/* Copyright (c) Mark Harmstone 2016-17 * Copyright (c) Reimar Doeffinger 2006 * Copyright (c) Markus Oberhumer 1996 * * This file is part of WinBtrfs. * * WinBtrfs is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public Licence as published by * the Free Software Foundation, either version 3 of the Licence, or * (at your option) any later version. * * WinBtrfs is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public Licence for more details. * * You should have received a copy of the GNU Lesser General Public Licence * along with WinBtrfs. If not, see . */ // Portions of the LZO decompression code here were cribbed from code in // libavcodec, also under the LGPL. Thank you, Reimar Doeffinger. // The LZO compression code comes from v0.22 of lzo, written way back in // 1996, and available here: // https://www.ibiblio.org/pub/historic-linux/ftp-archives/sunsite.unc.edu/Sep-29-1996/libs/lzo-0.22.tar.gz // Modern versions of lzo are licensed under the GPL, but the very oldest // versions are under the LGPL and hence okay to use here. #include "btrfs_drv.h" #define Z_SOLO #define ZLIB_INTERNAL #ifndef __REACTOS__ #include "zlib/zlib.h" #include "zlib/inftrees.h" #include "zlib/inflate.h" #else #include #endif #define LINUX_PAGE_SIZE 4096 typedef struct { UINT8* in; UINT32 inlen; UINT32 inpos; UINT8* out; UINT32 outlen; UINT32 outpos; BOOL error; void* wrkmem; } lzo_stream; #define LZO1X_MEM_COMPRESS ((UINT32) (16384L * sizeof(UINT8*))) #define M1_MAX_OFFSET 0x0400 #define M2_MAX_OFFSET 0x0800 #define M3_MAX_OFFSET 0x4000 #define M4_MAX_OFFSET 0xbfff #define MX_MAX_OFFSET (M1_MAX_OFFSET + M2_MAX_OFFSET) #define M1_MARKER 0 #define M2_MARKER 64 #define M3_MARKER 32 #define M4_MARKER 16 #define _DV2(p, shift1, shift2) (((( (UINT32)(p[2]) << shift1) ^ p[1]) << shift2) ^ p[0]) #define DVAL_NEXT(dv, p) dv ^= p[-1]; dv = (((dv) >> 5) ^ ((UINT32)(p[2]) << (2*5))) #define _DV(p, shift) _DV2(p, shift, shift) #define DVAL_FIRST(dv, p) dv = _DV((p), 5) #define _DINDEX(dv, p) ((40799u * (dv)) >> 5) #define DINDEX(dv, p) (((_DINDEX(dv, p)) & 0x3fff) << 0) #define UPDATE_D(dict, cycle, dv, p) dict[DINDEX(dv, p)] = (p) #define UPDATE_I(dict, cycle, index, p) dict[index] = (p) #define LZO_CHECK_MPOS_NON_DET(m_pos, m_off, in, ip, max_offset) \ ((void*) m_pos < (void*) in || \ (m_off = (UINT8*) ip - (UINT8*) m_pos) <= 0 || \ m_off > max_offset) #define LZO_BYTE(x) ((unsigned char) (x)) static UINT8 lzo_nextbyte(lzo_stream* stream) { UINT8 c; if (stream->inpos >= stream->inlen) { stream->error = TRUE; return 0; } c = stream->in[stream->inpos]; stream->inpos++; return c; } static int lzo_len(lzo_stream* stream, int byte, int mask) { int len = byte & mask; if (len == 0) { while (!(byte = lzo_nextbyte(stream))) { if (stream->error) return 0; len += 255; } len += mask + byte; } return len; } static void lzo_copy(lzo_stream* stream, int len) { if (stream->inpos + len > stream->inlen) { stream->error = TRUE; return; } if (stream->outpos + len > stream->outlen) { stream->error = TRUE; return; } do { stream->out[stream->outpos] = stream->in[stream->inpos]; stream->inpos++; stream->outpos++; len--; } while (len > 0); } static void lzo_copyback(lzo_stream* stream, UINT32 back, int len) { if (stream->outpos < back) { stream->error = TRUE; return; } if (stream->outpos + len > stream->outlen) { stream->error = TRUE; return; } do { stream->out[stream->outpos] = stream->out[stream->outpos - back]; stream->outpos++; len--; } while (len > 0); } static NTSTATUS do_lzo_decompress(lzo_stream* stream) { UINT8 byte; UINT32 len, back; BOOL backcopy = FALSE; stream->error = FALSE; byte = lzo_nextbyte(stream); if (stream->error) return STATUS_INTERNAL_ERROR; if (byte > 17) { lzo_copy(stream, min((UINT8)(byte - 17), (UINT32)(stream->outlen - stream->outpos))); if (stream->error) return STATUS_INTERNAL_ERROR; if (stream->outlen == stream->outpos) return STATUS_SUCCESS; byte = lzo_nextbyte(stream); if (stream->error) return STATUS_INTERNAL_ERROR; if (byte < 16) return STATUS_INTERNAL_ERROR; } while (1) { if (byte >> 4) { backcopy = TRUE; if (byte >> 6) { len = (byte >> 5) - 1; back = (lzo_nextbyte(stream) << 3) + ((byte >> 2) & 7) + 1; if (stream->error) return STATUS_INTERNAL_ERROR; } else if (byte >> 5) { len = lzo_len(stream, byte, 31); if (stream->error) return STATUS_INTERNAL_ERROR; byte = lzo_nextbyte(stream); if (stream->error) return STATUS_INTERNAL_ERROR; back = (lzo_nextbyte(stream) << 6) + (byte >> 2) + 1; if (stream->error) return STATUS_INTERNAL_ERROR; } else { len = lzo_len(stream, byte, 7); if (stream->error) return STATUS_INTERNAL_ERROR; back = (1 << 14) + ((byte & 8) << 11); byte = lzo_nextbyte(stream); if (stream->error) return STATUS_INTERNAL_ERROR; back += (lzo_nextbyte(stream) << 6) + (byte >> 2); if (stream->error) return STATUS_INTERNAL_ERROR; if (back == (1 << 14)) { if (len != 1) return STATUS_INTERNAL_ERROR; break; } } } else if (backcopy) { len = 0; back = (lzo_nextbyte(stream) << 2) + (byte >> 2) + 1; if (stream->error) return STATUS_INTERNAL_ERROR; } else { len = lzo_len(stream, byte, 15); if (stream->error) return STATUS_INTERNAL_ERROR; lzo_copy(stream, min(len + 3, stream->outlen - stream->outpos)); if (stream->error) return STATUS_INTERNAL_ERROR; if (stream->outlen == stream->outpos) return STATUS_SUCCESS; byte = lzo_nextbyte(stream); if (stream->error) return STATUS_INTERNAL_ERROR; if (byte >> 4) continue; len = 1; back = (1 << 11) + (lzo_nextbyte(stream) << 2) + (byte >> 2) + 1; if (stream->error) return STATUS_INTERNAL_ERROR; break; } lzo_copyback(stream, back, min(len + 2, stream->outlen - stream->outpos)); if (stream->error) return STATUS_INTERNAL_ERROR; if (stream->outlen == stream->outpos) return STATUS_SUCCESS; len = byte & 3; if (len) { lzo_copy(stream, min(len, stream->outlen - stream->outpos)); if (stream->error) return STATUS_INTERNAL_ERROR; if (stream->outlen == stream->outpos) return STATUS_SUCCESS; } else backcopy = !backcopy; byte = lzo_nextbyte(stream); if (stream->error) return STATUS_INTERNAL_ERROR; } return STATUS_SUCCESS; } NTSTATUS lzo_decompress(UINT8* inbuf, UINT32 inlen, UINT8* outbuf, UINT32 outlen, UINT32 inpageoff) { NTSTATUS Status; UINT32 partlen, inoff, outoff; lzo_stream stream; inoff = 0; outoff = 0; do { partlen = *(UINT32*)&inbuf[inoff]; if (partlen + inoff > inlen) { ERR("overflow: %x + %x > %llx\n", partlen, inoff, inlen); return STATUS_INTERNAL_ERROR; } inoff += sizeof(UINT32); stream.in = &inbuf[inoff]; stream.inlen = partlen; stream.inpos = 0; stream.out = &outbuf[outoff]; stream.outlen = min(outlen, LINUX_PAGE_SIZE); stream.outpos = 0; Status = do_lzo_decompress(&stream); if (!NT_SUCCESS(Status)) { ERR("do_lzo_decompress returned %08x\n", Status); return Status; } if (stream.outpos < stream.outlen) RtlZeroMemory(&stream.out[stream.outpos], stream.outlen - stream.outpos); inoff += partlen; outoff += stream.outlen; if (LINUX_PAGE_SIZE - ((inpageoff + inoff) % LINUX_PAGE_SIZE) < sizeof(UINT32)) inoff = ((((inpageoff + inoff) / LINUX_PAGE_SIZE) + 1) * LINUX_PAGE_SIZE) - inpageoff; outlen -= stream.outlen; } while (inoff < inlen && outlen > 0); return STATUS_SUCCESS; } static void* zlib_alloc(void* opaque, unsigned int items, unsigned int size) { UNUSED(opaque); return ExAllocatePoolWithTag(PagedPool, items * size, ALLOC_TAG_ZLIB); } static void zlib_free(void* opaque, void* ptr) { UNUSED(opaque); ExFreePool(ptr); } NTSTATUS zlib_decompress(UINT8* inbuf, UINT32 inlen, UINT8* outbuf, UINT32 outlen) { z_stream c_stream; int ret; c_stream.zalloc = zlib_alloc; c_stream.zfree = zlib_free; c_stream.opaque = (voidpf)0; ret = inflateInit(&c_stream); if (ret != Z_OK) { ERR("inflateInit returned %08x\n", ret); return STATUS_INTERNAL_ERROR; } c_stream.next_in = inbuf; c_stream.avail_in = inlen; c_stream.next_out = outbuf; c_stream.avail_out = outlen; do { ret = inflate(&c_stream, Z_NO_FLUSH); if (ret != Z_OK && ret != Z_STREAM_END) { ERR("inflate returned %08x\n", ret); inflateEnd(&c_stream); return STATUS_INTERNAL_ERROR; } if (c_stream.avail_out == 0) break; } while (ret != Z_STREAM_END); ret = inflateEnd(&c_stream); if (ret != Z_OK) { ERR("inflateEnd returned %08x\n", ret); return STATUS_INTERNAL_ERROR; } // FIXME - if we're short, should we zero the end of outbuf so we don't leak information into userspace? return STATUS_SUCCESS; } static NTSTATUS zlib_write_compressed_bit(fcb* fcb, UINT64 start_data, UINT64 end_data, void* data, BOOL* compressed, PIRP Irp, LIST_ENTRY* rollback) { NTSTATUS Status; UINT8 compression; UINT32 comp_length; UINT8* comp_data; UINT32 out_left; LIST_ENTRY* le; chunk* c; z_stream c_stream; int ret; comp_data = ExAllocatePoolWithTag(PagedPool, (UINT32)(end_data - start_data), ALLOC_TAG); if (!comp_data) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } Status = excise_extents(fcb->Vcb, fcb, start_data, end_data, Irp, rollback); if (!NT_SUCCESS(Status)) { ERR("excise_extents returned %08x\n", Status); ExFreePool(comp_data); return Status; } c_stream.zalloc = zlib_alloc; c_stream.zfree = zlib_free; c_stream.opaque = (voidpf)0; ret = deflateInit(&c_stream, fcb->Vcb->options.zlib_level); if (ret != Z_OK) { ERR("deflateInit returned %08x\n", ret); ExFreePool(comp_data); return STATUS_INTERNAL_ERROR; } c_stream.avail_in = (UINT32)(end_data - start_data); c_stream.next_in = data; c_stream.avail_out = (UINT32)(end_data - start_data); c_stream.next_out = comp_data; do { ret = deflate(&c_stream, Z_FINISH); if (ret == Z_STREAM_ERROR) { ERR("deflate returned %x\n", ret); ExFreePool(comp_data); return STATUS_INTERNAL_ERROR; } } while (c_stream.avail_in > 0 && c_stream.avail_out > 0); out_left = c_stream.avail_out; ret = deflateEnd(&c_stream); if (ret != Z_OK) { ERR("deflateEnd returned %08x\n", ret); ExFreePool(comp_data); return STATUS_INTERNAL_ERROR; } if (out_left < fcb->Vcb->superblock.sector_size) { // compressed extent would be larger than or same size as uncompressed extent ExFreePool(comp_data); comp_length = (UINT32)(end_data - start_data); comp_data = data; compression = BTRFS_COMPRESSION_NONE; *compressed = FALSE; } else { UINT32 cl; compression = BTRFS_COMPRESSION_ZLIB; cl = (UINT32)(end_data - start_data - out_left); comp_length = (UINT32)sector_align(cl, fcb->Vcb->superblock.sector_size); RtlZeroMemory(comp_data + cl, comp_length - cl); *compressed = TRUE; } ExAcquireResourceSharedLite(&fcb->Vcb->chunk_lock, TRUE); le = fcb->Vcb->chunks.Flink; while (le != &fcb->Vcb->chunks) { c = CONTAINING_RECORD(le, chunk, list_entry); if (!c->readonly && !c->reloc) { ExAcquireResourceExclusiveLite(&c->lock, TRUE); if (c->chunk_item->type == fcb->Vcb->data_flags && (c->chunk_item->size - c->used) >= comp_length) { if (insert_extent_chunk(fcb->Vcb, fcb, c, start_data, comp_length, FALSE, comp_data, Irp, rollback, compression, end_data - start_data, FALSE, 0)) { ExReleaseResourceLite(&fcb->Vcb->chunk_lock); if (compression != BTRFS_COMPRESSION_NONE) ExFreePool(comp_data); return STATUS_SUCCESS; } } ExReleaseResourceLite(&c->lock); } le = le->Flink; } ExReleaseResourceLite(&fcb->Vcb->chunk_lock); ExAcquireResourceExclusiveLite(&fcb->Vcb->chunk_lock, TRUE); Status = alloc_chunk(fcb->Vcb, fcb->Vcb->data_flags, &c, FALSE); ExReleaseResourceLite(&fcb->Vcb->chunk_lock); if (!NT_SUCCESS(Status)) { ERR("alloc_chunk returned %08x\n", Status); if (compression != BTRFS_COMPRESSION_NONE) ExFreePool(comp_data); return Status; } if (c) { ExAcquireResourceExclusiveLite(&c->lock, TRUE); if (c->chunk_item->type == fcb->Vcb->data_flags && (c->chunk_item->size - c->used) >= comp_length) { if (insert_extent_chunk(fcb->Vcb, fcb, c, start_data, comp_length, FALSE, comp_data, Irp, rollback, compression, end_data - start_data, FALSE, 0)) { if (compression != BTRFS_COMPRESSION_NONE) ExFreePool(comp_data); return STATUS_SUCCESS; } } ExReleaseResourceLite(&c->lock); } WARN("couldn't find any data chunks with %llx bytes free\n", comp_length); if (compression != BTRFS_COMPRESSION_NONE) ExFreePool(comp_data); return STATUS_DISK_FULL; } static NTSTATUS lzo_do_compress(const UINT8* in, UINT32 in_len, UINT8* out, UINT32* out_len, void* wrkmem) { const UINT8* ip; UINT32 dv; UINT8* op; const UINT8* in_end = in + in_len; const UINT8* ip_end = in + in_len - 9 - 4; const UINT8* ii; const UINT8** dict = (const UINT8**)wrkmem; op = out; ip = in; ii = ip; DVAL_FIRST(dv, ip); UPDATE_D(dict, cycle, dv, ip); ip++; DVAL_NEXT(dv, ip); UPDATE_D(dict, cycle, dv, ip); ip++; DVAL_NEXT(dv, ip); UPDATE_D(dict, cycle, dv, ip); ip++; DVAL_NEXT(dv, ip); UPDATE_D(dict, cycle, dv, ip); ip++; while (1) { const UINT8* m_pos; UINT32 m_len; ptrdiff_t m_off; UINT32 lit, dindex; dindex = DINDEX(dv, ip); m_pos = dict[dindex]; UPDATE_I(dict, cycle, dindex, ip); if (!LZO_CHECK_MPOS_NON_DET(m_pos, m_off, in, ip, M4_MAX_OFFSET) && m_pos[0] == ip[0] && m_pos[1] == ip[1] && m_pos[2] == ip[2]) { lit = (UINT32)(ip - ii); m_pos += 3; if (m_off <= M2_MAX_OFFSET) goto match; if (lit == 3) { /* better compression, but slower */ if (op - 2 <= out) return STATUS_INTERNAL_ERROR; op[-2] |= LZO_BYTE(3); *op++ = *ii++; *op++ = *ii++; *op++ = *ii++; goto code_match; } if (*m_pos == ip[3]) goto match; } /* a literal */ ++ip; if (ip >= ip_end) break; DVAL_NEXT(dv, ip); continue; /* a match */ match: /* store current literal run */ if (lit > 0) { UINT32 t = lit; if (t <= 3) { if (op - 2 <= out) return STATUS_INTERNAL_ERROR; op[-2] |= LZO_BYTE(t); } else if (t <= 18) *op++ = LZO_BYTE(t - 3); else { UINT32 tt = t - 18; *op++ = 0; while (tt > 255) { tt -= 255; *op++ = 0; } if (tt <= 0) return STATUS_INTERNAL_ERROR; *op++ = LZO_BYTE(tt); } do { *op++ = *ii++; } while (--t > 0); } /* code the match */ code_match: if (ii != ip) return STATUS_INTERNAL_ERROR; ip += 3; if (*m_pos++ != *ip++ || *m_pos++ != *ip++ || *m_pos++ != *ip++ || *m_pos++ != *ip++ || *m_pos++ != *ip++ || *m_pos++ != *ip++) { --ip; m_len = (UINT32)(ip - ii); if (m_len < 3 || m_len > 8) return STATUS_INTERNAL_ERROR; if (m_off <= M2_MAX_OFFSET) { m_off -= 1; *op++ = LZO_BYTE(((m_len - 1) << 5) | ((m_off & 7) << 2)); *op++ = LZO_BYTE(m_off >> 3); } else if (m_off <= M3_MAX_OFFSET) { m_off -= 1; *op++ = LZO_BYTE(M3_MARKER | (m_len - 2)); goto m3_m4_offset; } else { m_off -= 0x4000; if (m_off <= 0 || m_off > 0x7fff) return STATUS_INTERNAL_ERROR; *op++ = LZO_BYTE(M4_MARKER | ((m_off & 0x4000) >> 11) | (m_len - 2)); goto m3_m4_offset; } } else { const UINT8* end; end = in_end; while (ip < end && *m_pos == *ip) m_pos++, ip++; m_len = (UINT32)(ip - ii); if (m_len < 3) return STATUS_INTERNAL_ERROR; if (m_off <= M3_MAX_OFFSET) { m_off -= 1; if (m_len <= 33) *op++ = LZO_BYTE(M3_MARKER | (m_len - 2)); else { m_len -= 33; *op++ = M3_MARKER | 0; goto m3_m4_len; } } else { m_off -= 0x4000; if (m_off <= 0 || m_off > 0x7fff) return STATUS_INTERNAL_ERROR; if (m_len <= 9) *op++ = LZO_BYTE(M4_MARKER | ((m_off & 0x4000) >> 11) | (m_len - 2)); else { m_len -= 9; *op++ = LZO_BYTE(M4_MARKER | ((m_off & 0x4000) >> 11)); m3_m4_len: while (m_len > 255) { m_len -= 255; *op++ = 0; } if (m_len <= 0) return STATUS_INTERNAL_ERROR; *op++ = LZO_BYTE(m_len); } } m3_m4_offset: *op++ = LZO_BYTE((m_off & 63) << 2); *op++ = LZO_BYTE(m_off >> 6); } ii = ip; if (ip >= ip_end) break; DVAL_FIRST(dv, ip); } /* store final literal run */ if (in_end - ii > 0) { UINT32 t = (UINT32)(in_end - ii); if (op == out && t <= 238) *op++ = LZO_BYTE(17 + t); else if (t <= 3) op[-2] |= LZO_BYTE(t); else if (t <= 18) *op++ = LZO_BYTE(t - 3); else { UINT32 tt = t - 18; *op++ = 0; while (tt > 255) { tt -= 255; *op++ = 0; } if (tt <= 0) return STATUS_INTERNAL_ERROR; *op++ = LZO_BYTE(tt); } do { *op++ = *ii++; } while (--t > 0); } *out_len = (UINT32)(op - out); return STATUS_SUCCESS; } static NTSTATUS lzo1x_1_compress(lzo_stream* stream) { UINT8 *op = stream->out; NTSTATUS Status = STATUS_SUCCESS; if (stream->inlen <= 0) stream->outlen = 0; else if (stream->inlen <= 9 + 4) { *op++ = LZO_BYTE(17 + stream->inlen); stream->inpos = 0; do { *op++ = stream->in[stream->inpos]; stream->inpos++; } while (stream->inlen < stream->inpos); stream->outlen = (UINT32)(op - stream->out); } else Status = lzo_do_compress(stream->in, stream->inlen, stream->out, &stream->outlen, stream->wrkmem); if (Status == STATUS_SUCCESS) { op = stream->out + stream->outlen; *op++ = M4_MARKER | 1; *op++ = 0; *op++ = 0; stream->outlen += 3; } return Status; } static __inline UINT32 lzo_max_outlen(UINT32 inlen) { return inlen + (inlen / 16) + 64 + 3; // formula comes from LZO.FAQ } static NTSTATUS lzo_write_compressed_bit(fcb* fcb, UINT64 start_data, UINT64 end_data, void* data, BOOL* compressed, PIRP Irp, LIST_ENTRY* rollback) { NTSTATUS Status; UINT8 compression; UINT64 comp_length; ULONG comp_data_len, num_pages, i; UINT8* comp_data; BOOL skip_compression = FALSE; lzo_stream stream; UINT32* out_size; LIST_ENTRY* le; chunk* c; num_pages = (ULONG)((sector_align(end_data - start_data, LINUX_PAGE_SIZE)) / LINUX_PAGE_SIZE); // Four-byte overall header // Another four-byte header page // Each page has a maximum size of lzo_max_outlen(LINUX_PAGE_SIZE) // Plus another four bytes for possible padding comp_data_len = sizeof(UINT32) + ((lzo_max_outlen(LINUX_PAGE_SIZE) + (2 * sizeof(UINT32))) * num_pages); comp_data = ExAllocatePoolWithTag(PagedPool, comp_data_len, ALLOC_TAG); if (!comp_data) { ERR("out of memory\n"); return STATUS_INSUFFICIENT_RESOURCES; } stream.wrkmem = ExAllocatePoolWithTag(PagedPool, LZO1X_MEM_COMPRESS, ALLOC_TAG); if (!stream.wrkmem) { ERR("out of memory\n"); ExFreePool(comp_data); return STATUS_INSUFFICIENT_RESOURCES; } Status = excise_extents(fcb->Vcb, fcb, start_data, end_data, Irp, rollback); if (!NT_SUCCESS(Status)) { ERR("excise_extents returned %08x\n", Status); ExFreePool(comp_data); ExFreePool(stream.wrkmem); return Status; } out_size = (UINT32*)comp_data; *out_size = sizeof(UINT32); stream.in = data; stream.out = comp_data + (2 * sizeof(UINT32)); for (i = 0; i < num_pages; i++) { UINT32* pagelen = (UINT32*)(stream.out - sizeof(UINT32)); stream.inlen = (UINT32)min(LINUX_PAGE_SIZE, end_data - start_data - (i * LINUX_PAGE_SIZE)); Status = lzo1x_1_compress(&stream); if (!NT_SUCCESS(Status)) { ERR("lzo1x_1_compress returned %08x\n", Status); skip_compression = TRUE; break; } *pagelen = stream.outlen; *out_size += stream.outlen + sizeof(UINT32); stream.in += LINUX_PAGE_SIZE; stream.out += stream.outlen + sizeof(UINT32); if (LINUX_PAGE_SIZE - (*out_size % LINUX_PAGE_SIZE) < sizeof(UINT32)) { RtlZeroMemory(stream.out, LINUX_PAGE_SIZE - (*out_size % LINUX_PAGE_SIZE)); stream.out += LINUX_PAGE_SIZE - (*out_size % LINUX_PAGE_SIZE); *out_size += LINUX_PAGE_SIZE - (*out_size % LINUX_PAGE_SIZE); } } ExFreePool(stream.wrkmem); if (skip_compression || *out_size >= end_data - start_data - fcb->Vcb->superblock.sector_size) { // compressed extent would be larger than or same size as uncompressed extent ExFreePool(comp_data); comp_length = end_data - start_data; comp_data = data; compression = BTRFS_COMPRESSION_NONE; *compressed = FALSE; } else { compression = BTRFS_COMPRESSION_LZO; comp_length = sector_align(*out_size, fcb->Vcb->superblock.sector_size); RtlZeroMemory(comp_data + *out_size, (ULONG)(comp_length - *out_size)); *compressed = TRUE; } ExAcquireResourceSharedLite(&fcb->Vcb->chunk_lock, TRUE); le = fcb->Vcb->chunks.Flink; while (le != &fcb->Vcb->chunks) { c = CONTAINING_RECORD(le, chunk, list_entry); if (!c->readonly && !c->reloc) { ExAcquireResourceExclusiveLite(&c->lock, TRUE); if (c->chunk_item->type == fcb->Vcb->data_flags && (c->chunk_item->size - c->used) >= comp_length) { if (insert_extent_chunk(fcb->Vcb, fcb, c, start_data, comp_length, FALSE, comp_data, Irp, rollback, compression, end_data - start_data, FALSE, 0)) { ExReleaseResourceLite(&fcb->Vcb->chunk_lock); if (compression != BTRFS_COMPRESSION_NONE) ExFreePool(comp_data); return STATUS_SUCCESS; } } ExReleaseResourceLite(&c->lock); } le = le->Flink; } ExReleaseResourceLite(&fcb->Vcb->chunk_lock); ExAcquireResourceExclusiveLite(&fcb->Vcb->chunk_lock, TRUE); Status = alloc_chunk(fcb->Vcb, fcb->Vcb->data_flags, &c, FALSE); ExReleaseResourceLite(&fcb->Vcb->chunk_lock); if (!NT_SUCCESS(Status)) { ERR("alloc_chunk returned %08x\n", Status); if (compression != BTRFS_COMPRESSION_NONE) ExFreePool(comp_data); return Status; } if (c) { ExAcquireResourceExclusiveLite(&c->lock, TRUE); if (c->chunk_item->type == fcb->Vcb->data_flags && (c->chunk_item->size - c->used) >= comp_length) { if (insert_extent_chunk(fcb->Vcb, fcb, c, start_data, comp_length, FALSE, comp_data, Irp, rollback, compression, end_data - start_data, FALSE, 0)) { if (compression != BTRFS_COMPRESSION_NONE) ExFreePool(comp_data); return STATUS_SUCCESS; } } ExReleaseResourceLite(&c->lock); } WARN("couldn't find any data chunks with %llx bytes free\n", comp_length); if (compression != BTRFS_COMPRESSION_NONE) ExFreePool(comp_data); return STATUS_DISK_FULL; } NTSTATUS write_compressed_bit(fcb* fcb, UINT64 start_data, UINT64 end_data, void* data, BOOL* compressed, PIRP Irp, LIST_ENTRY* rollback) { UINT8 type; if (fcb->Vcb->options.compress_type != 0 && fcb->prop_compression == PropCompression_None) type = fcb->Vcb->options.compress_type; else { if (!(fcb->Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_COMPRESS_LZO) && fcb->prop_compression == PropCompression_LZO) { fcb->Vcb->superblock.incompat_flags |= BTRFS_INCOMPAT_FLAGS_COMPRESS_LZO; type = BTRFS_COMPRESSION_LZO; } else if (fcb->Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_COMPRESS_LZO && fcb->prop_compression != PropCompression_Zlib) type = BTRFS_COMPRESSION_LZO; else type = BTRFS_COMPRESSION_ZLIB; } if (type == BTRFS_COMPRESSION_LZO) { fcb->Vcb->superblock.incompat_flags |= BTRFS_INCOMPAT_FLAGS_COMPRESS_LZO; return lzo_write_compressed_bit(fcb, start_data, end_data, data, compressed, Irp, rollback); } else return zlib_write_compressed_bit(fcb, start_data, end_data, data, compressed, Irp, rollback); }