = 0; i < ARRAY_SIZE(protseq_list); i++) { pvector->Protseq[i] = HeapAlloc(GetProcessHeap(), 0, strlen(protseq_list[i].name)+1); if (pvector->Protseq[i] == NULL) goto end; strcpy((char*)pvector->Protseq[i], protseq_list[i].name); pvector->Count++; } status = RPC_S_OK; end: if (status != RPC_S_OK) RpcProtseqVectorFreeA(protseqs); return status; }