/* $Id: dlist.c,v 1.37 1997/12/06 18:06:50 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 2.6 * Copyright (C) 1995-1997 Brian Paul * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * $Log: dlist.c,v $ * Revision 1.37 1997/12/06 18:06:50 brianp * moved several static display list vars into GLcontext * * Revision 1.36 1997/11/25 03:20:09 brianp * simple clean-ups for multi-threading (John Stone) * * Revision 1.35 1997/10/29 01:29:09 brianp * added GL_EXT_point_parameters extension from Daniel Barrero * * Revision 1.34 1997/10/02 00:48:29 brianp * removed the EXEC() macro stuff, it caused bugs in gl_save_Color*() * * Revision 1.33 1997/09/27 00:13:44 brianp * added GL_EXT_paletted_texture extension * * Revision 1.32 1997/09/23 00:57:52 brianp * removed list>MAX_DISPLAYLISTS test * * Revision 1.31 1997/09/22 02:33:58 brianp * display lists now implemented with hash table * * Revision 1.30 1997/07/24 01:25:01 brianp * changed precompiled header symbol from PCH to PC_HEADER * * Revision 1.29 1997/07/09 01:26:12 brianp * fixed glDrawPixels() GL_COMPILE_AND_EXECUTE infinite loop (Renaud Cazoulat) * * Revision 1.28 1997/06/24 01:13:26 brianp * initialize image RefCount to 1 for gl_save_TexSubImage[123]D() * * Revision 1.27 1997/06/20 01:57:57 brianp * added gl_save_Color4ubv() * * Revision 1.26 1997/06/06 02:59:19 brianp * renamed destroy_list() to gl_destroy_list() * * Revision 1.25 1997/05/28 03:24:22 brianp * added precompiled header (PCH) support * * Revision 1.24 1997/05/27 03:13:41 brianp * removed some debugging code * * Revision 1.23 1997/04/30 21:36:22 brianp * added casts to gl_TexImage[123]D() calls * * Revision 1.22 1997/04/28 23:40:47 brianp * added #include "rect.h" * * Revision 1.21 1997/04/24 01:50:53 brianp * optimized glColor3f, glColor3fv, glColor4fv * * Revision 1.20 1997/04/24 00:30:17 brianp * optimized glTexCoord2() code * * Revision 1.19 1997/04/21 01:21:33 brianp * added gl_save_Rectf() * * Revision 1.18 1997/04/20 16:18:15 brianp * added glOrtho and glFrustum API pointers * * Revision 1.17 1997/04/16 23:55:33 brianp * added optimized glTexCoord2f code * * Revision 1.16 1997/04/14 22:18:23 brianp * added optimized glVertex3fv code * * Revision 1.15 1997/04/14 02:00:39 brianp * #include "texstate.h" instead of "texture.h" * * Revision 1.14 1997/04/07 02:58:49 brianp * added gl_save_Vertex[23]f() and related code * * Revision 1.13 1997/04/01 04:26:02 brianp * added code for glLoadIdentity(), changed #include's * * Revision 1.12 1997/02/27 19:58:08 brianp * call gl_problem() instead of gl_warning() * * Revision 1.11 1997/02/09 18:50:18 brianp * added GL_EXT_texture3D support * * Revision 1.10 1997/01/29 18:51:30 brianp * small MEMCPY call change for Acorn compiler, per Graham Jones * * Revision 1.9 1997/01/09 21:25:28 brianp * set reference count to one for texture images in display lists * * Revision 1.8 1996/12/11 20:19:11 brianp * abort display list execution if invalid opcode found * * Revision 1.7 1996/12/09 21:39:23 brianp * compare list to MAX_DISPLAYLISTS in gl_IsList() * * Revision 1.6 1996/12/04 22:14:27 brianp * improved the mesa_print_display_list() debug function * * Revision 1.5 1996/11/07 04:12:45 brianp * texture images are now gl_image structs, not gl_texture_image structs * * Revision 1.4 1996/10/16 00:59:12 brianp * fixed bug in gl_save_Lightfv() * execution of OPCODE_EDGE_FLAG used enum value instead of boolean * * Revision 1.3 1996/09/27 01:26:08 brianp * removed unused variables * * Revision 1.2 1996/09/19 00:54:43 brianp * fixed bug in gl_save_Rotatef() when in GL_COMPILE_AND_EXECUTE mode * * Revision 1.1 1996/09/13 01:38:16 brianp * Initial revision * */ #ifdef PC_HEADER #include "all.h" #else #include #include #include #include #include "accum.h" #include "alpha.h" #include "attrib.h" #include "bitmap.h" #include "blend.h" #include "clip.h" #include "colortab.h" #include "context.h" #include "copypix.h" #include "depth.h" #include "drawpix.h" #include "enable.h" #include "eval.h" #include "feedback.h" #include "fog.h" #include "hash.h" #include "image.h" #include "light.h" #include "lines.h" #include "dlist.h" #include "logic.h" #include "macros.h" #include "masking.h" #include "matrix.h" #include "misc.h" #include "pixel.h" #include "points.h" #include "polygon.h" #include "rastpos.h" #include "rect.h" #include "scissor.h" #include "stencil.h" #include "texobj.h" #include "teximage.h" #include "texstate.h" #include "types.h" #include "vb.h" #include "vbfill.h" #endif /* Functions which aren't compiled but executed immediately: glIsList glGenLists glDeleteLists glEndList glFeedbackBuffer glSelectBuffer glRenderMode glReadPixels glPixelStore glFlush glFinish glIsEnabled glGet* Functions which cause errors if called while compiling a display list: glNewList */ /* * Display list instructions are stored as sequences of "nodes". Nodes * are allocated in blocks. Each block has BLOCK_SIZE nodes. Blocks * are linked together with a pointer. */ /* How many nodes to allocate at a time: */ #define BLOCK_SIZE 500 /* * Display list opcodes. * * The fact that these identifiers are assigned consecutive * integer values starting at 0 is very important, see InstSize array usage) */ typedef enum { OPCODE_ACCUM, OPCODE_ALPHA_FUNC, OPCODE_BEGIN, OPCODE_BIND_TEXTURE, OPCODE_BITMAP, OPCODE_BLEND_FUNC, OPCODE_CALL_LIST, OPCODE_CALL_LIST_OFFSET, OPCODE_CLEAR, OPCODE_CLEAR_ACCUM, OPCODE_CLEAR_COLOR, OPCODE_CLEAR_DEPTH, OPCODE_CLEAR_INDEX, OPCODE_CLEAR_STENCIL, OPCODE_CLIP_PLANE, OPCODE_COLOR_3F, OPCODE_COLOR_4F, OPCODE_COLOR_4UB, OPCODE_COLOR_MASK, OPCODE_COLOR_MATERIAL, OPCODE_COLOR_TABLE, OPCODE_COLOR_SUB_TABLE, OPCODE_COPY_PIXELS, OPCODE_COPY_TEX_IMAGE1D, OPCODE_COPY_TEX_IMAGE2D, OPCODE_COPY_TEX_IMAGE3D, OPCODE_COPY_TEX_SUB_IMAGE1D, OPCODE_COPY_TEX_SUB_IMAGE2D, OPCODE_CULL_FACE, OPCODE_DEPTH_FUNC, OPCODE_DEPTH_MASK, OPCODE_DEPTH_RANGE, OPCODE_DISABLE, OPCODE_DRAW_BUFFER, OPCODE_DRAW_PIXELS, OPCODE_EDGE_FLAG, OPCODE_ENABLE, OPCODE_END, OPCODE_EVALCOORD1, OPCODE_EVALCOORD2, OPCODE_EVALMESH1, OPCODE_EVALMESH2, OPCODE_EVALPOINT1, OPCODE_EVALPOINT2, OPCODE_FOG, OPCODE_FRONT_FACE, OPCODE_FRUSTUM, OPCODE_HINT, OPCODE_INDEX, OPCODE_INDEX_MASK, OPCODE_INIT_NAMES, OPCODE_LIGHT, OPCODE_LIGHT_MODEL, OPCODE_LINE_STIPPLE, OPCODE_LINE_WIDTH, OPCODE_LIST_BASE, OPCODE_LOAD_IDENTITY, OPCODE_LOAD_MATRIX, OPCODE_LOAD_NAME, OPCODE_LOGIC_OP, OPCODE_MAP1, OPCODE_MAP2, OPCODE_MAPGRID1, OPCODE_MAPGRID2, OPCODE_MATERIAL, OPCODE_MATRIX_MODE, OPCODE_MULT_MATRIX, OPCODE_NORMAL, OPCODE_ORTHO, OPCODE_PASSTHROUGH, OPCODE_PIXEL_MAP, OPCODE_PIXEL_TRANSFER, OPCODE_PIXEL_ZOOM, OPCODE_POINT_SIZE, OPCODE_POLYGON_MODE, OPCODE_POLYGON_STIPPLE, OPCODE_POLYGON_OFFSET, OPCODE_POP_ATTRIB, OPCODE_POP_MATRIX, OPCODE_POP_NAME, OPCODE_PRIORITIZE_TEXTURE, OPCODE_PUSH_ATTRIB, OPCODE_PUSH_MATRIX, OPCODE_PUSH_NAME, OPCODE_RASTER_POS, OPCODE_RECTF, OPCODE_READ_BUFFER, OPCODE_SCALE, OPCODE_SCISSOR, OPCODE_SHADE_MODEL, OPCODE_STENCIL_FUNC, OPCODE_STENCIL_MASK, OPCODE_STENCIL_OP, OPCODE_TEXCOORD2, OPCODE_TEXCOORD4, OPCODE_TEXENV, OPCODE_TEXGEN, OPCODE_TEXPARAMETER, OPCODE_TEX_IMAGE1D, OPCODE_TEX_IMAGE2D, OPCODE_TEX_SUB_IMAGE1D, OPCODE_TEX_SUB_IMAGE2D, OPCODE_TRANSLATE, OPCODE_VERTEX2, OPCODE_VERTEX3, OPCODE_VERTEX4, OPCODE_VIEWPORT, /* The following two are meta instructions */ OPCODE_CONTINUE, OPCODE_END_OF_LIST } OpCode; /* * Each instruction in the display list is stored as a sequence of * contiguous nodes in memory. * Each node is the union of a variety of datatypes. */ union node { OpCode opcode; GLboolean b; GLbitfield bf; GLubyte ub; GLshort s; GLushort us; GLint i; GLuint ui; GLenum e; GLfloat f; GLvoid *data; void *next; /* If prev node's opcode==OPCODE_CONTINUE */ }; /* Number of nodes of storage needed for each instruction: */ static GLuint InstSize[ OPCODE_END_OF_LIST+1 ]; /**********************************************************************/ /***** Private *****/ /**********************************************************************/ /* * Allocate space for a display list instruction. * Input: opcode - type of instruction * argcount - number of arguments following the instruction * Return: pointer to first node in the instruction */ static Node *alloc_instruction( GLcontext *ctx, OpCode opcode, GLint argcount ) { Node *n, *newblock; GLuint count = InstSize[opcode]; assert( count == argcount+1 ); if (ctx->CurrentPos + count + 2 > BLOCK_SIZE) { /* This block is full. Allocate a new block and chain to it */ n = ctx->CurrentBlock + ctx->CurrentPos; n[0].opcode = OPCODE_CONTINUE; newblock = (Node *) malloc( sizeof(Node) * BLOCK_SIZE ); if (!newblock) { gl_error( ctx, GL_OUT_OF_MEMORY, "Building display list" ); return NULL; } n[1].next = (Node *) newblock; ctx->CurrentBlock = newblock; ctx->CurrentPos = 0; } n = ctx->CurrentBlock + ctx->CurrentPos; ctx->CurrentPos += count; n[0].opcode = opcode; return n; } /* * Make an empty display list. This is used by glGenLists() to * reserver display list IDs. */ static Node *make_empty_list( void ) { Node *n = (Node *) malloc( sizeof(Node) ); n[0].opcode = OPCODE_END_OF_LIST; return n; } /* * Destroy all nodes in a display list. * Input: list - display list number */ void gl_destroy_list( GLcontext *ctx, GLuint list ) { Node *n, *block; GLboolean done; block = (Node *) HashLookup(ctx->Shared->DisplayList, list); n = block; done = block ? GL_FALSE : GL_TRUE; while (!done) { switch (n[0].opcode) { /* special cases first */ case OPCODE_MAP1: gl_free_control_points( ctx, n[1].e, (GLfloat *) n[6].data ); n += InstSize[n[0].opcode]; break; case OPCODE_MAP2: gl_free_control_points( ctx, n[1].e, (GLfloat *) n[10].data ); n += InstSize[n[0].opcode]; break; case OPCODE_DRAW_PIXELS: free( n[5].data ); n += InstSize[n[0].opcode]; break; case OPCODE_BITMAP: gl_free_image( (struct gl_image *) n[7].data ); n += InstSize[n[0].opcode]; break; case OPCODE_COLOR_TABLE: gl_free_image( (struct gl_image *) n[3].data ); n += InstSize[n[0].opcode]; break; case OPCODE_COLOR_SUB_TABLE: gl_free_image( (struct gl_image *) n[3].data ); n += InstSize[n[0].opcode]; break; case OPCODE_POLYGON_STIPPLE: free( n[1].data ); n += InstSize[n[0].opcode]; break; case OPCODE_TEX_IMAGE1D: gl_free_image( (struct gl_image *) n[8].data ); n += InstSize[n[0].opcode]; break; case OPCODE_TEX_IMAGE2D: gl_free_image( (struct gl_image *) n[9].data ); n += InstSize[n[0].opcode]; break; case OPCODE_TEX_SUB_IMAGE1D: { struct gl_image *image; image = (struct gl_image *) n[7].data; gl_free_image( image ); } break; case OPCODE_TEX_SUB_IMAGE2D: { struct gl_image *image; image = (struct gl_image *) n[9].data; gl_free_image( image ); } break; case OPCODE_CONTINUE: n = (Node *) n[1].next; free( block ); block = n; break; case OPCODE_END_OF_LIST: free( block ); done = GL_TRUE; break; default: /* Most frequent case */ n += InstSize[n[0].opcode]; break; } } HashRemove(ctx->Shared->DisplayList, list); } /* * Translate the nth element of list from type to GLuint. */ static GLuint translate_id( GLsizei n, GLenum type, const GLvoid *list ) { GLbyte *bptr; GLubyte *ubptr; GLshort *sptr; GLushort *usptr; GLint *iptr; GLuint *uiptr; GLfloat *fptr; switch (type) { case GL_BYTE: bptr = (GLbyte *) list; return (GLuint) *(bptr+n); case GL_UNSIGNED_BYTE: ubptr = (GLubyte *) list; return (GLuint) *(ubptr+n); case GL_SHORT: sptr = (GLshort *) list; return (GLuint) *(sptr+n); case GL_UNSIGNED_SHORT: usptr = (GLushort *) list; return (GLuint) *(usptr+n); case GL_INT: iptr = (GLint *) list; return (GLuint) *(iptr+n); case GL_UNSIGNED_INT: uiptr = (GLuint *) list; return (GLuint) *(uiptr+n); case GL_FLOAT: fptr = (GLfloat *) list; return (GLuint) *(fptr+n); case GL_2_BYTES: ubptr = ((GLubyte *) list) + 2*n; return (GLuint) *ubptr * 256 + (GLuint) *(ubptr+1); case GL_3_BYTES: ubptr = ((GLubyte *) list) + 3*n; return (GLuint) *ubptr * 65536 + (GLuint) *(ubptr+1) * 256 + (GLuint) *(ubptr+2); case GL_4_BYTES: ubptr = ((GLubyte *) list) + 4*n; return (GLuint) *ubptr * 16777216 + (GLuint) *(ubptr+1) * 65536 + (GLuint) *(ubptr+2) * 256 + (GLuint) *(ubptr+3); default: return 0; } } /**********************************************************************/ /***** Public *****/ /**********************************************************************/ void gl_init_lists( void ) { static int init_flag = 0; if (init_flag==0) { InstSize[OPCODE_ACCUM] = 3; InstSize[OPCODE_ALPHA_FUNC] = 3; InstSize[OPCODE_BEGIN] = 2; InstSize[OPCODE_BIND_TEXTURE] = 3; InstSize[OPCODE_BITMAP] = 8; InstSize[OPCODE_BLEND_FUNC] = 3; InstSize[OPCODE_CALL_LIST] = 2; InstSize[OPCODE_CALL_LIST_OFFSET] = 2; InstSize[OPCODE_CLEAR] = 2; InstSize[OPCODE_CLEAR_ACCUM] = 5; InstSize[OPCODE_CLEAR_COLOR] = 5; InstSize[OPCODE_CLEAR_DEPTH] = 2; InstSize[OPCODE_CLEAR_INDEX] = 2; InstSize[OPCODE_CLEAR_STENCIL] = 2; InstSize[OPCODE_CLIP_PLANE] = 6; InstSize[OPCODE_COLOR_3F] = 4; InstSize[OPCODE_COLOR_4F] = 5; InstSize[OPCODE_COLOR_4UB] = 5; InstSize[OPCODE_COLOR_MASK] = 5; InstSize[OPCODE_COLOR_MATERIAL] = 3; InstSize[OPCODE_COLOR_TABLE] = 4; InstSize[OPCODE_COLOR_SUB_TABLE] = 4; InstSize[OPCODE_COPY_PIXELS] = 6; InstSize[OPCODE_COPY_TEX_IMAGE1D] = 8; InstSize[OPCODE_COPY_TEX_IMAGE2D] = 9; InstSize[OPCODE_COPY_TEX_SUB_IMAGE1D] = 7; InstSize[OPCODE_COPY_TEX_SUB_IMAGE2D] = 9; InstSize[OPCODE_CULL_FACE] = 2; InstSize[OPCODE_DEPTH_FUNC] = 2; InstSize[OPCODE_DEPTH_MASK] = 2; InstSize[OPCODE_DEPTH_RANGE] = 3; InstSize[OPCODE_DISABLE] = 2; InstSize[OPCODE_DRAW_BUFFER] = 2; InstSize[OPCODE_DRAW_PIXELS] = 6; InstSize[OPCODE_ENABLE] = 2; InstSize[OPCODE_EDGE_FLAG] = 2; InstSize[OPCODE_END] = 1; InstSize[OPCODE_EVALCOORD1] = 2; InstSize[OPCODE_EVALCOORD2] = 3; InstSize[OPCODE_EVALMESH1] = 4; InstSize[OPCODE_EVALMESH2] = 6; InstSize[OPCODE_EVALPOINT1] = 2; InstSize[OPCODE_EVALPOINT2] = 3; InstSize[OPCODE_FOG] = 6; InstSize[OPCODE_FRONT_FACE] = 2; InstSize[OPCODE_FRUSTUM] = 7; InstSize[OPCODE_HINT] = 3; InstSize[OPCODE_INDEX] = 2; InstSize[OPCODE_INDEX_MASK] = 2; InstSize[OPCODE_INIT_NAMES] = 1; InstSize[OPCODE_LIGHT] = 7; InstSize[OPCODE_LIGHT_MODEL] = 6; InstSize[OPCODE_LINE_STIPPLE] = 3; InstSize[OPCODE_LINE_WIDTH] = 2; InstSize[OPCODE_LIST_BASE] = 2; InstSize[OPCODE_LOAD_IDENTITY] = 1; InstSize[OPCODE_LOAD_MATRIX] = 17; InstSize[OPCODE_LOAD_NAME] = 2; InstSize[OPCODE_LOGIC_OP] = 2; InstSize[OPCODE_MAP1] = 7; InstSize[OPCODE_MAP2] = 11; InstSize[OPCODE_MAPGRID1] = 4; InstSize[OPCODE_MAPGRID2] = 7; InstSize[OPCODE_MATERIAL] = 7; InstSize[OPCODE_MATRIX_MODE] = 2; InstSize[OPCODE_MULT_MATRIX] = 17; InstSize[OPCODE_NORMAL] = 4; InstSize[OPCODE_ORTHO] = 7; InstSize[OPCODE_PASSTHROUGH] = 2; InstSize[OPCODE_PIXEL_MAP] = 4; InstSize[OPCODE_PIXEL_TRANSFER] = 3; InstSize[OPCODE_PIXEL_ZOOM] = 3; InstSize[OPCODE_POINT_SIZE] = 2; InstSize[OPCODE_POLYGON_MODE] = 3; InstSize[OPCODE_POLYGON_STIPPLE] = 2; InstSize[OPCODE_POLYGON_OFFSET] = 3; InstSize[OPCODE_POP_ATTRIB] = 1; InstSize[OPCODE_POP_MATRIX] = 1; InstSize[OPCODE_POP_NAME] = 1; InstSize[OPCODE_PRIORITIZE_TEXTURE] = 3; InstSize[OPCODE_PUSH_ATTRIB] = 2; InstSize[OPCODE_PUSH_MATRIX] = 1; InstSize[OPCODE_PUSH_NAME] = 2; InstSize[OPCODE_RASTER_POS] = 5; InstSize[OPCODE_RECTF] = 5; InstSize[OPCODE_READ_BUFFER] = 2; InstSize[OPCODE_SCALE] = 4; InstSize[OPCODE_SCISSOR] = 5; InstSize[OPCODE_STENCIL_FUNC] = 4; InstSize[OPCODE_STENCIL_MASK] = 2; InstSize[OPCODE_STENCIL_OP] = 4; InstSize[OPCODE_SHADE_MODEL] = 2; InstSize[OPCODE_TEXCOORD2] = 3; InstSize[OPCODE_TEXCOORD4] = 5; InstSize[OPCODE_TEXENV] = 7; InstSize[OPCODE_TEXGEN] = 7; InstSize[OPCODE_TEXPARAMETER] = 7; InstSize[OPCODE_TEX_IMAGE1D] = 9; InstSize[OPCODE_TEX_IMAGE2D] = 10; InstSize[OPCODE_TEX_SUB_IMAGE1D] = 8; InstSize[OPCODE_TEX_SUB_IMAGE2D] = 10; InstSize[OPCODE_TRANSLATE] = 4; InstSize[OPCODE_VERTEX2] = 3; InstSize[OPCODE_VERTEX3] = 4; InstSize[OPCODE_VERTEX4] = 5; InstSize[OPCODE_VIEWPORT] = 5; InstSize[OPCODE_CONTINUE] = 2; InstSize[OPCODE_END_OF_LIST] = 1; } init_flag = 1; } /* * Display List compilation functions */ void gl_save_Accum( GLcontext *ctx, GLenum op, GLfloat value ) { Node *n = alloc_instruction( ctx, OPCODE_ACCUM, 2 ); if (n) { n[1].e = op; n[2].f = value; } if (ctx->ExecuteFlag) { (*ctx->Exec.Accum)( ctx, op, value ); } } void gl_save_AlphaFunc( GLcontext *ctx, GLenum func, GLclampf ref ) { Node *n = alloc_instruction( ctx, OPCODE_ALPHA_FUNC, 2 ); if (n) { n[1].e = func; n[2].f = (GLfloat) ref; } if (ctx->ExecuteFlag) { (*ctx->Exec.AlphaFunc)( ctx, func, ref ); } } void gl_save_Begin( GLcontext *ctx, GLenum mode ) { Node *n = alloc_instruction( ctx, OPCODE_BEGIN, 1 ); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { (*ctx->Exec.Begin)( ctx, mode ); } } void gl_save_BindTexture( GLcontext *ctx, GLenum target, GLuint texture ) { Node *n = alloc_instruction( ctx, OPCODE_BIND_TEXTURE, 2 ); if (n) { n[1].e = target; n[2].ui = texture; } if (ctx->ExecuteFlag) { (*ctx->Exec.BindTexture)( ctx, target, texture ); } } void gl_save_Bitmap( GLcontext *ctx, GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove, GLfloat ymove, const struct gl_image *bitmap ) { Node *n = alloc_instruction( ctx, OPCODE_BITMAP, 7 ); if (n) { n[1].i = (GLint) width; n[2].i = (GLint) height; n[3].f = xorig; n[4].f = yorig; n[5].f = xmove; n[6].f = ymove; n[7].data = (void *) bitmap; } if (ctx->ExecuteFlag) { (*ctx->Exec.Bitmap)( ctx, width, height, xorig, yorig, xmove, ymove, bitmap ); } } void gl_save_BlendFunc( GLcontext *ctx, GLenum sfactor, GLenum dfactor ) { Node *n = alloc_instruction( ctx, OPCODE_BLEND_FUNC, 2 ); if (n) { n[1].e = sfactor; n[2].e = dfactor; } if (ctx->ExecuteFlag) { (*ctx->Exec.BlendFunc)( ctx, sfactor, dfactor ); } } void gl_save_CallList( GLcontext *ctx, GLuint list ) { Node *n = alloc_instruction( ctx, OPCODE_CALL_LIST, 1 ); if (n) { n[1].ui = list; } if (ctx->ExecuteFlag) { (*ctx->Exec.CallList)( ctx, list ); } } void gl_save_CallLists( GLcontext *ctx, GLsizei n, GLenum type, const GLvoid *lists ) { GLuint i; for (i=0;iExecuteFlag) { (*ctx->Exec.CallLists)( ctx, n, type, lists ); } } void gl_save_Clear( GLcontext *ctx, GLbitfield mask ) { Node *n = alloc_instruction( ctx, OPCODE_CLEAR, 1 ); if (n) { n[1].bf = mask; } if (ctx->ExecuteFlag) { (*ctx->Exec.Clear)( ctx, mask ); } } void gl_save_ClearAccum( GLcontext *ctx, GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha ) { Node *n = alloc_instruction( ctx, OPCODE_CLEAR_ACCUM, 4 ); if (n) { n[1].f = red; n[2].f = green; n[3].f = blue; n[4].f = alpha; } if (ctx->ExecuteFlag) { (*ctx->Exec.ClearAccum)( ctx, red, green, blue, alpha ); } } void gl_save_ClearColor( GLcontext *ctx, GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha ) { Node *n = alloc_instruction( ctx, OPCODE_CLEAR_COLOR, 4 ); if (n) { n[1].f = red; n[2].f = green; n[3].f = blue; n[4].f = alpha; } if (ctx->ExecuteFlag) { (*ctx->Exec.ClearColor)( ctx, red, green, blue, alpha ); } } void gl_save_ClearDepth( GLcontext *ctx, GLclampd depth ) { Node *n = alloc_instruction( ctx, OPCODE_CLEAR_DEPTH, 1 ); if (n) { n[1].f = (GLfloat) depth; } if (ctx->ExecuteFlag) { (*ctx->Exec.ClearDepth)( ctx, depth ); } } void gl_save_ClearIndex( GLcontext *ctx, GLfloat c ) { Node *n = alloc_instruction( ctx, OPCODE_CLEAR_INDEX, 1 ); if (n) { n[1].f = c; } if (ctx->ExecuteFlag) { (*ctx->Exec.ClearIndex)( ctx, c ); } } void gl_save_ClearStencil( GLcontext *ctx, GLint s ) { Node *n = alloc_instruction( ctx, OPCODE_CLEAR_STENCIL, 1 ); if (n) { n[1].i = s; } if (ctx->ExecuteFlag) { (*ctx->Exec.ClearStencil)( ctx, s ); } } void gl_save_ClipPlane( GLcontext *ctx, GLenum plane, const GLfloat *equ ) { Node *n = alloc_instruction( ctx, OPCODE_CLIP_PLANE, 5 ); if (n) { n[1].e = plane; n[2].f = equ[0]; n[3].f = equ[1]; n[4].f = equ[2]; n[5].f = equ[3]; } if (ctx->ExecuteFlag) { (*ctx->Exec.ClipPlane)( ctx, plane, equ ); } } void gl_save_Color3f( GLcontext *ctx, GLfloat r, GLfloat g, GLfloat b ) { Node *n = alloc_instruction( ctx, OPCODE_COLOR_3F, 3 ); if (n) { n[1].f = r; n[2].f = g; n[3].f = b; } if (ctx->ExecuteFlag) { (*ctx->Exec.Color3f)( ctx, r, g, b ); } } void gl_save_Color3fv( GLcontext *ctx, const GLfloat *c ) { Node *n = alloc_instruction( ctx, OPCODE_COLOR_3F, 3 ); if (n) { n[1].f = c[0]; n[2].f = c[1]; n[3].f = c[2]; } if (ctx->ExecuteFlag) { (*ctx->Exec.Color3fv)( ctx, c ); } } void gl_save_Color4f( GLcontext *ctx, GLfloat r, GLfloat g, GLfloat b, GLfloat a ) { Node *n = alloc_instruction( ctx, OPCODE_COLOR_4F, 4 ); if (n) { n[1].f = r; n[2].f = g; n[3].f = b; n[4].f = a; } if (ctx->ExecuteFlag) { (*ctx->Exec.Color4f)( ctx, r, g, b, a ); } } void gl_save_Color4fv( GLcontext *ctx, const GLfloat *c ) { Node *n = alloc_instruction( ctx, OPCODE_COLOR_4F, 4 ); if (n) { n[1].f = c[0]; n[2].f = c[1]; n[3].f = c[2]; n[4].f = c[3]; } if (ctx->ExecuteFlag) { (*ctx->Exec.Color4fv)( ctx, c ); } } void gl_save_Color4ub( GLcontext *ctx, GLubyte r, GLubyte g, GLubyte b, GLubyte a ) { Node *n = alloc_instruction( ctx, OPCODE_COLOR_4UB, 4 ); if (n) { n[1].ub = r; n[2].ub = g; n[3].ub = b; n[4].ub = a; } if (ctx->ExecuteFlag) { (*ctx->Exec.Color4ub)( ctx, r, g, b, a ); } } void gl_save_Color4ubv( GLcontext *ctx, const GLubyte *c ) { Node *n = alloc_instruction( ctx, OPCODE_COLOR_4UB, 4 ); if (n) { n[1].ub = c[0]; n[2].ub = c[1]; n[3].ub = c[2]; n[4].ub = c[3]; } if (ctx->ExecuteFlag) { (*ctx->Exec.Color4ubv)( ctx, c ); } } void gl_save_ColorMask( GLcontext *ctx, GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha ) { Node *n = alloc_instruction( ctx, OPCODE_COLOR_MASK, 4 ); if (n) { n[1].b = red; n[2].b = green; n[3].b = blue; n[4].b = alpha; } if (ctx->ExecuteFlag) { (*ctx->Exec.ColorMask)( ctx, red, green, blue, alpha ); } } void gl_save_ColorMaterial( GLcontext *ctx, GLenum face, GLenum mode ) { Node *n = alloc_instruction( ctx, OPCODE_COLOR_MATERIAL, 2 ); if (n) { n[1].e = face; n[2].e = mode; } if (ctx->ExecuteFlag) { (*ctx->Exec.ColorMaterial)( ctx, face, mode ); } } void gl_save_ColorTable( GLcontext *ctx, GLenum target, GLenum internalFormat, struct gl_image *table ) { Node *n = alloc_instruction( ctx, OPCODE_COLOR_TABLE, 3 ); if (n) { n[1].e = target; n[2].e = internalFormat; n[3].data = (GLvoid *) table; if (table) { /* must retain this image */ table->RefCount = 1; } } if (ctx->ExecuteFlag) { (*ctx->Exec.ColorTable)( ctx, target, internalFormat, table ); } } void gl_save_ColorSubTable( GLcontext *ctx, GLenum target, GLsizei start, struct gl_image *data ) { Node *n = alloc_instruction( ctx, OPCODE_COLOR_SUB_TABLE, 3 ); if (n) { n[1].e = target; n[2].i = start; n[3].data = (GLvoid *) data; if (data) { /* must retain this image */ data->RefCount = 1; } } if (ctx->ExecuteFlag) { (*ctx->Exec.ColorSubTable)( ctx, target, start, data ); } } void gl_save_CopyPixels( GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height, GLenum type ) { Node *n = alloc_instruction( ctx, OPCODE_COPY_PIXELS, 5 ); if (n) { n[1].i = x; n[2].i = y; n[3].i = (GLint) width; n[4].i = (GLint) height; n[5].e = type; } if (ctx->ExecuteFlag) { (*ctx->Exec.CopyPixels)( ctx, x, y, width, height, type ); } } void gl_save_CopyTexImage1D( GLcontext *ctx, GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLint border ) { Node *n = alloc_instruction( ctx, OPCODE_COPY_TEX_IMAGE1D, 7 ); if (n) { n[1].e = target; n[2].i = level; n[3].e = internalformat; n[4].i = x; n[5].i = y; n[6].i = width; n[7].i = border; } if (ctx->ExecuteFlag) { (*ctx->Exec.CopyTexImage1D)( ctx, target, level, internalformat, x, y, width, border ); } } void gl_save_CopyTexImage2D( GLcontext *ctx, GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border ) { Node *n = alloc_instruction( ctx, OPCODE_COPY_TEX_IMAGE2D, 8 ); if (n) { n[1].e = target; n[2].i = level; n[3].e = internalformat; n[4].i = x; n[5].i = y; n[6].i = width; n[7].i = height; n[8].i = border; } if (ctx->ExecuteFlag) { (*ctx->Exec.CopyTexImage2D)( ctx, target, level, internalformat, x, y, width, height, border ); } } void gl_save_CopyTexSubImage1D( GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint x, GLint y, GLsizei width ) { Node *n = alloc_instruction( ctx, OPCODE_COPY_TEX_SUB_IMAGE1D, 6 ); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = x; n[5].i = y; n[6].i = width; } if (ctx->ExecuteFlag) { (*ctx->Exec.CopyTexSubImage1D)( ctx, target, level, xoffset, x, y, width ); } } void gl_save_CopyTexSubImage2D( GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLint height ) { Node *n = alloc_instruction( ctx, OPCODE_COPY_TEX_SUB_IMAGE2D, 8 ); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = yoffset; n[5].i = x; n[6].i = y; n[7].i = width; n[8].i = height; } if (ctx->ExecuteFlag) { (*ctx->Exec.CopyTexSubImage2D)( ctx, target, level, xoffset, yoffset, x, y, width, height ); } } void gl_save_CullFace( GLcontext *ctx, GLenum mode ) { Node *n = alloc_instruction( ctx, OPCODE_CULL_FACE, 1 ); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { (*ctx->Exec.CullFace)( ctx, mode ); } } void gl_save_DepthFunc( GLcontext *ctx, GLenum func ) { Node *n = alloc_instruction( ctx, OPCODE_DEPTH_FUNC, 1 ); if (n) { n[1].e = func; } if (ctx->ExecuteFlag) { (*ctx->Exec.DepthFunc)( ctx, func ); } } void gl_save_DepthMask( GLcontext *ctx, GLboolean mask ) { Node *n = alloc_instruction( ctx, OPCODE_DEPTH_MASK, 1 ); if (n) { n[1].b = mask; } if (ctx->ExecuteFlag) { (*ctx->Exec.DepthMask)( ctx, mask ); } } void gl_save_DepthRange( GLcontext *ctx, GLclampd nearval, GLclampd farval ) { Node *n = alloc_instruction( ctx, OPCODE_DEPTH_RANGE, 2 ); if (n) { n[1].f = (GLfloat) nearval; n[2].f = (GLfloat) farval; } if (ctx->ExecuteFlag) { (*ctx->Exec.DepthRange)( ctx, nearval, farval ); } } void gl_save_Disable( GLcontext *ctx, GLenum cap ) { Node *n = alloc_instruction( ctx, OPCODE_DISABLE, 1 ); if (n) { n[1].e = cap; } if (ctx->ExecuteFlag) { (*ctx->Exec.Disable)( ctx, cap ); } } void gl_save_DrawBuffer( GLcontext *ctx, GLenum mode ) { Node *n = alloc_instruction( ctx, OPCODE_DRAW_BUFFER, 1 ); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { (*ctx->Exec.DrawBuffer)( ctx, mode ); } } void gl_save_DrawPixels( GLcontext *ctx, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid *pixels ) { Node *n = alloc_instruction( ctx, OPCODE_DRAW_PIXELS, 5 ); if (n) { n[1].i = (GLint) width; n[2].i = (GLint) height; n[3].e = format; n[4].e = type; n[5].data = (GLvoid *) pixels; } /* Special case: gl_DrawPixels takes care of GL_COMPILE_AND_EXECUTE case! if (ctx->ExecuteFlag) { (*ctx->Exec.DrawPixels)( ctx, width, height, format, type, pixels ); } */ } void gl_save_EdgeFlag( GLcontext *ctx, GLboolean flag ) { Node *n = alloc_instruction( ctx, OPCODE_EDGE_FLAG, 1 ); if (n) { n[1].b = flag; } if (ctx->ExecuteFlag) { (*ctx->Exec.EdgeFlag)( ctx, flag ); } } void gl_save_Enable( GLcontext *ctx, GLenum cap ) { Node *n = alloc_instruction( ctx, OPCODE_ENABLE, 1 ); if (n) { n[1].e = cap; } if (ctx->ExecuteFlag) { (*ctx->Exec.Enable)( ctx, cap ); } } void gl_save_End( GLcontext *ctx ) { (void) alloc_instruction( ctx, OPCODE_END, 0 ); if (ctx->ExecuteFlag) { (*ctx->Exec.End)( ctx ); } } void gl_save_EvalCoord1f( GLcontext *ctx, GLfloat u ) { Node *n = alloc_instruction( ctx, OPCODE_EVALCOORD1, 1 ); if (n) { n[1].f = u; } if (ctx->ExecuteFlag) { (*ctx->Exec.EvalCoord1f)( ctx, u ); } } void gl_save_EvalCoord2f( GLcontext *ctx, GLfloat u, GLfloat v ) { Node *n = alloc_instruction( ctx, OPCODE_EVALCOORD2, 2 ); if (n) { n[1].f = u; n[2].f = v; } if (ctx->ExecuteFlag) { (*ctx->Exec.EvalCoord2f)( ctx, u, v ); } } void gl_save_EvalMesh1( GLcontext *ctx, GLenum mode, GLint i1, GLint i2 ) { Node *n = alloc_instruction( ctx, OPCODE_EVALMESH1, 3 ); if (n) { n[1].e = mode; n[2].i = i1; n[3].i = i2; } if (ctx->ExecuteFlag) { (*ctx->Exec.EvalMesh1)( ctx, mode, i1, i2 ); } } void gl_save_EvalMesh2( GLcontext *ctx, GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2 ) { Node *n = alloc_instruction( ctx, OPCODE_EVALMESH2, 5 ); if (n) { n[1].e = mode; n[2].i = i1; n[3].i = i2; n[4].i = j1; n[5].i = j2; } if (ctx->ExecuteFlag) { (*ctx->Exec.EvalMesh2)( ctx, mode, i1, i2, j1, j2 ); } } void gl_save_EvalPoint1( GLcontext *ctx, GLint i ) { Node *n = alloc_instruction( ctx, OPCODE_EVALPOINT1, 1 ); if (n) { n[1].i = i; } if (ctx->ExecuteFlag) { (*ctx->Exec.EvalPoint1)( ctx, i ); } } void gl_save_EvalPoint2( GLcontext *ctx, GLint i, GLint j ) { Node *n = alloc_instruction( ctx, OPCODE_EVALPOINT2, 2 ); if (n) { n[1].i = i; n[2].i = j; } if (ctx->ExecuteFlag) { (*ctx->Exec.EvalPoint2)( ctx, i, j ); } } void gl_save_Fogfv( GLcontext *ctx, GLenum pname, const GLfloat *params ) { Node *n = alloc_instruction( ctx, OPCODE_FOG, 5 ); if (n) { n[1].e = pname; n[2].f = params[0]; n[3].f = params[1]; n[4].f = params[2]; n[5].f = params[3]; } if (ctx->ExecuteFlag) { (*ctx->Exec.Fogfv)( ctx, pname, params ); } } void gl_save_FrontFace( GLcontext *ctx, GLenum mode ) { Node *n = alloc_instruction( ctx, OPCODE_FRONT_FACE, 1 ); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { (*ctx->Exec.FrontFace)( ctx, mode ); } } void gl_save_Frustum( GLcontext *ctx, GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval ) { Node *n = alloc_instruction( ctx, OPCODE_FRUSTUM, 6 ); if (n) { n[1].f = left; n[2].f = right; n[3].f = bottom; n[4].f = top; n[5].f = nearval; n[6].f = farval; } if (ctx->ExecuteFlag) { (*ctx->Exec.Frustum)( ctx, left, right, bottom, top, nearval, farval ); } } void gl_save_Hint( GLcontext *ctx, GLenum target, GLenum mode ) { Node *n = alloc_instruction( ctx, OPCODE_HINT, 2 ); if (n) { n[1].e = target; n[2].e = mode; } if (ctx->ExecuteFlag) { (*ctx->Exec.Hint)( ctx, target, mode ); } } void gl_save_Indexi( GLcontext *ctx, GLint index ) { Node *n = alloc_instruction( ctx, OPCODE_INDEX, 1 ); if (n) { n[1].i = index; } if (ctx->ExecuteFlag) { (*ctx->Exec.Indexi)( ctx, index ); } } void gl_save_Indexf( GLcontext *ctx, GLfloat index ) { Node *n = alloc_instruction( ctx, OPCODE_INDEX, 1 ); if (n) { n[1].i = (GLint) index; } if (ctx->ExecuteFlag) { (*ctx->Exec.Indexf)( ctx,index ); } } void gl_save_IndexMask( GLcontext *ctx, GLuint mask ) { Node *n = alloc_instruction( ctx, OPCODE_INDEX_MASK, 1 ); if (n) { n[1].ui = mask; } if (ctx->ExecuteFlag) { (*ctx->Exec.IndexMask)( ctx, mask ); } } void gl_save_InitNames( GLcontext *ctx ) { (void) alloc_instruction( ctx, OPCODE_INIT_NAMES, 0 ); if (ctx->ExecuteFlag) { (*ctx->Exec.InitNames)( ctx ); } } void gl_save_Lightfv( GLcontext *ctx, GLenum light, GLenum pname, const GLfloat *params, GLint numparams ) { Node *n = alloc_instruction( ctx, OPCODE_LIGHT, 6 ); if (OPCODE_LIGHT) { GLint i; n[1].e = light; n[2].e = pname; for (i=0;iExecuteFlag) { (*ctx->Exec.Lightfv)( ctx, light, pname, params, numparams ); } } void gl_save_LightModelfv( GLcontext *ctx, GLenum pname, const GLfloat *params ) { Node *n = alloc_instruction( ctx, OPCODE_LIGHT_MODEL, 5 ); if (n) { n[1].e = pname; n[2].f = params[0]; n[3].f = params[1]; n[4].f = params[2]; n[5].f = params[3]; } if (ctx->ExecuteFlag) { (*ctx->Exec.LightModelfv)( ctx, pname, params ); } } void gl_save_LineStipple( GLcontext *ctx, GLint factor, GLushort pattern ) { Node *n = alloc_instruction( ctx, OPCODE_LINE_STIPPLE, 2 ); if (n) { n[1].i = factor; n[2].us = pattern; } if (ctx->ExecuteFlag) { (*ctx->Exec.LineStipple)( ctx, factor, pattern ); } } void gl_save_LineWidth( GLcontext *ctx, GLfloat width ) { Node *n = alloc_instruction( ctx, OPCODE_LINE_WIDTH, 1 ); if (n) { n[1].f = width; } if (ctx->ExecuteFlag) { (*ctx->Exec.LineWidth)( ctx, width ); } } void gl_save_ListBase( GLcontext *ctx, GLuint base ) { Node *n = alloc_instruction( ctx, OPCODE_LIST_BASE, 1 ); if (n) { n[1].ui = base; } if (ctx->ExecuteFlag) { (*ctx->Exec.ListBase)( ctx, base ); } } void gl_save_LoadIdentity( GLcontext *ctx ) { (void) alloc_instruction( ctx, OPCODE_LOAD_IDENTITY, 0 ); if (ctx->ExecuteFlag) { (*ctx->Exec.LoadIdentity)( ctx ); } } void gl_save_LoadMatrixf( GLcontext *ctx, const GLfloat *m ) { Node *n = alloc_instruction( ctx, OPCODE_LOAD_MATRIX, 16 ); if (n) { GLuint i; for (i=0;i<16;i++) { n[1+i].f = m[i]; } } if (ctx->ExecuteFlag) { (*ctx->Exec.LoadMatrixf)( ctx, m ); } } void gl_save_LoadName( GLcontext *ctx, GLuint name ) { Node *n = alloc_instruction( ctx, OPCODE_LOAD_NAME, 1 ); if (n) { n[1].ui = name; } if (ctx->ExecuteFlag) { (*ctx->Exec.LoadName)( ctx, name ); } } void gl_save_LogicOp( GLcontext *ctx, GLenum opcode ) { Node *n = alloc_instruction( ctx, OPCODE_LOGIC_OP, 1 ); if (n) { n[1].e = opcode; } if (ctx->ExecuteFlag) { (*ctx->Exec.LogicOp)( ctx, opcode ); } } void gl_save_Map1f( GLcontext *ctx, GLenum target, GLfloat u1, GLfloat u2, GLint stride, GLint order, const GLfloat *points, GLboolean retain ) { Node *n = alloc_instruction( ctx, OPCODE_MAP1, 6 ); if (n) { n[1].e = target; n[2].f = u1; n[3].f = u2; n[4].i = stride; n[5].i = order; n[6].data = (void *) points; } if (ctx->ExecuteFlag) { (*ctx->Exec.Map1f)( ctx, target, u1, u2, stride, order, points, GL_TRUE ); } } void gl_save_Map2f( GLcontext *ctx, GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder, GLfloat v1, GLfloat v2, GLint vstride, GLint vorder, const GLfloat *points, GLboolean retain ) { Node *n = alloc_instruction( ctx, OPCODE_MAP2, 10 ); if (n) { n[1].e = target; n[2].f = u1; n[3].f = u2; n[4].f = v1; n[5].f = v2; n[6].i = ustride; n[7].i = vstride; n[8].i = uorder; n[9].i = vorder; n[10].data = (void *) points; } if (ctx->ExecuteFlag) { (*ctx->Exec.Map2f)( ctx, target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, points, GL_TRUE ); } } void gl_save_MapGrid1f( GLcontext *ctx, GLint un, GLfloat u1, GLfloat u2 ) { Node *n = alloc_instruction( ctx, OPCODE_MAPGRID1, 3 ); if (n) { n[1].i = un; n[2].f = u1; n[3].f = u2; } if (ctx->ExecuteFlag) { (*ctx->Exec.MapGrid1f)( ctx, un, u1, u2 ); } } void gl_save_MapGrid2f( GLcontext *ctx, GLint un, GLfloat u1, GLfloat u2, GLint vn, GLfloat v1, GLfloat v2 ) { Node *n = alloc_instruction( ctx, OPCODE_MAPGRID2, 6 ); if (n) { n[1].i = un; n[2].f = u1; n[3].f = u2; n[4].i = vn; n[5].f = v1; n[6].f = v2; } if (ctx->ExecuteFlag) { (*ctx->Exec.MapGrid2f)( ctx, un, u1, u2, vn, v1, v2 ); } } void gl_save_Materialfv( GLcontext *ctx, GLenum face, GLenum pname, const GLfloat *params ) { Node *n = alloc_instruction( ctx, OPCODE_MATERIAL, 6 ); if (n) { n[1].e = face; n[2].e = pname; n[3].f = params[0]; n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } if (ctx->ExecuteFlag) { (*ctx->Exec.Materialfv)( ctx, face, pname, params ); } } void gl_save_MatrixMode( GLcontext *ctx, GLenum mode ) { Node *n = alloc_instruction( ctx, OPCODE_MATRIX_MODE, 1 ); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { (*ctx->Exec.MatrixMode)( ctx, mode ); } } void gl_save_MultMatrixf( GLcontext *ctx, const GLfloat *m ) { Node *n = alloc_instruction( ctx, OPCODE_MULT_MATRIX, 16 ); if (n) { GLuint i; for (i=0;i<16;i++) { n[1+i].f = m[i]; } } if (ctx->ExecuteFlag) { (*ctx->Exec.MultMatrixf)( ctx, m ); } } void gl_save_NewList( GLcontext *ctx, GLuint list, GLenum mode ) { /* It's an error to call this function while building a display list */ gl_error( ctx, GL_INVALID_OPERATION, "glNewList" ); } void gl_save_Normal3fv( GLcontext *ctx, const GLfloat norm[3] ) { Node *n = alloc_instruction( ctx, OPCODE_NORMAL, 3 ); if (n) { n[1].f = norm[0]; n[2].f = norm[1]; n[3].f = norm[2]; } if (ctx->ExecuteFlag) { (*ctx->Exec.Normal3fv)( ctx, norm ); } } void gl_save_Normal3f( GLcontext *ctx, GLfloat nx, GLfloat ny, GLfloat nz ) { Node *n = alloc_instruction( ctx, OPCODE_NORMAL, 3 ); if (n) { n[1].f = nx; n[2].f = ny; n[3].f = nz; } if (ctx->ExecuteFlag) { (*ctx->Exec.Normal3f)( ctx, nx, ny, nz ); } } void gl_save_Ortho( GLcontext *ctx, GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval ) { Node *n = alloc_instruction( ctx, OPCODE_ORTHO, 6 ); if (n) { n[1].f = left; n[2].f = right; n[3].f = bottom; n[4].f = top; n[5].f = nearval; n[6].f = farval; } if (ctx->ExecuteFlag) { (*ctx->Exec.Ortho)( ctx, left, right, bottom, top, nearval, farval ); } } void gl_save_PixelMapfv( GLcontext *ctx, GLenum map, GLint mapsize, const GLfloat *values ) { Node *n = alloc_instruction( ctx, OPCODE_PIXEL_MAP, 3 ); if (n) { n[1].e = map; n[2].i = mapsize; n[3].data = (void *) malloc( mapsize * sizeof(GLfloat) ); MEMCPY( n[3].data, (void *) values, mapsize * sizeof(GLfloat) ); } if (ctx->ExecuteFlag) { (*ctx->Exec.PixelMapfv)( ctx, map, mapsize, values ); } } void gl_save_PixelTransferf( GLcontext *ctx, GLenum pname, GLfloat param ) { Node *n = alloc_instruction( ctx, OPCODE_PIXEL_TRANSFER, 2 ); if (n) { n[1].e = pname; n[2].f = param; } if (ctx->ExecuteFlag) { (*ctx->Exec.PixelTransferf)( ctx, pname, param ); } } void gl_save_PixelZoom( GLcontext *ctx, GLfloat xfactor, GLfloat yfactor ) { Node *n = alloc_instruction( ctx, OPCODE_PIXEL_ZOOM, 2 ); if (n) { n[1].f = xfactor; n[2].f = yfactor; } if (ctx->ExecuteFlag) { (*ctx->Exec.PixelZoom)( ctx, xfactor, yfactor ); } } void gl_save_PointSize( GLcontext *ctx, GLfloat size ) { Node *n = alloc_instruction( ctx, OPCODE_POINT_SIZE, 1 ); if (n) { n[1].f = size; } if (ctx->ExecuteFlag) { (*ctx->Exec.PointSize)( ctx, size ); } } void gl_save_PolygonMode( GLcontext *ctx, GLenum face, GLenum mode ) { Node *n = alloc_instruction( ctx, OPCODE_POLYGON_MODE, 2 ); if (n) { n[1].e = face; n[2].e = mode; } if (ctx->ExecuteFlag) { (*ctx->Exec.PolygonMode)( ctx, face, mode ); } } void gl_save_PolygonStipple( GLcontext *ctx, const GLubyte *mask ) { Node *n = alloc_instruction( ctx, OPCODE_POLYGON_STIPPLE, 1 ); if (n) { void *data; n[1].data = malloc( 32 * 4 ); data = n[1].data; /* This needed for Acorn compiler */ MEMCPY( data, mask, 32 * 4 ); } if (ctx->ExecuteFlag) { (*ctx->Exec.PolygonStipple)( ctx, mask ); } } void gl_save_PolygonOffset( GLcontext *ctx, GLfloat factor, GLfloat units ) { Node *n = alloc_instruction( ctx, OPCODE_POLYGON_OFFSET, 2 ); if (n) { n[1].f = factor; n[2].f = units; } if (ctx->ExecuteFlag) { (*ctx->Exec.PolygonOffset)( ctx, factor, units ); } } void gl_save_PopAttrib( GLcontext *ctx ) { (void) alloc_instruction( ctx, OPCODE_POP_ATTRIB, 0 ); if (ctx->ExecuteFlag) { (*ctx->Exec.PopAttrib)( ctx ); } } void gl_save_PopMatrix( GLcontext *ctx ) { (void) alloc_instruction( ctx, OPCODE_POP_MATRIX, 0 ); if (ctx->ExecuteFlag) { (*ctx->Exec.PopMatrix)( ctx ); } } void gl_save_PopName( GLcontext *ctx ) { (void) alloc_instruction( ctx, OPCODE_POP_NAME, 0 ); if (ctx->ExecuteFlag) { (*ctx->Exec.PopName)( ctx ); } } void gl_save_PrioritizeTextures( GLcontext *ctx, GLsizei num, const GLuint *textures, const GLclampf *priorities ) { GLint i; for (i=0;iExecuteFlag) { (*ctx->Exec.PrioritizeTextures)( ctx, num, textures, priorities ); } } void gl_save_PushAttrib( GLcontext *ctx, GLbitfield mask ) { Node *n = alloc_instruction( ctx, OPCODE_PUSH_ATTRIB, 1 ); if (n) { n[1].bf = mask; } if (ctx->ExecuteFlag) { (*ctx->Exec.PushAttrib)( ctx, mask ); } } void gl_save_PushMatrix( GLcontext *ctx ) { (void) alloc_instruction( ctx, OPCODE_PUSH_MATRIX, 0 ); if (ctx->ExecuteFlag) { (*ctx->Exec.PushMatrix)( ctx ); } } void gl_save_PushName( GLcontext *ctx, GLuint name ) { Node *n = alloc_instruction( ctx, OPCODE_PUSH_NAME, 1 ); if (n) { n[1].ui = name; } if (ctx->ExecuteFlag) { (*ctx->Exec.PushName)( ctx, name ); } } void gl_save_RasterPos4f( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z, GLfloat w ) { Node *n = alloc_instruction( ctx, OPCODE_RASTER_POS, 4 ); if (n) { n[1].f = x; n[2].f = y; n[3].f = z; n[4].f = w; } if (ctx->ExecuteFlag) { (*ctx->Exec.RasterPos4f)( ctx, x, y, z, w ); } } void gl_save_PassThrough( GLcontext *ctx, GLfloat token ) { Node *n = alloc_instruction( ctx, OPCODE_PASSTHROUGH, 1 ); if (n) { n[1].f = token; } if (ctx->ExecuteFlag) { (*ctx->Exec.PassThrough)( ctx, token ); } } void gl_save_ReadBuffer( GLcontext *ctx, GLenum mode ) { Node *n = alloc_instruction( ctx, OPCODE_READ_BUFFER, 1 ); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { (*ctx->Exec.ReadBuffer)( ctx, mode ); } } void gl_save_Rectf( GLcontext *ctx, GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2 ) { Node *n = alloc_instruction( ctx, OPCODE_RECTF, 4 ); if (n) { n[1].f = x1; n[2].f = y1; n[3].f = x2; n[4].f = y2; } if (ctx->ExecuteFlag) { (*ctx->Exec.Rectf)( ctx, x1, y1, x2, y2 ); } } void gl_save_Rotatef( GLcontext *ctx, GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) { GLfloat m[16]; gl_rotation_matrix( angle, x, y, z, m ); gl_save_MultMatrixf( ctx, m ); /* save and maybe execute */ } void gl_save_Scalef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z ) { Node *n = alloc_instruction( ctx, OPCODE_SCALE, 3 ); if (n) { n[1].f = x; n[2].f = y; n[3].f = z; } if (ctx->ExecuteFlag) { (*ctx->Exec.Scalef)( ctx, x, y, z ); } } void gl_save_Scissor( GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height ) { Node *n = alloc_instruction( ctx, OPCODE_SCISSOR, 4 ); if (n) { n[1].i = x; n[2].i = y; n[3].i = width; n[4].i = height; } if (ctx->ExecuteFlag) { (*ctx->Exec.Scissor)( ctx, x, y, width, height ); } } void gl_save_ShadeModel( GLcontext *ctx, GLenum mode ) { Node *n = alloc_instruction( ctx, OPCODE_SHADE_MODEL, 1 ); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { (*ctx->Exec.ShadeModel)( ctx, mode ); } } void gl_save_StencilFunc( GLcontext *ctx, GLenum func, GLint ref, GLuint mask ) { Node *n = alloc_instruction( ctx, OPCODE_STENCIL_FUNC, 3 ); if (n) { n[1].e = func; n[2].i = ref; n[3].ui = mask; } if (ctx->ExecuteFlag) { (*ctx->Exec.StencilFunc)( ctx, func, ref, mask ); } } void gl_save_StencilMask( GLcontext *ctx, GLuint mask ) { Node *n = alloc_instruction( ctx, OPCODE_STENCIL_MASK, 1 ); if (n) { n[1].ui = mask; } if (ctx->ExecuteFlag) { (*ctx->Exec.StencilMask)( ctx, mask ); } } void gl_save_StencilOp( GLcontext *ctx, GLenum fail, GLenum zfail, GLenum zpass ) { Node *n = alloc_instruction( ctx, OPCODE_STENCIL_OP, 3 ); if (n) { n[1].e = fail; n[2].e = zfail; n[3].e = zpass; } if (ctx->ExecuteFlag) { (*ctx->Exec.StencilOp)( ctx, fail, zfail, zpass ); } } void gl_save_TexCoord2f( GLcontext *ctx, GLfloat s, GLfloat t ) { Node *n = alloc_instruction( ctx, OPCODE_TEXCOORD2, 2 ); if (n) { n[1].f = s; n[2].f = t; } if (ctx->ExecuteFlag) { (*ctx->Exec.TexCoord2f)( ctx, s, t ); } } void gl_save_TexCoord4f( GLcontext *ctx, GLfloat s, GLfloat t, GLfloat r, GLfloat q ) { Node *n = alloc_instruction( ctx, OPCODE_TEXCOORD4, 4 ); if (n) { n[1].f = s; n[2].f = t; n[3].f = r; n[4].f = q; } if (ctx->ExecuteFlag) { (*ctx->Exec.TexCoord4f)( ctx, s, t, r, q ); } } void gl_save_TexEnvfv( GLcontext *ctx, GLenum target, GLenum pname, const GLfloat *params ) { Node *n = alloc_instruction( ctx, OPCODE_TEXENV, 6 ); if (n) { n[1].e = target; n[2].e = pname; n[3].f = params[0]; n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } if (ctx->ExecuteFlag) { (*ctx->Exec.TexEnvfv)( ctx, target, pname, params ); } } void gl_save_TexGenfv( GLcontext *ctx, GLenum coord, GLenum pname, const GLfloat *params ) { Node *n = alloc_instruction( ctx, OPCODE_TEXGEN, 6 ); if (n) { n[1].e = coord; n[2].e = pname; n[3].f = params[0]; n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } if (ctx->ExecuteFlag) { (*ctx->Exec.TexGenfv)( ctx, coord, pname, params ); } } void gl_save_TexParameterfv( GLcontext *ctx, GLenum target, GLenum pname, const GLfloat *params ) { Node *n = alloc_instruction( ctx, OPCODE_TEXPARAMETER, 6 ); if (n) { n[1].e = target; n[2].e = pname; n[3].f = params[0]; n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } if (ctx->ExecuteFlag) { (*ctx->Exec.TexParameterfv)( ctx, target, pname, params ); } } void gl_save_TexImage1D( GLcontext *ctx, GLenum target, GLint level, GLint components, GLsizei width, GLint border, GLenum format, GLenum type, struct gl_image *teximage ) { Node *n = alloc_instruction( ctx, OPCODE_TEX_IMAGE1D, 8 ); if (n) { n[1].e = target; n[2].i = level; n[3].i = components; n[4].i = (GLint) width; n[5].i = border; n[6].e = format; n[7].e = type; n[8].data = teximage; if (teximage) { /* this prevents gl_TexImage2D() from freeing the image */ teximage->RefCount = 1; } } if (ctx->ExecuteFlag) { (*ctx->Exec.TexImage1D)( ctx, target, level, components, width, border, format, type, teximage ); } } void gl_save_TexImage2D( GLcontext *ctx, GLenum target, GLint level, GLint components, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, struct gl_image *teximage ) { Node *n = alloc_instruction( ctx, OPCODE_TEX_IMAGE2D, 9 ); if (n) { n[1].e = target; n[2].i = level; n[3].i = components; n[4].i = (GLint) width; n[5].i = (GLint) height; n[6].i = border; n[7].e = format; n[8].e = type; n[9].data = teximage; if (teximage) { /* this prevents gl_TexImage2D() from freeing the image */ teximage->RefCount = 1; } } if (ctx->ExecuteFlag) { (*ctx->Exec.TexImage2D)( ctx, target, level, components, width, height, border, format, type, teximage ); } } void gl_save_TexSubImage1D( GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLenum type, struct gl_image *image ) { Node *n = alloc_instruction( ctx, OPCODE_TEX_SUB_IMAGE1D, 7 ); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = (GLint) width; n[5].e = format; n[6].e = type; n[7].data = image; if (image) image->RefCount = 1; } if (ctx->ExecuteFlag) { (*ctx->Exec.TexSubImage1D)( ctx, target, level, xoffset, width, format, type, image ); } } void gl_save_TexSubImage2D( GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, struct gl_image *image ) { Node *n = alloc_instruction( ctx, OPCODE_TEX_SUB_IMAGE2D, 9 ); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = yoffset; n[5].i = (GLint) width; n[6].i = (GLint) height; n[7].e = format; n[8].e = type; n[9].data = image; if (image) image->RefCount = 1; } if (ctx->ExecuteFlag) { (*ctx->Exec.TexSubImage2D)( ctx, target, level, xoffset, yoffset, width, height, format, type, image ); } } void gl_save_Translatef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z ) { Node *n = alloc_instruction( ctx, OPCODE_TRANSLATE, 3 ); if (n) { n[1].f = x; n[2].f = y; n[3].f = z; } if (ctx->ExecuteFlag) { (*ctx->Exec.Translatef)( ctx, x, y, z ); } } void gl_save_Vertex2f( GLcontext *ctx, GLfloat x, GLfloat y ) { Node *n = alloc_instruction( ctx, OPCODE_VERTEX2, 2 ); if (n) { n[1].f = x; n[2].f = y; } if (ctx->ExecuteFlag) { (*ctx->Exec.Vertex2f)( ctx, x, y ); } } void gl_save_Vertex3f( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z ) { Node *n = alloc_instruction( ctx, OPCODE_VERTEX3, 3 ); if (n) { n[1].f = x; n[2].f = y; n[3].f = z; } if (ctx->ExecuteFlag) { (*ctx->Exec.Vertex3f)( ctx, x, y, z ); } } void gl_save_Vertex4f( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z, GLfloat w ) { Node *n = alloc_instruction( ctx, OPCODE_VERTEX4, 4 ); if (n) { n[1].f = x; n[2].f = y; n[3].f = z; n[4].f = w; } if (ctx->ExecuteFlag) { (*ctx->Exec.Vertex4f)( ctx, x, y, z, w ); } } void gl_save_Vertex3fv( GLcontext *ctx, const GLfloat v[3] ) { Node *n = alloc_instruction( ctx, OPCODE_VERTEX3, 3 ); if (n) { n[1].f = v[0]; n[2].f = v[1]; n[3].f = v[2]; } if (ctx->ExecuteFlag) { (*ctx->Exec.Vertex3fv)( ctx, v ); } } void gl_save_Viewport( GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height ) { Node *n = alloc_instruction( ctx, OPCODE_VIEWPORT, 4 ); if (n) { n[1].i = x; n[2].i = y; n[3].i = (GLint) width; n[4].i = (GLint) height; } if (ctx->ExecuteFlag) { (*ctx->Exec.Viewport)( ctx, x, y, width, height ); } } /**********************************************************************/ /* Display list execution */ /**********************************************************************/ /* * Execute a display list. Note that the ListBase offset must have already * been added before calling this function. I.e. the list argument is * the absolute list number, not relative to ListBase. * Input: list - display list number */ static void execute_list( GLcontext *ctx, GLuint list ) { Node *n; GLboolean done; OpCode opcode; if (!gl_IsList(ctx,list)) return; ctx->CallDepth++; n = (Node *) HashLookup(ctx->Shared->DisplayList, list); done = GL_FALSE; while (!done) { opcode = n[0].opcode; switch (opcode) { /* Frequently called functions: */ case OPCODE_VERTEX2: (*ctx->Exec.Vertex2f)( ctx, n[1].f, n[2].f ); break; case OPCODE_VERTEX3: (*ctx->Exec.Vertex3f)( ctx, n[1].f, n[2].f, n[3].f ); break; case OPCODE_VERTEX4: (*ctx->Exec.Vertex4f)( ctx, n[1].f, n[2].f, n[3].f, n[4].f ); break; case OPCODE_NORMAL: ctx->Current.Normal[0] = n[1].f; ctx->Current.Normal[1] = n[2].f; ctx->Current.Normal[2] = n[3].f; ctx->VB->MonoNormal = GL_FALSE; break; case OPCODE_COLOR_4UB: (*ctx->Exec.Color4ub)( ctx, n[1].ub, n[2].ub, n[3].ub, n[4].ub ); break; case OPCODE_COLOR_3F: (*ctx->Exec.Color3f)( ctx, n[1].f, n[2].f, n[3].f ); break; case OPCODE_COLOR_4F: (*ctx->Exec.Color4f)( ctx, n[1].f, n[2].f, n[3].f, n[4].f ); break; case OPCODE_INDEX: ctx->Current.Index = n[1].ui; ctx->VB->MonoColor = GL_FALSE; break; case OPCODE_BEGIN: gl_Begin( ctx, n[1].e ); break; case OPCODE_END: gl_End( ctx ); break; case OPCODE_TEXCOORD2: ctx->Current.TexCoord[0] = n[1].f; ctx->Current.TexCoord[1] = n[2].f; if (ctx->VB->TexCoordSize==4) { ctx->Current.TexCoord[2] = 0.0F; ctx->Current.TexCoord[3] = 1.0F; } break; case OPCODE_TEXCOORD4: ctx->Current.TexCoord[0] = n[1].f; ctx->Current.TexCoord[1] = n[2].f; ctx->Current.TexCoord[2] = n[3].f; ctx->Current.TexCoord[3] = n[4].f; if (ctx->VB->TexCoordSize==2) { /* Switch to 4-component texcoords */ ctx->VB->TexCoordSize = 4; gl_set_vertex_function(ctx); } break; /* Everything Else: */ case OPCODE_ACCUM: gl_Accum( ctx, n[1].e, n[2].f ); break; case OPCODE_ALPHA_FUNC: gl_AlphaFunc( ctx, n[1].e, n[2].f ); break; case OPCODE_BIND_TEXTURE: gl_BindTexture( ctx, n[1].e, n[2].ui ); break; case OPCODE_BITMAP: gl_Bitmap( ctx, (GLsizei) n[1].i, (GLsizei) n[2].i, n[3].f, n[4].f, n[5].f, n[6].f, (struct gl_image *) n[7].data ); break; case OPCODE_BLEND_FUNC: gl_BlendFunc( ctx, n[1].e, n[2].e ); break; case OPCODE_CALL_LIST: /* Generated by glCallList(), don't add ListBase */ if (ctx->CallDepthCallDepthList.ListBase + n[1].ui ); } break; case OPCODE_CLEAR: gl_Clear( ctx, n[1].bf ); break; case OPCODE_CLEAR_COLOR: gl_ClearColor( ctx, n[1].f, n[2].f, n[3].f, n[4].f ); break; case OPCODE_CLEAR_ACCUM: gl_ClearAccum( ctx, n[1].f, n[2].f, n[3].f, n[4].f ); break; case OPCODE_CLEAR_DEPTH: gl_ClearDepth( ctx, (GLclampd) n[1].f ); break; case OPCODE_CLEAR_INDEX: gl_ClearIndex( ctx, n[1].ui ); break; case OPCODE_CLEAR_STENCIL: gl_ClearStencil( ctx, n[1].i ); break; case OPCODE_CLIP_PLANE: { GLfloat equ[4]; equ[0] = n[2].f; equ[1] = n[3].f; equ[2] = n[4].f; equ[3] = n[5].f; gl_ClipPlane( ctx, n[1].e, equ ); } break; case OPCODE_COLOR_MASK: gl_ColorMask( ctx, n[1].b, n[2].b, n[3].b, n[4].b ); break; case OPCODE_COLOR_MATERIAL: gl_ColorMaterial( ctx, n[1].e, n[2].e ); break; case OPCODE_COLOR_TABLE: gl_ColorTable( ctx, n[1].e, n[2].e, (struct gl_image *) n[3].data); break; case OPCODE_COLOR_SUB_TABLE: gl_ColorSubTable( ctx, n[1].e, n[2].i, (struct gl_image *) n[3].data); break; case OPCODE_COPY_PIXELS: gl_CopyPixels( ctx, n[1].i, n[2].i, (GLsizei) n[3].i, (GLsizei) n[4].i, n[5].e ); break; case OPCODE_COPY_TEX_IMAGE1D: gl_CopyTexImage1D( ctx, n[1].e, n[2].i, n[3].e, n[4].i, n[5].i, n[6].i, n[7].i ); break; case OPCODE_COPY_TEX_IMAGE2D: gl_CopyTexImage2D( ctx, n[1].e, n[2].i, n[3].e, n[4].i, n[5].i, n[6].i, n[7].i, n[8].i ); break; case OPCODE_COPY_TEX_SUB_IMAGE1D: gl_CopyTexSubImage1D( ctx, n[1].e, n[2].i, n[3].i, n[4].i, n[5].i, n[6].i ); break; case OPCODE_COPY_TEX_SUB_IMAGE2D: gl_CopyTexSubImage2D( ctx, n[1].e, n[2].i, n[3].i, n[4].i, n[5].i, n[6].i, n[7].i, n[8].i ); break; case OPCODE_CULL_FACE: gl_CullFace( ctx, n[1].e ); break; case OPCODE_DEPTH_FUNC: gl_DepthFunc( ctx, n[1].e ); break; case OPCODE_DEPTH_MASK: gl_DepthMask( ctx, n[1].b ); break; case OPCODE_DEPTH_RANGE: gl_DepthRange( ctx, (GLclampd) n[1].f, (GLclampd) n[2].f ); break; case OPCODE_DISABLE: gl_Disable( ctx, n[1].e ); break; case OPCODE_DRAW_BUFFER: gl_DrawBuffer( ctx, n[1].e ); break; case OPCODE_DRAW_PIXELS: gl_DrawPixels( ctx, (GLsizei) n[1].i, (GLsizei) n[2].i, n[3].e, n[4].e, n[5].data ); break; case OPCODE_EDGE_FLAG: ctx->Current.EdgeFlag = n[1].b; break; case OPCODE_ENABLE: gl_Enable( ctx, n[1].e ); break; case OPCODE_EVALCOORD1: gl_EvalCoord1f( ctx, n[1].f ); break; case OPCODE_EVALCOORD2: gl_EvalCoord2f( ctx, n[1].f, n[2].f ); break; case OPCODE_EVALMESH1: gl_EvalMesh1( ctx, n[1].e, n[2].i, n[3].i ); break; case OPCODE_EVALMESH2: gl_EvalMesh2( ctx, n[1].e, n[2].i, n[3].i, n[4].i, n[5].i ); break; case OPCODE_EVALPOINT1: gl_EvalPoint1( ctx, n[1].i ); break; case OPCODE_EVALPOINT2: gl_EvalPoint2( ctx, n[1].i, n[2].i ); break; case OPCODE_FOG: { GLfloat p[4]; p[0] = n[2].f; p[1] = n[3].f; p[2] = n[4].f; p[3] = n[5].f; gl_Fogfv( ctx, n[1].e, p ); } break; case OPCODE_FRONT_FACE: gl_FrontFace( ctx, n[1].e ); break; case OPCODE_FRUSTUM: gl_Frustum( ctx, n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f ); break; case OPCODE_HINT: gl_Hint( ctx, n[1].e, n[2].e ); break; case OPCODE_INDEX_MASK: gl_IndexMask( ctx, n[1].ui ); break; case OPCODE_INIT_NAMES: gl_InitNames( ctx ); break; case OPCODE_LIGHT: { GLfloat p[4]; p[0] = n[3].f; p[1] = n[4].f; p[2] = n[5].f; p[3] = n[6].f; gl_Lightfv( ctx, n[1].e, n[2].e, p, 4 ); } break; case OPCODE_LIGHT_MODEL: { GLfloat p[4]; p[0] = n[2].f; p[1] = n[3].f; p[2] = n[4].f; p[3] = n[5].f; gl_LightModelfv( ctx, n[1].e, p ); } break; case OPCODE_LINE_STIPPLE: gl_LineStipple( ctx, n[1].i, n[2].us ); break; case OPCODE_LINE_WIDTH: gl_LineWidth( ctx, n[1].f ); break; case OPCODE_LIST_BASE: gl_ListBase( ctx, n[1].ui ); break; case OPCODE_LOAD_IDENTITY: gl_LoadIdentity( ctx ); break; case OPCODE_LOAD_MATRIX: if (sizeof(Node)==sizeof(GLfloat)) { gl_LoadMatrixf( ctx, &n[1].f ); } else { GLfloat m[16]; GLuint i; for (i=0;i<16;i++) { m[i] = n[1+i].f; } gl_LoadMatrixf( ctx, m ); } break; case OPCODE_LOAD_NAME: gl_LoadName( ctx, n[1].ui ); break; case OPCODE_LOGIC_OP: gl_LogicOp( ctx, n[1].e ); break; case OPCODE_MAP1: gl_Map1f( ctx, n[1].e, n[2].f, n[3].f, n[4].i, n[5].i, (GLfloat *) n[6].data, GL_TRUE ); break; case OPCODE_MAP2: gl_Map2f( ctx, n[1].e, n[2].f, n[3].f, /* u1, u2 */ n[6].i, n[8].i, /* ustride, uorder */ n[4].f, n[5].f, /* v1, v2 */ n[7].i, n[9].i, /* vstride, vorder */ (GLfloat *) n[10].data, GL_TRUE); break; case OPCODE_MAPGRID1: gl_MapGrid1f( ctx, n[1].i, n[2].f, n[3].f ); break; case OPCODE_MAPGRID2: gl_MapGrid2f( ctx, n[1].i, n[2].f, n[3].f, n[4].i, n[5].f, n[6].f); break; case OPCODE_MATERIAL: { GLfloat params[4]; params[0] = n[3].f; params[1] = n[4].f; params[2] = n[5].f; params[3] = n[6].f; gl_Materialfv( ctx, n[1].e, n[2].e, params ); } break; case OPCODE_MATRIX_MODE: gl_MatrixMode( ctx, n[1].e ); break; case OPCODE_MULT_MATRIX: if (sizeof(Node)==sizeof(GLfloat)) { gl_MultMatrixf( ctx, &n[1].f ); } else { GLfloat m[16]; GLuint i; for (i=0;i<16;i++) { m[i] = n[1+i].f; } gl_MultMatrixf( ctx, m ); } break; case OPCODE_ORTHO: gl_Ortho( ctx, n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f ); break; case OPCODE_PASSTHROUGH: gl_PassThrough( ctx, n[1].f ); break; case OPCODE_PIXEL_MAP: gl_PixelMapfv( ctx, n[1].e, n[2].i, (GLfloat *) n[3].data ); break; case OPCODE_PIXEL_TRANSFER: gl_PixelTransferf( ctx, n[1].e, n[2].f ); break; case OPCODE_PIXEL_ZOOM: gl_PixelZoom( ctx, n[1].f, n[2].f ); break; case OPCODE_POINT_SIZE: gl_PointSize( ctx, n[1].f ); break; case OPCODE_POLYGON_MODE: gl_PolygonMode( ctx, n[1].e, n[2].e ); break; case OPCODE_POLYGON_STIPPLE: gl_PolygonStipple( ctx, (GLubyte *) n[1].data ); break; case OPCODE_POLYGON_OFFSET: gl_PolygonOffset( ctx, n[1].f, n[2].f ); break; case OPCODE_POP_ATTRIB: gl_PopAttrib( ctx ); break; case OPCODE_POP_MATRIX: gl_PopMatrix( ctx ); break; case OPCODE_POP_NAME: gl_PopName( ctx ); break; case OPCODE_PRIORITIZE_TEXTURE: gl_PrioritizeTextures( ctx, 1, &n[1].ui, &n[2].f ); break; case OPCODE_PUSH_ATTRIB: gl_PushAttrib( ctx, n[1].bf ); break; case OPCODE_PUSH_MATRIX: gl_PushMatrix( ctx ); break; case OPCODE_PUSH_NAME: gl_PushName( ctx, n[1].ui ); break; case OPCODE_RASTER_POS: gl_RasterPos4f( ctx, n[1].f, n[2].f, n[3].f, n[4].f ); break; case OPCODE_READ_BUFFER: gl_ReadBuffer( ctx, n[1].e ); break; case OPCODE_RECTF: gl_Rectf( ctx, n[1].f, n[2].f, n[3].f, n[4].f ); break; case OPCODE_SCALE: gl_Scalef( ctx, n[1].f, n[2].f, n[3].f ); break; case OPCODE_SCISSOR: gl_Scissor( ctx, n[1].i, n[2].i, n[3].i, n[4].i ); break; case OPCODE_SHADE_MODEL: gl_ShadeModel( ctx, n[1].e ); break; case OPCODE_STENCIL_FUNC: gl_StencilFunc( ctx, n[1].e, n[2].i, n[3].ui ); break; case OPCODE_STENCIL_MASK: gl_StencilMask( ctx, n[1].ui ); break; case OPCODE_STENCIL_OP: gl_StencilOp( ctx, n[1].e, n[2].e, n[3].e ); break; case OPCODE_TEXENV: { GLfloat params[4]; params[0] = n[3].f; params[1] = n[4].f; params[2] = n[5].f; params[3] = n[6].f; gl_TexEnvfv( ctx, n[1].e, n[2].e, params ); } break; case OPCODE_TEXGEN: { GLfloat params[4]; params[0] = n[3].f; params[1] = n[4].f; params[2] = n[5].f; params[3] = n[6].f; gl_TexGenfv( ctx, n[1].e, n[2].e, params ); } break; case OPCODE_TEXPARAMETER: { GLfloat params[4]; params[0] = n[3].f; params[1] = n[4].f; params[2] = n[5].f; params[3] = n[6].f; gl_TexParameterfv( ctx, n[1].e, n[2].e, params ); } break; case OPCODE_TEX_IMAGE1D: gl_TexImage1D( ctx, n[1].e, /* target */ n[2].i, /* level */ n[3].i, /* components */ n[4].i, /* width */ n[5].e, /* border */ n[6].e, /* format */ n[7].e, /* type */ (struct gl_image *) n[8].data ); break; case OPCODE_TEX_IMAGE2D: gl_TexImage2D( ctx, n[1].e, /* target */ n[2].i, /* level */ n[3].i, /* components */ n[4].i, /* width */ n[5].i, /* height */ n[6].e, /* border */ n[7].e, /* format */ n[8].e, /* type */ (struct gl_image *) n[9].data ); break; case OPCODE_TEX_SUB_IMAGE1D: gl_TexSubImage1D( ctx, n[1].e, n[2].i, n[3].i, n[4].i, n[5].e, n[6].e, (struct gl_image *) n[7].data ); break; case OPCODE_TEX_SUB_IMAGE2D: gl_TexSubImage2D( ctx, n[1].e, n[2].i, n[3].i, n[4].i, n[5].e, n[6].i, n[7].e, n[8].e, (struct gl_image *) n[9].data ); break; case OPCODE_TRANSLATE: gl_Translatef( ctx, n[1].f, n[2].f, n[3].f ); break; case OPCODE_VIEWPORT: gl_Viewport( ctx, n[1].i, n[2].i, (GLsizei) n[3].i, (GLsizei) n[4].i ); break; case OPCODE_CONTINUE: n = (Node *) n[1].next; break; case OPCODE_END_OF_LIST: done = GL_TRUE; break; default: { char msg[1000]; sprintf(msg, "Error in execute_list: opcode=%d", (int) opcode); gl_problem( ctx, msg ); } done = GL_TRUE; } /* increment n to point to next compiled command */ if (opcode!=OPCODE_CONTINUE) { n += InstSize[opcode]; } } ctx->CallDepth--; } /**********************************************************************/ /* GL functions */ /**********************************************************************/ /* * Test if a display list number is valid. */ GLboolean gl_IsList( GLcontext *ctx, GLuint list ) { if (list > 0 && HashLookup(ctx->Shared->DisplayList, list)) { return GL_TRUE; } else { return GL_FALSE; } } /* * Delete a sequence of consecutive display lists. */ void gl_DeleteLists( GLcontext *ctx, GLuint list, GLsizei range ) { GLuint i; if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glDeleteLists" ); return; } if (range<0) { gl_error( ctx, GL_INVALID_VALUE, "glDeleteLists" ); return; } for (i=list;iShared->DisplayList, range); if (base) { /* reserve the list IDs by with empty/dummy lists */ GLuint i; for (i=0; iShared->DisplayList, base+i, make_empty_list()); } } return base; } /* * Begin a new display list. */ void gl_NewList( GLcontext *ctx, GLuint list, GLenum mode ) { if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glNewList" ); return; } if (list==0) { gl_error( ctx, GL_INVALID_VALUE, "glNewList" ); return; } if (mode!=GL_COMPILE && mode!=GL_COMPILE_AND_EXECUTE) { gl_error( ctx, GL_INVALID_ENUM, "glNewList" ); return; } if (ctx->CurrentListPtr) { /* already compiling a display list */ gl_error( ctx, GL_INVALID_OPERATION, "glNewList" ); return; } /* Allocate new display list */ ctx->CurrentListNum = list; ctx->CurrentListPtr = ctx->CurrentBlock = (Node *) malloc( sizeof(Node) * BLOCK_SIZE ); ctx->CurrentPos = 0; ctx->CompileFlag = GL_TRUE; if (mode==GL_COMPILE) { ctx->ExecuteFlag = GL_FALSE; } else { /* Compile and execute */ ctx->ExecuteFlag = GL_TRUE; } ctx->API = ctx->Save; /* Switch the API function pointers */ } /* * End definition of current display list. */ void gl_EndList( GLcontext *ctx ) { Node *n; /* Check that a list is under construction */ if (!ctx->CurrentListPtr) { gl_error( ctx, GL_INVALID_OPERATION, "glEndList" ); return; } n = alloc_instruction( ctx, OPCODE_END_OF_LIST, 0 ); (void)n; /* Destroy old list, if any */ gl_destroy_list(ctx, ctx->CurrentListNum); /* Install the list */ HashInsert(ctx->Shared->DisplayList, ctx->CurrentListNum, ctx->CurrentListPtr); ctx->CurrentListNum = 0; ctx->CurrentListPtr = NULL; ctx->ExecuteFlag = GL_TRUE; ctx->CompileFlag = GL_FALSE; ctx->API = ctx->Exec; /* Switch the API function pointers */ } void gl_CallList( GLcontext *ctx, GLuint list ) { /* VERY IMPORTANT: Save the CompileFlag status, turn it off, */ /* execute the display list, and restore the CompileFlag. */ GLboolean save_compile_flag; save_compile_flag = ctx->CompileFlag; ctx->CompileFlag = GL_FALSE; execute_list( ctx, list ); ctx->CompileFlag = save_compile_flag; } /* * Execute glCallLists: call multiple display lists. */ void gl_CallLists( GLcontext *ctx, GLsizei n, GLenum type, const GLvoid *lists ) { GLuint i, list; GLboolean save_compile_flag; /* Save the CompileFlag status, turn it off, execute display list, * and restore the CompileFlag. */ save_compile_flag = ctx->CompileFlag; ctx->CompileFlag = GL_FALSE; for (i=0;iList.ListBase + list ); } ctx->CompileFlag = save_compile_flag; } /* * Set the offset added to list numbers in glCallLists. */ void gl_ListBase( GLcontext *ctx, GLuint base ) { if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glListBase" ); return; } ctx->List.ListBase = base; }