/* * Copyright 2004 Filip Navara * Based on public domain SHA code by Steve Reid * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include "crypt.h" /* SHA Context Structure Declaration */ typedef struct { ULONG Unknown[6]; ULONG State[5]; ULONG Count[2]; UCHAR Buffer[64]; } SHA_CTX, *PSHA_CTX; /* SHA1 Helper Macros */ #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) /* FIXME: This definition of DWORD2BE is little endian specific! */ #define DWORD2BE(x) (((x) >> 24) & 0xff) | (((x) >> 8) & 0xff00) | (((x) << 8) & 0xff0000) | (((x) << 24) & 0xff000000); /* FIXME: This definition of blk0 is little endian specific! */ #define blk0(i) (Block[i] = (rol(Block[i],24)&0xFF00FF00)|(rol(Block[i],8)&0x00FF00FF)) #define blk1(i) (Block[i&15] = rol(Block[(i+13)&15]^Block[(i+8)&15]^Block[(i+2)&15]^Block[i&15],1)) #define f1(x,y,z) (z^(x&(y^z))) #define f2(x,y,z) (x^y^z) #define f3(x,y,z) ((x&y)|(z&(x|y))) #define f4(x,y,z) (x^y^z) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=f1(w,x,y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=f1(w,x,y)+blk1(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=f2(w,x,y)+blk1(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); /* Hash a single 512-bit block. This is the core of the algorithm. */ static void SHA1Transform(ULONG State[5], UCHAR Buffer[64]) { ULONG a, b, c, d, e; ULONG *Block; Block = (ULONG*)Buffer; /* Copy Context->State[] to working variables */ a = State[0]; b = State[1]; c = State[2]; d = State[3]; e = State[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working variables back into Context->State[] */ State[0] += a; State[1] += b; State[2] += c; State[3] += d; State[4] += e; /* Wipe variables */ a = b = c = d = e = 0; } /****************************************************************************** * A_SHAInit [ADVAPI32.@] * * Initialize a SHA context structure. * * PARAMS * Context [O] SHA context * * RETURNS * Nothing */ VOID WINAPI A_SHAInit(PSHA_CTX Context) { /* SHA1 initialization constants */ Context->State[0] = 0x67452301; Context->State[1] = 0xEFCDAB89; Context->State[2] = 0x98BADCFE; Context->State[3] = 0x10325476; Context->State[4] = 0xC3D2E1F0; Context->Count[0] = Context->Count[1] = 0; } /****************************************************************************** * A_SHAUpdate [ADVAPI32.@] * * Update a SHA context with a hashed data from supplied buffer. * * PARAMS * Context [O] SHA context * Buffer [I] hashed data * BufferSize [I] hashed data size * * RETURNS * Nothing */ VOID WINAPI A_SHAUpdate(PSHA_CTX Context, const unsigned char *Buffer, UINT BufferSize) { ULONG BufferContentSize; BufferContentSize = Context->Count[1] & 63; Context->Count[1] += BufferSize; if (Context->Count[1] < BufferSize) Context->Count[0]++; Context->Count[0] += (BufferSize >> 29); if (BufferContentSize + BufferSize < 64) { RtlCopyMemory(&Context->Buffer[BufferContentSize], Buffer, BufferSize); } else { while (BufferContentSize + BufferSize >= 64) { RtlCopyMemory(Context->Buffer + BufferContentSize, Buffer, 64 - BufferContentSize); Buffer += 64 - BufferContentSize; BufferSize -= 64 - BufferContentSize; SHA1Transform(Context->State, Context->Buffer); BufferContentSize = 0; } RtlCopyMemory(Context->Buffer + BufferContentSize, Buffer, BufferSize); } } /****************************************************************************** * A_SHAFinal [ADVAPI32.@] * * Finalize SHA context and return the resulting hash. * * PARAMS * Context [I/O] SHA context * Result [O] resulting hash * * RETURNS * Nothing */ VOID WINAPI A_SHAFinal(PSHA_CTX Context, PULONG Result) { INT Pad, Index; UCHAR Buffer[72]; ULONG *Count; ULONG BufferContentSize, LengthHi, LengthLo; BufferContentSize = Context->Count[1] & 63; if (BufferContentSize >= 56) Pad = 56 + 64 - BufferContentSize; else Pad = 56 - BufferContentSize; LengthHi = (Context->Count[0] << 3) | (Context->Count[1] >> (32 - 3)); LengthLo = (Context->Count[1] << 3); RtlZeroMemory(Buffer + 1, Pad - 1); Buffer[0] = 0x80; Count = (ULONG*)(Buffer + Pad); Count[0] = DWORD2BE(LengthHi); Count[1] = DWORD2BE(LengthLo); A_SHAUpdate(Context, Buffer, Pad + 8); for (Index = 0; Index < 5; Index++) Result[Index] = DWORD2BE(Context->State[Index]); A_SHAInit(Context); }