/* * Copyright (C) 2001 Nikos Mavroyanopoulos * Copyright (C) 2004 Hans Leidekker * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ /* * This code implements the MD5 message-digest algorithm. * It is based on code in the public domain written by Colin * Plumb in 1993. The algorithm is due to Ron Rivest. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5_CTX structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. */ #include "md5.h" #include "util.h" static void MD5Transform( unsigned int buf[4], const unsigned int in[16] ); /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ VOID NTAPI MD5Init( MD5_CTX *ctx ) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->i[0] = ctx->i[1] = 0; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ VOID NTAPI MD5Update( MD5_CTX *ctx, const unsigned char *buf, unsigned int len ) { register unsigned int t; /* Update bitcount */ t = ctx->i[0]; if ((ctx->i[0] = t + (len << 3)) < t) ctx->i[1]++; /* Carry from low to high */ ctx->i[1] += len >> 29; t = (t >> 3) & 0x3f; /* Handle any leading odd-sized chunks */ if (t) { unsigned char *p = (unsigned char *)ctx->in + t; t = 64 - t; if (len < t) { memcpy( p, buf, len ); return; } memcpy( p, buf, t ); byteReverse( ctx->in, 16 ); MD5Transform( ctx->buf, (unsigned int *)ctx->in ); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy( ctx->in, buf, 64 ); byteReverse( ctx->in, 16 ); MD5Transform( ctx->buf, (unsigned int *)ctx->in ); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy( ctx->in, buf, len ); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ VOID NTAPI MD5Final( MD5_CTX *ctx ) { unsigned int count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->i[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset( p, 0, count ); byteReverse( ctx->in, 16 ); MD5Transform( ctx->buf, (unsigned int *)ctx->in ); /* Now fill the next block with 56 bytes */ memset( ctx->in, 0, 56 ); } else { /* Pad block to 56 bytes */ memset( p, 0, count - 8 ); } byteReverse( ctx->in, 14 ); /* Append length in bits and transform */ ((unsigned int *)ctx->in)[14] = ctx->i[0]; ((unsigned int *)ctx->in)[15] = ctx->i[1]; MD5Transform( ctx->buf, (unsigned int *)ctx->in ); byteReverse( (unsigned char *)ctx->buf, 4 ); memcpy( ctx->digest, ctx->buf, 16 ); memset(ctx->in, 0, sizeof(ctx->in)); } /* The four core functions - F1 is optimized somewhat */ /* #define F1( x, y, z ) (x & y | ~x & z) */ #define F1( x, y, z ) (z ^ (x & (y ^ z))) #define F2( x, y, z ) F1( z, x, y ) #define F3( x, y, z ) (x ^ y ^ z) #define F4( x, y, z ) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP( f, w, x, y, z, data, s ) \ ( w += f( x, y, z ) + data, w = w << s | w >> (32 - s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void MD5Transform( unsigned int buf[4], const unsigned int in[16] ) { register unsigned int a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP( F1, a, b, c, d, in[0] + 0xd76aa478, 7 ); MD5STEP( F1, d, a, b, c, in[1] + 0xe8c7b756, 12 ); MD5STEP( F1, c, d, a, b, in[2] + 0x242070db, 17 ); MD5STEP( F1, b, c, d, a, in[3] + 0xc1bdceee, 22 ); MD5STEP( F1, a, b, c, d, in[4] + 0xf57c0faf, 7 ); MD5STEP( F1, d, a, b, c, in[5] + 0x4787c62a, 12 ); MD5STEP( F1, c, d, a, b, in[6] + 0xa8304613, 17 ); MD5STEP( F1, b, c, d, a, in[7] + 0xfd469501, 22 ); MD5STEP( F1, a, b, c, d, in[8] + 0x698098d8, 7 ); MD5STEP( F1, d, a, b, c, in[9] + 0x8b44f7af, 12 ); MD5STEP( F1, c, d, a, b, in[10] + 0xffff5bb1, 17 ); MD5STEP( F1, b, c, d, a, in[11] + 0x895cd7be, 22 ); MD5STEP( F1, a, b, c, d, in[12] + 0x6b901122, 7 ); MD5STEP( F1, d, a, b, c, in[13] + 0xfd987193, 12 ); MD5STEP( F1, c, d, a, b, in[14] + 0xa679438e, 17 ); MD5STEP( F1, b, c, d, a, in[15] + 0x49b40821, 22 ); MD5STEP( F2, a, b, c, d, in[1] + 0xf61e2562, 5 ); MD5STEP( F2, d, a, b, c, in[6] + 0xc040b340, 9 ); MD5STEP( F2, c, d, a, b, in[11] + 0x265e5a51, 14 ); MD5STEP( F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20 ); MD5STEP( F2, a, b, c, d, in[5] + 0xd62f105d, 5 ); MD5STEP( F2, d, a, b, c, in[10] + 0x02441453, 9 ); MD5STEP( F2, c, d, a, b, in[15] + 0xd8a1e681, 14 ); MD5STEP( F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20 ); MD5STEP( F2, a, b, c, d, in[9] + 0x21e1cde6, 5 ); MD5STEP( F2, d, a, b, c, in[14] + 0xc33707d6, 9 ); MD5STEP( F2, c, d, a, b, in[3] + 0xf4d50d87, 14 ); MD5STEP( F2, b, c, d, a, in[8] + 0x455a14ed, 20 ); MD5STEP( F2, a, b, c, d, in[13] + 0xa9e3e905, 5 ); MD5STEP( F2, d, a, b, c, in[2] + 0xfcefa3f8, 9 ); MD5STEP( F2, c, d, a, b, in[7] + 0x676f02d9, 14 ); MD5STEP( F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20 ); MD5STEP( F3, a, b, c, d, in[5] + 0xfffa3942, 4 ); MD5STEP( F3, d, a, b, c, in[8] + 0x8771f681, 11 ); MD5STEP( F3, c, d, a, b, in[11] + 0x6d9d6122, 16 ); MD5STEP( F3, b, c, d, a, in[14] + 0xfde5380c, 23 ); MD5STEP( F3, a, b, c, d, in[1] + 0xa4beea44, 4 ); MD5STEP( F3, d, a, b, c, in[4] + 0x4bdecfa9, 11 ); MD5STEP( F3, c, d, a, b, in[7] + 0xf6bb4b60, 16 ); MD5STEP( F3, b, c, d, a, in[10] + 0xbebfbc70, 23 ); MD5STEP( F3, a, b, c, d, in[13] + 0x289b7ec6, 4 ); MD5STEP( F3, d, a, b, c, in[0] + 0xeaa127fa, 11 ); MD5STEP( F3, c, d, a, b, in[3] + 0xd4ef3085, 16 ); MD5STEP( F3, b, c, d, a, in[6] + 0x04881d05, 23 ); MD5STEP( F3, a, b, c, d, in[9] + 0xd9d4d039, 4 ); MD5STEP( F3, d, a, b, c, in[12] + 0xe6db99e5, 11 ); MD5STEP( F3, c, d, a, b, in[15] + 0x1fa27cf8, 16 ); MD5STEP( F3, b, c, d, a, in[2] + 0xc4ac5665, 23 ); MD5STEP( F4, a, b, c, d, in[0] + 0xf4292244, 6 ); MD5STEP( F4, d, a, b, c, in[7] + 0x432aff97, 10 ); MD5STEP( F4, c, d, a, b, in[14] + 0xab9423a7, 15 ); MD5STEP( F4, b, c, d, a, in[5] + 0xfc93a039, 21 ); MD5STEP( F4, a, b, c, d, in[12] + 0x655b59c3, 6 ); MD5STEP( F4, d, a, b, c, in[3] + 0x8f0ccc92, 10 ); MD5STEP( F4, c, d, a, b, in[10] + 0xffeff47d, 15 ); MD5STEP( F4, b, c, d, a, in[1] + 0x85845dd1, 21 ); MD5STEP( F4, a, b, c, d, in[8] + 0x6fa87e4f, 6 ); MD5STEP( F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10 ); MD5STEP( F4, c, d, a, b, in[6] + 0xa3014314, 15 ); MD5STEP( F4, b, c, d, a, in[13] + 0x4e0811a1, 21 ); MD5STEP( F4, a, b, c, d, in[4] + 0xf7537e82, 6 ); MD5STEP( F4, d, a, b, c, in[11] + 0xbd3af235, 10 ); MD5STEP( F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15 ); MD5STEP( F4, b, c, d, a, in[9] + 0xeb86d391, 21 ); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; }