/* $Id: light.c,v 1.14 1997/07/24 01:24:11 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 2.4 * Copyright (C) 1995-1997 Brian Paul * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * $Log: light.c,v $ * Revision 1.14 1997/07/24 01:24:11 brianp * changed precompiled header symbol from PCH to PC_HEADER * * Revision 1.13 1997/06/20 04:15:43 brianp * optimized changing of SHININESS (Henk Kok) * * Revision 1.12 1997/05/28 03:25:26 brianp * added precompiled header (PCH) support * * Revision 1.11 1997/05/01 01:38:57 brianp * now use NORMALIZE_3FV() macro from mmath.h * * Revision 1.10 1997/04/20 20:28:49 brianp * replaced abort() with gl_problem() * * Revision 1.9 1997/04/07 02:59:17 brianp * small optimization to setting of shininess and spot exponent * * Revision 1.8 1997/04/01 04:09:31 brianp * misc code clean-ups. moved shading code to shade.c * * Revision 1.7 1997/03/11 00:37:39 brianp * spotlight factor now effects ambient lighting * * Revision 1.6 1996/12/18 20:02:07 brianp * glColorMaterial() and glMaterial() should finally work right! * * Revision 1.5 1996/12/07 10:22:41 brianp * gl_Materialfv() now calls gl_set_material() if GL_COLOR_MATERIAL disabled * implemented gl_GetLightiv() * * Revision 1.4 1996/11/08 04:39:23 brianp * new gl_compute_spot_exp_table() contributed by Randy Frank * * Revision 1.3 1996/09/27 01:27:55 brianp * removed unused variables * * Revision 1.2 1996/09/15 14:18:10 brianp * now use GLframebuffer and GLvisual * * Revision 1.1 1996/09/13 01:38:16 brianp * Initial revision * */ #ifdef PC_HEADER #include "all.h" #else #include #include #include #include #include "context.h" #include "light.h" #include "dlist.h" #include "macros.h" #include "matrix.h" #include "mmath.h" #include "types.h" #include "vb.h" #include "xform.h" #endif void gl_ShadeModel( GLcontext *ctx, GLenum mode ) { if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glShadeModel" ); return; } switch (mode) { case GL_FLAT: case GL_SMOOTH: if (ctx->Light.ShadeModel!=mode) { ctx->Light.ShadeModel = mode; ctx->NewState |= NEW_RASTER_OPS; } break; default: gl_error( ctx, GL_INVALID_ENUM, "glShadeModel" ); } } void gl_Lightfv( GLcontext *ctx, GLenum light, GLenum pname, const GLfloat *params, GLint nparams ) { GLint l; if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glShadeModel" ); return; } l = (GLint) (light - GL_LIGHT0); if (l<0 || l>=MAX_LIGHTS) { gl_error( ctx, GL_INVALID_ENUM, "glLight" ); return; } switch (pname) { case GL_AMBIENT: COPY_4V( ctx->Light.Light[l].Ambient, params ); break; case GL_DIFFUSE: COPY_4V( ctx->Light.Light[l].Diffuse, params ); break; case GL_SPECULAR: COPY_4V( ctx->Light.Light[l].Specular, params ); break; case GL_POSITION: /* transform position by ModelView matrix */ TRANSFORM_POINT( ctx->Light.Light[l].Position, ctx->ModelViewMatrix, params ); break; case GL_SPOT_DIRECTION: /* transform direction by inverse modelview */ { GLfloat direction[4]; direction[0] = params[0]; direction[1] = params[1]; direction[2] = params[2]; direction[3] = 0.0; if (ctx->NewModelViewMatrix) { gl_analyze_modelview_matrix( ctx ); } gl_transform_vector( ctx->Light.Light[l].Direction, direction, ctx->ModelViewInv); } break; case GL_SPOT_EXPONENT: if (params[0]<0.0 || params[0]>128.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } if (ctx->Light.Light[l].SpotExponent != params[0]) { ctx->Light.Light[l].SpotExponent = params[0]; gl_compute_spot_exp_table( &ctx->Light.Light[l] ); } break; case GL_SPOT_CUTOFF: if ((params[0]<0.0 || params[0]>90.0) && params[0]!=180.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].SpotCutoff = params[0]; ctx->Light.Light[l].CosCutoff = cos(params[0]*DEG2RAD); break; case GL_CONSTANT_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].ConstantAttenuation = params[0]; break; case GL_LINEAR_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].LinearAttenuation = params[0]; break; case GL_QUADRATIC_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].QuadraticAttenuation = params[0]; break; default: gl_error( ctx, GL_INVALID_ENUM, "glLight" ); break; } ctx->NewState |= NEW_LIGHTING; } void gl_GetLightfv( GLcontext *ctx, GLenum light, GLenum pname, GLfloat *params ) { GLint l = (GLint) (light - GL_LIGHT0); if (l<0 || l>=MAX_LIGHTS) { gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); return; } switch (pname) { case GL_AMBIENT: COPY_4V( params, ctx->Light.Light[l].Ambient ); break; case GL_DIFFUSE: COPY_4V( params, ctx->Light.Light[l].Diffuse ); break; case GL_SPECULAR: COPY_4V( params, ctx->Light.Light[l].Specular ); break; case GL_POSITION: COPY_4V( params, ctx->Light.Light[l].Position ); break; case GL_SPOT_DIRECTION: COPY_3V( params, ctx->Light.Light[l].Direction ); break; case GL_SPOT_EXPONENT: params[0] = ctx->Light.Light[l].SpotExponent; break; case GL_SPOT_CUTOFF: params[0] = ctx->Light.Light[l].SpotCutoff; break; case GL_CONSTANT_ATTENUATION: params[0] = ctx->Light.Light[l].ConstantAttenuation; break; case GL_LINEAR_ATTENUATION: params[0] = ctx->Light.Light[l].LinearAttenuation; break; case GL_QUADRATIC_ATTENUATION: params[0] = ctx->Light.Light[l].QuadraticAttenuation; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); break; } } void gl_GetLightiv( GLcontext *ctx, GLenum light, GLenum pname, GLint *params ) { GLint l = (GLint) (light - GL_LIGHT0); if (l<0 || l>=MAX_LIGHTS) { gl_error( ctx, GL_INVALID_ENUM, "glGetLightiv" ); return; } switch (pname) { case GL_AMBIENT: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]); break; case GL_DIFFUSE: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]); break; case GL_SPECULAR: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]); break; case GL_POSITION: params[0] = ctx->Light.Light[l].Position[0]; params[1] = ctx->Light.Light[l].Position[1]; params[2] = ctx->Light.Light[l].Position[2]; params[3] = ctx->Light.Light[l].Position[3]; break; case GL_SPOT_DIRECTION: params[0] = ctx->Light.Light[l].Direction[0]; params[1] = ctx->Light.Light[l].Direction[1]; params[2] = ctx->Light.Light[l].Direction[2]; break; case GL_SPOT_EXPONENT: params[0] = ctx->Light.Light[l].SpotExponent; break; case GL_SPOT_CUTOFF: params[0] = ctx->Light.Light[l].SpotCutoff; break; case GL_CONSTANT_ATTENUATION: params[0] = ctx->Light.Light[l].ConstantAttenuation; break; case GL_LINEAR_ATTENUATION: params[0] = ctx->Light.Light[l].LinearAttenuation; break; case GL_QUADRATIC_ATTENUATION: params[0] = ctx->Light.Light[l].QuadraticAttenuation; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetLightiv" ); break; } } /**********************************************************************/ /*** Light Model ***/ /**********************************************************************/ void gl_LightModelfv( GLcontext *ctx, GLenum pname, const GLfloat *params ) { switch (pname) { case GL_LIGHT_MODEL_AMBIENT: COPY_4V( ctx->Light.Model.Ambient, params ); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: if (params[0]==0.0) ctx->Light.Model.LocalViewer = GL_FALSE; else ctx->Light.Model.LocalViewer = GL_TRUE; break; case GL_LIGHT_MODEL_TWO_SIDE: if (params[0]==0.0) ctx->Light.Model.TwoSide = GL_FALSE; else ctx->Light.Model.TwoSide = GL_TRUE; break; default: gl_error( ctx, GL_INVALID_ENUM, "glLightModel" ); break; } ctx->NewState |= NEW_LIGHTING; } /********** MATERIAL **********/ /* * Given a face and pname value (ala glColorMaterial), compute a bitmask * of the targeted material values. */ GLuint gl_material_bitmask( GLenum face, GLenum pname ) { GLuint bitmask = 0; /* Make a bitmask indicating what material attribute(s) we're updating */ switch (pname) { case GL_EMISSION: bitmask |= FRONT_EMISSION_BIT | BACK_EMISSION_BIT; break; case GL_AMBIENT: bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT; break; case GL_DIFFUSE: bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT; break; case GL_SPECULAR: bitmask |= FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT; break; case GL_SHININESS: bitmask |= FRONT_SHININESS_BIT | BACK_SHININESS_BIT; break; case GL_AMBIENT_AND_DIFFUSE: bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT; bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT; break; case GL_COLOR_INDEXES: bitmask |= FRONT_INDEXES_BIT | BACK_INDEXES_BIT; break; default: gl_problem(NULL, "Bad param in gl_material_bitmask"); return 0; } ASSERT( face==GL_FRONT || face==GL_BACK || face==GL_FRONT_AND_BACK ); if (face==GL_FRONT) { bitmask &= FRONT_MATERIAL_BITS; } else if (face==GL_BACK) { bitmask &= BACK_MATERIAL_BITS; } return bitmask; } /* * This is called by glColor() when GL_COLOR_MATERIAL is enabled and * called by glMaterial() when GL_COLOR_MATERIAL is disabled. */ void gl_set_material( GLcontext *ctx, GLuint bitmask, const GLfloat *params ) { struct gl_material *mat; if (INSIDE_BEGIN_END(ctx)) { struct vertex_buffer *VB = ctx->VB; /* Save per-vertex material changes in the Vertex Buffer. * The update_material function will eventually update the global * ctx->Light.Material values. */ mat = VB->Material[VB->Count]; VB->MaterialMask[VB->Count] |= bitmask; VB->MonoMaterial = GL_FALSE; } else { /* just update the global material property */ mat = ctx->Light.Material; ctx->NewState |= NEW_LIGHTING; } if (bitmask & FRONT_AMBIENT_BIT) { COPY_4V( mat[0].Ambient, params ); } if (bitmask & BACK_AMBIENT_BIT) { COPY_4V( mat[1].Ambient, params ); } if (bitmask & FRONT_DIFFUSE_BIT) { COPY_4V( mat[0].Diffuse, params ); } if (bitmask & BACK_DIFFUSE_BIT) { COPY_4V( mat[1].Diffuse, params ); } if (bitmask & FRONT_SPECULAR_BIT) { COPY_4V( mat[0].Specular, params ); } if (bitmask & BACK_SPECULAR_BIT) { COPY_4V( mat[1].Specular, params ); } if (bitmask & FRONT_EMISSION_BIT) { COPY_4V( mat[0].Emission, params ); } if (bitmask & BACK_EMISSION_BIT) { COPY_4V( mat[1].Emission, params ); } if (bitmask & FRONT_SHININESS_BIT) { GLfloat shininess = CLAMP( params[0], 0.0F, 128.0F ); if (mat[0].Shininess != shininess) { mat[0].Shininess = shininess; gl_compute_material_shine_table( &mat[0] ); } } if (bitmask & BACK_SHININESS_BIT) { GLfloat shininess = CLAMP( params[0], 0.0F, 128.0F ); if (mat[1].Shininess != shininess) { mat[1].Shininess = shininess; gl_compute_material_shine_table( &mat[1] ); } } if (bitmask & FRONT_INDEXES_BIT) { mat[0].AmbientIndex = params[0]; mat[0].DiffuseIndex = params[1]; mat[0].SpecularIndex = params[2]; } if (bitmask & BACK_INDEXES_BIT) { mat[1].AmbientIndex = params[0]; mat[1].DiffuseIndex = params[1]; mat[1].SpecularIndex = params[2]; } } void gl_ColorMaterial( GLcontext *ctx, GLenum face, GLenum mode ) { if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glColorMaterial" ); return; } switch (face) { case GL_FRONT: case GL_BACK: case GL_FRONT_AND_BACK: ctx->Light.ColorMaterialFace = face; break; default: gl_error( ctx, GL_INVALID_ENUM, "glColorMaterial(face)" ); return; } switch (mode) { case GL_EMISSION: case GL_AMBIENT: case GL_DIFFUSE: case GL_SPECULAR: case GL_AMBIENT_AND_DIFFUSE: ctx->Light.ColorMaterialMode = mode; break; default: gl_error( ctx, GL_INVALID_ENUM, "glColorMaterial(mode)" ); return; } ctx->Light.ColorMaterialBitmask = gl_material_bitmask( face, mode ); } /* * This is only called via the api_function_table struct or by the * display list executor. */ void gl_Materialfv( GLcontext *ctx, GLenum face, GLenum pname, const GLfloat *params ) { GLuint bitmask; /* error checking */ if (face!=GL_FRONT && face!=GL_BACK && face!=GL_FRONT_AND_BACK) { gl_error( ctx, GL_INVALID_ENUM, "glMaterial(face)" ); return; } switch (pname) { case GL_EMISSION: case GL_AMBIENT: case GL_DIFFUSE: case GL_SPECULAR: case GL_SHININESS: case GL_AMBIENT_AND_DIFFUSE: case GL_COLOR_INDEXES: /* OK */ break; default: gl_error( ctx, GL_INVALID_ENUM, "glMaterial(pname)" ); return; } /* convert face and pname to a bitmask */ bitmask = gl_material_bitmask( face, pname ); if (ctx->Light.ColorMaterialEnabled) { /* The material values specified by glColorMaterial() can't be */ /* updated by glMaterial() while GL_COLOR_MATERIAL is enabled! */ bitmask &= ~ctx->Light.ColorMaterialBitmask; } gl_set_material( ctx, bitmask, params ); } void gl_GetMaterialfv( GLcontext *ctx, GLenum face, GLenum pname, GLfloat *params ) { GLuint f; if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glGetMaterialfv" ); return; } if (face==GL_FRONT) { f = 0; } else if (face==GL_BACK) { f = 1; } else { gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" ); return; } switch (pname) { case GL_AMBIENT: COPY_4V( params, ctx->Light.Material[f].Ambient ); break; case GL_DIFFUSE: COPY_4V( params, ctx->Light.Material[f].Diffuse ); break; case GL_SPECULAR: COPY_4V( params, ctx->Light.Material[f].Specular ); break; case GL_EMISSION: COPY_4V( params, ctx->Light.Material[f].Emission ); break; case GL_SHININESS: *params = ctx->Light.Material[f].Shininess; break; case GL_COLOR_INDEXES: params[0] = ctx->Light.Material[f].AmbientIndex; params[1] = ctx->Light.Material[f].DiffuseIndex; params[2] = ctx->Light.Material[f].SpecularIndex; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); } } void gl_GetMaterialiv( GLcontext *ctx, GLenum face, GLenum pname, GLint *params ) { GLuint f; if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glGetMaterialiv" ); return; } if (face==GL_FRONT) { f = 0; } else if (face==GL_BACK) { f = 1; } else { gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" ); return; } switch (pname) { case GL_AMBIENT: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[3] ); break; case GL_DIFFUSE: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[3] ); break; case GL_SPECULAR: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[3] ); break; case GL_EMISSION: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[3] ); break; case GL_SHININESS: *params = ROUNDF( ctx->Light.Material[f].Shininess ); break; case GL_COLOR_INDEXES: params[0] = ROUNDF( ctx->Light.Material[f].AmbientIndex ); params[1] = ROUNDF( ctx->Light.Material[f].DiffuseIndex ); params[2] = ROUNDF( ctx->Light.Material[f].SpecularIndex ); break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); } } /**********************************************************************/ /***** Lighting computation *****/ /**********************************************************************/ /* * Notes: * When two-sided lighting is enabled we compute the color (or index) * for both the front and back side of the primitive. Then, when the * orientation of the facet is later learned, we can determine which * color (or index) to use for rendering. * * Variables: * n = normal vector * V = vertex position * P = light source position * Pe = (0,0,0,1) * * Precomputed: * IF P[3]==0 THEN * // light at infinity * IF local_viewer THEN * VP_inf_norm = unit vector from V to P // Precompute * ELSE * // eye at infinity * h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute * ENDIF * ENDIF * * Functions: * Normalize( v ) = normalized vector v * Magnitude( v ) = length of vector v */ /* * Whenever the spotlight exponent for a light changes we must call * this function to recompute the exponent lookup table. */ void gl_compute_spot_exp_table( struct gl_light *l ) { int i; double exponent = l->SpotExponent; double tmp; int clamp = 0; l->SpotExpTable[0][0] = 0.0; for (i=EXP_TABLE_SIZE-1;i>0;i--) { if (clamp == 0) { tmp = pow(i/(double)(EXP_TABLE_SIZE-1), exponent); if (tmp < FLT_MIN*100.0) { tmp = 0.0; clamp = 1; } } l->SpotExpTable[i][0] = tmp; } for (i=0;iSpotExpTable[i][1] = l->SpotExpTable[i+1][0] - l->SpotExpTable[i][0]; } l->SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0; } /* * Whenever the shininess of a material changes we must call this * function to recompute the exponential lookup table. */ void gl_compute_material_shine_table( struct gl_material *m ) { int i; m->ShineTable[0] = 0.0F; for (i=1;iShineTable[i] = 0.0F; } else { m->ShineTable[i] = x; } #else /* just invalidate the table */ m->ShineTable[i] = -1.0; #endif } } /* * Examine current lighting parameters to determine if the optimized lighting * function can be used. * Also, precompute some lighting values such as the products of light * source and material ambient, diffuse and specular coefficients. */ void gl_update_lighting( GLcontext *ctx ) { GLint i, side; struct gl_light *prev_enabled, *light; if (!ctx->Light.Enabled) { /* If lighting is not enabled, we can skip all this. */ return; } /* Setup linked list of enabled light sources */ prev_enabled = NULL; ctx->Light.FirstEnabled = NULL; for (i=0;iLight.Light[i].NextEnabled = NULL; if (ctx->Light.Light[i].Enabled) { if (prev_enabled) { prev_enabled->NextEnabled = &ctx->Light.Light[i]; } else { ctx->Light.FirstEnabled = &ctx->Light.Light[i]; } prev_enabled = &ctx->Light.Light[i]; } } /* base color = material_emission + global_ambient * material_ambient */ for (side=0; side<2; side++) { ctx->Light.BaseColor[side][0] = ctx->Light.Material[side].Emission[0] + ctx->Light.Model.Ambient[0] * ctx->Light.Material[side].Ambient[0]; ctx->Light.BaseColor[side][1] = ctx->Light.Material[side].Emission[1] + ctx->Light.Model.Ambient[1] * ctx->Light.Material[side].Ambient[1]; ctx->Light.BaseColor[side][2] = ctx->Light.Material[side].Emission[2] + ctx->Light.Model.Ambient[2] * ctx->Light.Material[side].Ambient[2]; ctx->Light.BaseColor[side][3] = MIN2( ctx->Light.Material[side].Diffuse[3], 1.0F ); } /* Precompute some lighting stuff */ for (light = ctx->Light.FirstEnabled; light; light = light->NextEnabled) { for (side=0; side<2; side++) { struct gl_material *mat = &ctx->Light.Material[side]; /* Add each light's ambient component to base color */ ctx->Light.BaseColor[side][0] += light->Ambient[0] * mat->Ambient[0]; ctx->Light.BaseColor[side][1] += light->Ambient[1] * mat->Ambient[1]; ctx->Light.BaseColor[side][2] += light->Ambient[2] * mat->Ambient[2]; /* compute product of light's ambient with front material ambient */ light->MatAmbient[side][0] = light->Ambient[0] * mat->Ambient[0]; light->MatAmbient[side][1] = light->Ambient[1] * mat->Ambient[1]; light->MatAmbient[side][2] = light->Ambient[2] * mat->Ambient[2]; /* compute product of light's diffuse with front material diffuse */ light->MatDiffuse[side][0] = light->Diffuse[0] * mat->Diffuse[0]; light->MatDiffuse[side][1] = light->Diffuse[1] * mat->Diffuse[1]; light->MatDiffuse[side][2] = light->Diffuse[2] * mat->Diffuse[2]; /* compute product of light's specular with front material specular */ light->MatSpecular[side][0] = light->Specular[0] * mat->Specular[0]; light->MatSpecular[side][1] = light->Specular[1] * mat->Specular[1]; light->MatSpecular[side][2] = light->Specular[2] * mat->Specular[2]; /* VP (VP) = Normalize( Position ) */ COPY_3V( light->VP_inf_norm, light->Position ); NORMALIZE_3FV( light->VP_inf_norm ); /* h_inf_norm = Normalize( V_to_P + <0,0,1> ) */ COPY_3V( light->h_inf_norm, light->VP_inf_norm ); light->h_inf_norm[2] += 1.0F; NORMALIZE_3FV( light->h_inf_norm ); COPY_3V( light->NormDirection, light->Direction ); NORMALIZE_3FV( light->NormDirection ); /* Compute color index diffuse and specular light intensities */ light->dli = 0.30F * light->Diffuse[0] + 0.59F * light->Diffuse[1] + 0.11F * light->Diffuse[2]; light->sli = 0.30F * light->Specular[0] + 0.59F * light->Specular[1] + 0.11F * light->Specular[2]; } /* loop over materials */ } /* loop over lights */ /* Determine if the fast lighting function can be used */ ctx->Light.Fast = GL_TRUE; if ( ctx->Light.BaseColor[0][0]<0.0F || ctx->Light.BaseColor[0][1]<0.0F || ctx->Light.BaseColor[0][2]<0.0F || ctx->Light.BaseColor[0][3]<0.0F || ctx->Light.BaseColor[1][0]<0.0F || ctx->Light.BaseColor[1][1]<0.0F || ctx->Light.BaseColor[1][2]<0.0F || ctx->Light.BaseColor[1][3]<0.0F || ctx->Light.Model.LocalViewer || ctx->Light.ColorMaterialEnabled) { ctx->Light.Fast = GL_FALSE; } else { for (light=ctx->Light.FirstEnabled; light; light=light->NextEnabled) { if ( light->Position[3]!=0.0F || light->SpotCutoff!=180.0F || light->MatDiffuse[0][0]<0.0F || light->MatDiffuse[0][1]<0.0F || light->MatDiffuse[0][2]<0.0F || light->MatSpecular[0][0]<0.0F || light->MatSpecular[0][1]<0.0F || light->MatSpecular[0][2]<0.0F || light->MatDiffuse[1][0]<0.0F || light->MatDiffuse[1][1]<0.0F || light->MatDiffuse[1][2]<0.0F || light->MatSpecular[1][0]<0.0F || light->MatSpecular[1][1]<0.0F || light->MatSpecular[1][2]<0.0F) { ctx->Light.Fast = GL_FALSE; break; } } } }