/* * PROJECT: ReactOS win32 kernel mode subsystem * LICENSE: GPL - See COPYING in the top level directory * FILE: subsystems/win32/win32k/objects/path.c * PURPOSE: Graphics paths (BeginPath, EndPath etc.) * PROGRAMMER: Copyright 1997, 1998 Martin Boehme * 1999 Huw D M Davies * 2005 Dmitry Timoshkov */ #include #include #define NDEBUG #include #ifdef _MSC_VER #pragma warning(disable:4244) #endif #define NUM_ENTRIES_INITIAL 16 /* Initial size of points / flags arrays */ #define GROW_FACTOR_NUMER 2 /* Numerator of grow factor for the array */ #define GROW_FACTOR_DENOM 1 /* Denominator of grow factor */ /*********************************************************************** * Internal functions */ /* PATH_DestroyGdiPath * * Destroys a GdiPath structure (frees the memory in the arrays). */ VOID FASTCALL PATH_DestroyGdiPath(PPATH pPath) { ASSERT(pPath != NULL); if (pPath->pPoints) ExFreePoolWithTag(pPath->pPoints, TAG_PATH); if (pPath->pFlags) ExFreePoolWithTag(pPath->pFlags, TAG_PATH); } BOOL FASTCALL PATH_Delete(HPATH hPath) { PPATH pPath; if (!hPath) return FALSE; pPath = PATH_LockPath(hPath); if (!pPath) return FALSE; PATH_DestroyGdiPath(pPath); GDIOBJ_vDeleteObject(&pPath->BaseObject); return TRUE; } VOID FASTCALL IntGdiCloseFigure(PPATH pPath) { ASSERT(pPath->state == PATH_Open); // FIXME: Shouldn't we draw a line to the beginning of the figure? // Set PT_CLOSEFIGURE on the last entry and start a new stroke if (pPath->numEntriesUsed) { pPath->pFlags[pPath->numEntriesUsed - 1] |= PT_CLOSEFIGURE; pPath->newStroke = TRUE; } } /* MSDN: This fails if the device coordinates exceed 27 bits, or if the converted logical coordinates exceed 32 bits. */ BOOL FASTCALL GdiPathDPtoLP( PDC pdc, PPOINT ppt, INT count) { XFORMOBJ xo; XFORMOBJ_vInit(&xo, &pdc->pdcattr->mxDeviceToWorld); return XFORMOBJ_bApplyXform(&xo, XF_LTOL, count, (PPOINTL)ppt, (PPOINTL)ppt); } /* PATH_FillPath * * */ BOOL FASTCALL PATH_FillPath( PDC dc, PPATH pPath) { //INT mapMode, graphicsMode; //SIZE ptViewportExt, ptWindowExt; //POINTL ptViewportOrg, ptWindowOrg; XFORM xform; PREGION Rgn; PDC_ATTR pdcattr = dc->pdcattr; if (pPath->state != PATH_Closed) { EngSetLastError(ERROR_CAN_NOT_COMPLETE); return FALSE; } /* Allocate a temporary region */ Rgn = IntSysCreateRectpRgn(0, 0, 0, 0); if (!Rgn) { EngSetLastError(ERROR_NOT_ENOUGH_MEMORY); return FALSE; } if (!PATH_PathToRegion(pPath, pdcattr->jFillMode, Rgn)) { /* EngSetLastError ? */ REGION_Delete(Rgn); return FALSE; } /* Since PaintRgn interprets the region as being in logical coordinates * but the points we store for the path are already in device * coordinates, we have to set the mapping mode to MM_TEXT temporarily. * Using SaveDC to save information about the mapping mode / world * transform would be easier but would require more overhead, especially * now that SaveDC saves the current path. */ /* Save the information about the old mapping mode */ //mapMode = pdcattr->iMapMode; //ptViewportExt = pdcattr->szlViewportExt; //ptViewportOrg = pdcattr->ptlViewportOrg; //ptWindowExt = pdcattr->szlWindowExt; //ptWindowOrg = pdcattr->ptlWindowOrg; /* Save world transform * NB: The Windows documentation on world transforms would lead one to * believe that this has to be done only in GM_ADVANCED; however, my * tests show that resetting the graphics mode to GM_COMPATIBLE does * not reset the world transform. */ MatrixS2XForm(&xform, &dc->pdcattr->mxWorldToPage); /* Set MM_TEXT */ // IntGdiSetMapMode(dc, MM_TEXT); // pdcattr->ptlViewportOrg.x = 0; // pdcattr->ptlViewportOrg.y = 0; // pdcattr->ptlWindowOrg.x = 0; // pdcattr->ptlWindowOrg.y = 0; // graphicsMode = pdcattr->iGraphicsMode; // pdcattr->iGraphicsMode = GM_ADVANCED; // IntGdiModifyWorldTransform(dc, &xform, MWT_IDENTITY); // pdcattr->iGraphicsMode = graphicsMode; /* Paint the region */ IntGdiPaintRgn(dc, Rgn); REGION_Delete(Rgn); /* Restore the old mapping mode */ // IntGdiSetMapMode(dc, mapMode); // pdcattr->szlViewportExt = ptViewportExt; // pdcattr->ptlViewportOrg = ptViewportOrg; // pdcattr->szlWindowExt = ptWindowExt; // pdcattr->ptlWindowOrg = ptWindowOrg; /* Go to GM_ADVANCED temporarily to restore the world transform */ //graphicsMode = pdcattr->iGraphicsMode; // pdcattr->iGraphicsMode = GM_ADVANCED; // IntGdiModifyWorldTransform(dc, &xform, MWT_MAX+1); // pdcattr->iGraphicsMode = graphicsMode; return TRUE; } /* PATH_InitGdiPath * * Initializes the GdiPath structure. */ VOID FASTCALL PATH_InitGdiPath( PPATH pPath) { ASSERT(pPath != NULL); pPath->state = PATH_Null; pPath->pPoints = NULL; pPath->pFlags = NULL; pPath->numEntriesUsed = 0; pPath->numEntriesAllocated = 0; } /* PATH_AssignGdiPath * * Copies the GdiPath structure "pPathSrc" to "pPathDest". A deep copy is * performed, i.e. the contents of the pPoints and pFlags arrays are copied, * not just the pointers. Since this means that the arrays in pPathDest may * need to be resized, pPathDest should have been initialized using * PATH_InitGdiPath (in C++, this function would be an assignment operator, * not a copy constructor). * Returns TRUE if successful, else FALSE. */ BOOL FASTCALL PATH_AssignGdiPath( PPATH pPathDest, const PPATH pPathSrc) { ASSERT(pPathDest != NULL && pPathSrc != NULL); /* Make sure destination arrays are big enough */ if (!PATH_ReserveEntries(pPathDest, pPathSrc->numEntriesUsed)) return FALSE; /* Perform the copy operation */ memcpy(pPathDest->pPoints, pPathSrc->pPoints, sizeof(POINT)*pPathSrc->numEntriesUsed); memcpy(pPathDest->pFlags, pPathSrc->pFlags, sizeof(BYTE)*pPathSrc->numEntriesUsed); pPathDest->state = pPathSrc->state; pPathDest->numEntriesUsed = pPathSrc->numEntriesUsed; pPathDest->newStroke = pPathSrc->newStroke; return TRUE; } /* PATH_MoveTo * * Should be called when a MoveTo is performed on a DC that has an * open path. This starts a new stroke. Returns TRUE if successful, else * FALSE. */ BOOL FASTCALL PATH_MoveTo( PDC dc) { PPATH pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); /* FIXME: Do we have to call SetLastError? */ return FALSE; } /* Start a new stroke */ pPath->newStroke = TRUE; PATH_UnlockPath(pPath); return TRUE; } /* PATH_LineTo * * Should be called when a LineTo is performed on a DC that has an * open path. This adds a PT_LINETO entry to the path (and possibly * a PT_MOVETO entry, if this is the first LineTo in a stroke). * Returns TRUE if successful, else FALSE. */ BOOL FASTCALL PATH_LineTo( PDC dc, INT x, INT y) { BOOL Ret; PPATH pPath; POINT point, pointCurPos; pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } /* Convert point to device coordinates */ point.x = x; point.y = y; CoordLPtoDP(dc, &point); /* Add a PT_MOVETO if necessary */ if (pPath->newStroke) { pPath->newStroke = FALSE; IntGetCurrentPositionEx(dc, &pointCurPos); CoordLPtoDP(dc, &pointCurPos); if (!PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO)) { PATH_UnlockPath(pPath); return FALSE; } } /* Add a PT_LINETO entry */ Ret = PATH_AddEntry(pPath, &point, PT_LINETO); PATH_UnlockPath(pPath); return Ret; } /* PATH_Rectangle * * Should be called when a call to Rectangle is performed on a DC that has * an open path. Returns TRUE if successful, else FALSE. */ BOOL FASTCALL PATH_Rectangle( PDC dc, INT x1, INT y1, INT x2, INT y2) { PPATH pPath; POINT corners[2], pointTemp; INT temp; pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } /* Convert points to device coordinates */ corners[0].x = x1; corners[0].y = y1; corners[1].x = x2; corners[1].y = y2; IntLPtoDP(dc, corners, 2); /* Make sure first corner is top left and second corner is bottom right */ if (corners[0].x > corners[1].x) { temp = corners[0].x; corners[0].x = corners[1].x; corners[1].x = temp; } if (corners[0].y > corners[1].y) { temp = corners[0].y; corners[0].y = corners[1].y; corners[1].y = temp; } /* In GM_COMPATIBLE, don't include bottom and right edges */ if (dc->pdcattr->iGraphicsMode == GM_COMPATIBLE) { corners[1].x--; corners[1].y--; } /* Close any previous figure */ IntGdiCloseFigure(pPath); /* Add four points to the path */ pointTemp.x = corners[1].x; pointTemp.y = corners[0].y; if (!PATH_AddEntry(pPath, &pointTemp, PT_MOVETO)) { PATH_UnlockPath(pPath); return FALSE; } if (!PATH_AddEntry(pPath, corners, PT_LINETO)) { PATH_UnlockPath(pPath); return FALSE; } pointTemp.x = corners[0].x; pointTemp.y = corners[1].y; if (!PATH_AddEntry(pPath, &pointTemp, PT_LINETO)) { PATH_UnlockPath(pPath); return FALSE; } if (!PATH_AddEntry(pPath, corners + 1, PT_LINETO)) { PATH_UnlockPath(pPath); return FALSE; } /* Close the rectangle figure */ IntGdiCloseFigure(pPath) ; PATH_UnlockPath(pPath); return TRUE; } /* PATH_RoundRect * * Should be called when a call to RoundRect is performed on a DC that has * an open path. Returns TRUE if successful, else FALSE. * * FIXME: It adds the same entries to the path as windows does, but there * is an error in the bezier drawing code so that there are small pixel-size * gaps when the resulting path is drawn by StrokePath() */ BOOL FASTCALL PATH_RoundRect( DC *dc, INT x1, INT y1, INT x2, INT y2, INT ell_width, INT ell_height) { PPATH pPath; POINT corners[2], pointTemp; FLOAT_POINT ellCorners[2]; pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } if (!PATH_CheckCorners(dc, corners, x1, y1, x2, y2)) { PATH_UnlockPath(pPath); return FALSE; } /* Add points to the roundrect path */ ellCorners[0].x = corners[1].x - ell_width; ellCorners[0].y = corners[0].y; ellCorners[1].x = corners[1].x; ellCorners[1].y = corners[0].y + ell_height; if (!PATH_DoArcPart(pPath, ellCorners, 0, -M_PI_2, PT_MOVETO)) { PATH_UnlockPath(pPath); return FALSE; } pointTemp.x = corners[0].x + ell_width / 2; pointTemp.y = corners[0].y; if (!PATH_AddEntry(pPath, &pointTemp, PT_LINETO)) { PATH_UnlockPath(pPath); return FALSE; } ellCorners[0].x = corners[0].x; ellCorners[1].x = corners[0].x + ell_width; if (!PATH_DoArcPart(pPath, ellCorners, -M_PI_2, -M_PI, FALSE)) { PATH_UnlockPath(pPath); return FALSE; } pointTemp.x = corners[0].x; pointTemp.y = corners[1].y - ell_height / 2; if (!PATH_AddEntry(pPath, &pointTemp, PT_LINETO)) { PATH_UnlockPath(pPath); return FALSE; } ellCorners[0].y = corners[1].y - ell_height; ellCorners[1].y = corners[1].y; if (!PATH_DoArcPart(pPath, ellCorners, M_PI, M_PI_2, FALSE)) { PATH_UnlockPath(pPath); return FALSE; } pointTemp.x = corners[1].x - ell_width / 2; pointTemp.y = corners[1].y; if (!PATH_AddEntry(pPath, &pointTemp, PT_LINETO)) { PATH_UnlockPath(pPath); return FALSE; } ellCorners[0].x = corners[1].x - ell_width; ellCorners[1].x = corners[1].x; if (!PATH_DoArcPart(pPath, ellCorners, M_PI_2, 0, FALSE)) { PATH_UnlockPath(pPath); return FALSE; } IntGdiCloseFigure(pPath); PATH_UnlockPath(pPath); return TRUE; } /* PATH_Ellipse * * Should be called when a call to Ellipse is performed on a DC that has * an open path. This adds four Bezier splines representing the ellipse * to the path. Returns TRUE if successful, else FALSE. */ BOOL FASTCALL PATH_Ellipse( PDC dc, INT x1, INT y1, INT x2, INT y2) { PPATH pPath; /* TODO: This should probably be revised to call PATH_AngleArc */ /* (once it exists) */ BOOL Ret = PATH_Arc(dc, x1, y1, x2, y2, x1, (y1 + y2) / 2, x1, (y1 + y2) / 2, GdiTypeArc); if (Ret) { pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; IntGdiCloseFigure(pPath); PATH_UnlockPath(pPath); } return Ret; } /* PATH_Arc * * Should be called when a call to Arc is performed on a DC that has * an open path. This adds up to five Bezier splines representing the arc * to the path. When 'lines' is 1, we add 1 extra line to get a chord, * when 'lines' is 2, we add 2 extra lines to get a pie, and when 'lines' is * -1 we add 1 extra line from the current DC position to the starting position * of the arc before drawing the arc itself (arcto). Returns TRUE if successful, * else FALSE. */ BOOL FASTCALL PATH_Arc( PDC dc, INT x1, INT y1, INT x2, INT y2, INT xStart, INT yStart, INT xEnd, INT yEnd, INT lines) { double angleStart, angleEnd, angleStartQuadrant, angleEndQuadrant = 0.0; /* Initialize angleEndQuadrant to silence gcc's warning */ double x, y; FLOAT_POINT corners[2], pointStart, pointEnd; POINT centre, pointCurPos; BOOL start, end, Ret = TRUE; INT temp; BOOL clockwise; PPATH pPath; /* FIXME: This function should check for all possible error returns */ /* FIXME: Do we have to respect newStroke? */ ASSERT(dc); pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; clockwise = ((dc->dclevel.flPath & DCPATH_CLOCKWISE) != 0); /* Check that path is open */ if (pPath->state != PATH_Open) { Ret = FALSE; goto ArcExit; } /* Check for zero height / width */ /* FIXME: Only in GM_COMPATIBLE? */ if (x1 == x2 || y1 == y2) { Ret = TRUE; goto ArcExit; } /* Convert points to device coordinates */ corners[0].x = (FLOAT)x1; corners[0].y = (FLOAT)y1; corners[1].x = (FLOAT)x2; corners[1].y = (FLOAT)y2; pointStart.x = (FLOAT)xStart; pointStart.y = (FLOAT)yStart; pointEnd.x = (FLOAT)xEnd; pointEnd.y = (FLOAT)yEnd; INTERNAL_LPTODP_FLOAT(dc, corners); INTERNAL_LPTODP_FLOAT(dc, corners + 1); INTERNAL_LPTODP_FLOAT(dc, &pointStart); INTERNAL_LPTODP_FLOAT(dc, &pointEnd); /* Make sure first corner is top left and second corner is bottom right */ if (corners[0].x > corners[1].x) { temp = corners[0].x; corners[0].x = corners[1].x; corners[1].x = temp; } if (corners[0].y > corners[1].y) { temp = corners[0].y; corners[0].y = corners[1].y; corners[1].y = temp; } /* Compute start and end angle */ PATH_NormalizePoint(corners, &pointStart, &x, &y); angleStart = atan2(y, x); PATH_NormalizePoint(corners, &pointEnd, &x, &y); angleEnd = atan2(y, x); /* Make sure the end angle is "on the right side" of the start angle */ if (clockwise) { if (angleEnd <= angleStart) { angleEnd += 2 * M_PI; ASSERT(angleEnd >= angleStart); } } else { if (angleEnd >= angleStart) { angleEnd -= 2 * M_PI; ASSERT(angleEnd <= angleStart); } } /* In GM_COMPATIBLE, don't include bottom and right edges */ if (dc->pdcattr->iGraphicsMode == GM_COMPATIBLE) { corners[1].x--; corners[1].y--; } /* arcto: Add a PT_MOVETO only if this is the first entry in a stroke */ if (lines == GdiTypeArcTo && pPath->newStroke) // -1 { pPath->newStroke = FALSE; IntGetCurrentPositionEx(dc, &pointCurPos); CoordLPtoDP(dc, &pointCurPos); if (!PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO)) { Ret = FALSE; goto ArcExit; } } /* Add the arc to the path with one Bezier spline per quadrant that the * arc spans */ start = TRUE; end = FALSE; do { /* Determine the start and end angles for this quadrant */ if (start) { angleStartQuadrant = angleStart; if (clockwise) angleEndQuadrant = (floor(angleStart / M_PI_2) + 1.0) * M_PI_2; else angleEndQuadrant = (ceil(angleStart / M_PI_2) - 1.0) * M_PI_2; } else { angleStartQuadrant = angleEndQuadrant; if (clockwise) angleEndQuadrant += M_PI_2; else angleEndQuadrant -= M_PI_2; } /* Have we reached the last part of the arc? */ if ((clockwise && angleEnd < angleEndQuadrant) || (!clockwise && angleEnd > angleEndQuadrant)) { /* Adjust the end angle for this quadrant */ angleEndQuadrant = angleEnd; end = TRUE; } /* Add the Bezier spline to the path */ PATH_DoArcPart(pPath, corners, angleStartQuadrant, angleEndQuadrant, start ? (lines == GdiTypeArcTo ? PT_LINETO : PT_MOVETO) : FALSE); // -1 start = FALSE; } while (!end); /* chord: close figure. pie: add line and close figure */ if (lines == GdiTypeChord) // 1 { IntGdiCloseFigure(pPath); } else if (lines == GdiTypePie) // 2 { centre.x = (corners[0].x + corners[1].x) / 2; centre.y = (corners[0].y + corners[1].y) / 2; if (!PATH_AddEntry(pPath, ¢re, PT_LINETO | PT_CLOSEFIGURE)) Ret = FALSE; } ArcExit: PATH_UnlockPath(pPath); return Ret; } BOOL FASTCALL PATH_PolyBezierTo( PDC dc, const POINT *pts, DWORD cbPoints) { POINT pt; ULONG i; PPATH pPath; ASSERT(dc); ASSERT(pts); ASSERT(cbPoints); pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } /* Add a PT_MOVETO if necessary */ if (pPath->newStroke) { pPath->newStroke = FALSE; IntGetCurrentPositionEx(dc, &pt); CoordLPtoDP(dc, &pt); if (!PATH_AddEntry(pPath, &pt, PT_MOVETO)) { PATH_UnlockPath(pPath); return FALSE; } } for (i = 0; i < cbPoints; i++) { pt = pts[i]; CoordLPtoDP(dc, &pt); PATH_AddEntry(pPath, &pt, PT_BEZIERTO); } PATH_UnlockPath(pPath); return TRUE; } BOOL FASTCALL PATH_PolyBezier( PDC dc, const POINT *pts, DWORD cbPoints) { POINT pt; ULONG i; PPATH pPath; ASSERT(dc); ASSERT(pts); ASSERT(cbPoints); pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } for (i = 0; i < cbPoints; i++) { pt = pts[i]; CoordLPtoDP(dc, &pt); PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_BEZIERTO); } PATH_UnlockPath(pPath); return TRUE; } BOOL FASTCALL PATH_PolyDraw( PDC dc, const POINT *pts, const BYTE *types, DWORD cbPoints) { PPATH pPath; POINT lastmove, orig_pos; ULONG i; PDC_ATTR pdcattr; BOOL State = FALSE, Ret = FALSE; pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } pdcattr = dc->pdcattr; lastmove.x = orig_pos.x = pdcattr->ptlCurrent.x; lastmove.y = orig_pos.y = pdcattr->ptlCurrent.y; i = pPath->numEntriesUsed; while (i != 0) { i--; if (pPath->pFlags[i] == PT_MOVETO) { lastmove.x = pPath->pPoints[i].x; lastmove.y = pPath->pPoints[i].y; if (!GdiPathDPtoLP(dc, &lastmove, 1)) { PATH_UnlockPath(pPath); return FALSE; } break; } } for (i = 0; i < cbPoints; i++) { if (types[i] == PT_MOVETO) { pPath->newStroke = TRUE; lastmove.x = pts[i].x; lastmove.y = pts[i].y; } else if ((types[i] & ~PT_CLOSEFIGURE) == PT_LINETO) { PATH_LineTo(dc, pts[i].x, pts[i].y); } else if (types[i] == PT_BEZIERTO) { if (!((i + 2 < cbPoints) && (types[i + 1] == PT_BEZIERTO) && ((types[i + 2] & ~PT_CLOSEFIGURE) == PT_BEZIERTO))) goto err; PATH_PolyBezierTo(dc, &(pts[i]), 3); i += 2; } else goto err; pdcattr->ptlCurrent.x = pts[i].x; pdcattr->ptlCurrent.y = pts[i].y; State = TRUE; if (types[i] & PT_CLOSEFIGURE) { pPath->pFlags[pPath->numEntriesUsed - 1] |= PT_CLOSEFIGURE; pPath->newStroke = TRUE; pdcattr->ptlCurrent.x = lastmove.x; pdcattr->ptlCurrent.y = lastmove.y; State = TRUE; } } Ret = TRUE; goto Exit; err: if ((pdcattr->ptlCurrent.x != orig_pos.x) || (pdcattr->ptlCurrent.y != orig_pos.y)) { pPath->newStroke = TRUE; pdcattr->ptlCurrent.x = orig_pos.x; pdcattr->ptlCurrent.y = orig_pos.y; State = TRUE; } Exit: if (State) // State change? { pdcattr->ptfxCurrent = pdcattr->ptlCurrent; CoordLPtoDP(dc, &pdcattr->ptfxCurrent); // Update fx pdcattr->ulDirty_ &= ~(DIRTY_PTLCURRENT | DIRTY_PTFXCURRENT | DIRTY_STYLESTATE); } PATH_UnlockPath(pPath); return Ret; } BOOL FASTCALL PATH_Polyline( PDC dc, const POINT *pts, DWORD cbPoints) { POINT pt; ULONG i; PPATH pPath; ASSERT(dc); ASSERT(pts); ASSERT(cbPoints); pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } for (i = 0; i < cbPoints; i++) { pt = pts[i]; CoordLPtoDP(dc, &pt); PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_LINETO); } PATH_UnlockPath(pPath); return TRUE; } BOOL FASTCALL PATH_PolylineTo( PDC dc, const POINT *pts, DWORD cbPoints) { POINT pt; ULONG i; PPATH pPath; ASSERT(dc); ASSERT(pts); ASSERT(cbPoints); pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } /* Add a PT_MOVETO if necessary */ if (pPath->newStroke) { pPath->newStroke = FALSE; IntGetCurrentPositionEx(dc, &pt); CoordLPtoDP(dc, &pt); if (!PATH_AddEntry(pPath, &pt, PT_MOVETO)) { PATH_UnlockPath(pPath); return FALSE; } } for (i = 0; i < cbPoints; i++) { pt = pts[i]; CoordLPtoDP(dc, &pt); PATH_AddEntry(pPath, &pt, PT_LINETO); } PATH_UnlockPath(pPath); return TRUE; } BOOL FASTCALL PATH_Polygon( PDC dc, const POINT *pts, DWORD cbPoints) { POINT pt; ULONG i; PPATH pPath; ASSERT(dc); ASSERT(pts); pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } for (i = 0; i < cbPoints; i++) { pt = pts[i]; CoordLPtoDP(dc, &pt); PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : ((i == cbPoints - 1) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO)); } PATH_UnlockPath(pPath); return TRUE; } BOOL FASTCALL PATH_PolyPolygon( PDC dc, const POINT* pts, const INT* counts, UINT polygons) { POINT pt, startpt; ULONG poly, point, i; PPATH pPath; ASSERT(dc); ASSERT(pts); ASSERT(counts); ASSERT(polygons); pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } for (i = 0, poly = 0; poly < polygons; poly++) { for (point = 0; point < (ULONG) counts[poly]; point++, i++) { pt = pts[i]; CoordLPtoDP(dc, &pt); if (point == 0) startpt = pt; PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO); } /* Win98 adds an extra line to close the figure for some reason */ PATH_AddEntry(pPath, &startpt, PT_LINETO | PT_CLOSEFIGURE); } PATH_UnlockPath(pPath); return TRUE; } BOOL FASTCALL PATH_PolyPolyline( PDC dc, const POINT* pts, const DWORD* counts, DWORD polylines) { POINT pt; ULONG poly, point, i; PPATH pPath; ASSERT(dc); ASSERT(pts); ASSERT(counts); ASSERT(polylines); pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; /* Check that path is open */ if (pPath->state != PATH_Open) { PATH_UnlockPath(pPath); return FALSE; } for (i = 0, poly = 0; poly < polylines; poly++) { for (point = 0; point < counts[poly]; point++, i++) { pt = pts[i]; CoordLPtoDP(dc, &pt); PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO); } } PATH_UnlockPath(pPath); return TRUE; } /* PATH_CheckCorners * * Helper function for PATH_RoundRect() and PATH_Rectangle() */ BOOL PATH_CheckCorners( DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2) { INT temp; PDC_ATTR pdcattr = dc->pdcattr; /* Convert points to device coordinates */ corners[0].x = x1; corners[0].y = y1; corners[1].x = x2; corners[1].y = y2; CoordLPtoDP(dc, &corners[0]); CoordLPtoDP(dc, &corners[1]); /* Make sure first corner is top left and second corner is bottom right */ if (corners[0].x > corners[1].x) { temp = corners[0].x; corners[0].x = corners[1].x; corners[1].x = temp; } if (corners[0].y > corners[1].y) { temp = corners[0].y; corners[0].y = corners[1].y; corners[1].y = temp; } /* In GM_COMPATIBLE, don't include bottom and right edges */ if (pdcattr->iGraphicsMode == GM_COMPATIBLE) { corners[1].x--; corners[1].y--; } return TRUE; } /* PATH_AddFlatBezier * */ BOOL FASTCALL PATH_AddFlatBezier( PPATH pPath, POINT *pt, BOOL closed) { POINT *pts; INT no, i; pts = GDI_Bezier(pt, 4, &no); if (!pts) return FALSE; for (i = 1; i < no; i++) PATH_AddEntry(pPath, &pts[i], (i == no - 1 && closed) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO); ExFreePoolWithTag(pts, TAG_BEZIER); return TRUE; } /* PATH_FlattenPath * * Replaces Beziers with line segments * */ BOOL FASTCALL PATH_FlattenPath(PPATH pPath) { PATH newPath; INT srcpt; RtlZeroMemory(&newPath, sizeof(newPath)); newPath.state = PATH_Open; for (srcpt = 0; srcpt < pPath->numEntriesUsed; srcpt++) { switch(pPath->pFlags[srcpt] & ~PT_CLOSEFIGURE) { case PT_MOVETO: case PT_LINETO: PATH_AddEntry(&newPath, &pPath->pPoints[srcpt], pPath->pFlags[srcpt]); break; case PT_BEZIERTO: PATH_AddFlatBezier(&newPath, &pPath->pPoints[srcpt - 1], pPath->pFlags[srcpt + 2] & PT_CLOSEFIGURE); srcpt += 2; break; } } newPath.state = PATH_Closed; PATH_AssignGdiPath(pPath, &newPath); PATH_EmptyPath(&newPath); return TRUE; } /* PATH_PathToRegion * * Creates a region from the specified path using the specified polygon * filling mode. The path is left unchanged. A handle to the region that * was created is stored in *pHrgn. If successful, TRUE is returned; if an * error occurs, SetLastError is called with the appropriate value and * FALSE is returned. */ BOOL FASTCALL PATH_PathToRegion( PPATH pPath, INT nPolyFillMode, PREGION Rgn) { int numStrokes, iStroke, i; PULONG pNumPointsInStroke; BOOL Ret; ASSERT(pPath != NULL); ASSERT(Rgn != NULL); PATH_FlattenPath(pPath); /* First pass: Find out how many strokes there are in the path */ /* FIXME: We could eliminate this with some bookkeeping in GdiPath */ numStrokes = 0; for (i = 0; i < pPath->numEntriesUsed; i++) if ((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO) numStrokes++; if (numStrokes == 0) { return FALSE; } /* Allocate memory for number-of-points-in-stroke array */ pNumPointsInStroke = ExAllocatePoolWithTag(PagedPool, sizeof(ULONG) * numStrokes, TAG_PATH); if (!pNumPointsInStroke) { EngSetLastError(ERROR_NOT_ENOUGH_MEMORY); return FALSE; } /* Second pass: remember number of points in each polygon */ iStroke = -1; /* Will get incremented to 0 at beginning of first stroke */ for (i = 0; i < pPath->numEntriesUsed; i++) { /* Is this the beginning of a new stroke? */ if ((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO) { iStroke++; _PRAGMA_WARNING_SUPPRESS(__WARNING_WRITE_OVERRUN) pNumPointsInStroke[iStroke] = 0; } _PRAGMA_WARNING_SUPPRESS(__WARNING_READ_OVERRUN) pNumPointsInStroke[iStroke]++; } /* Fill the region with the strokes */ Ret = IntSetPolyPolygonRgn(pPath->pPoints, pNumPointsInStroke, numStrokes, nPolyFillMode, Rgn); /* Free memory for number-of-points-in-stroke array */ ExFreePoolWithTag(pNumPointsInStroke, TAG_PATH); /* Success! */ return Ret; } /* PATH_EmptyPath * * Removes all entries from the path and sets the path state to PATH_Null. */ VOID FASTCALL PATH_EmptyPath(PPATH pPath) { ASSERT(pPath != NULL); pPath->state = PATH_Null; pPath->numEntriesUsed = 0; } /* PATH_AddEntry * * Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO * or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if * successful, FALSE otherwise (e.g. if not enough memory was available). */ BOOL FASTCALL PATH_AddEntry( PPATH pPath, const POINT *pPoint, BYTE flags) { ASSERT(pPath != NULL); /* FIXME: If newStroke is true, perhaps we want to check that we're * getting a PT_MOVETO */ /* Check that path is open */ if (pPath->state != PATH_Open) return FALSE; /* Reserve enough memory for an extra path entry */ if (!PATH_ReserveEntries(pPath, pPath->numEntriesUsed + 1)) return FALSE; /* Store information in path entry */ pPath->pPoints[pPath->numEntriesUsed] = *pPoint; pPath->pFlags[pPath->numEntriesUsed] = flags; /* If this is PT_CLOSEFIGURE, we have to start a new stroke next time */ if ((flags & PT_CLOSEFIGURE) == PT_CLOSEFIGURE) pPath->newStroke = TRUE; /* Increment entry count */ pPath->numEntriesUsed++; return TRUE; } /* PATH_ReserveEntries * * Ensures that at least "numEntries" entries (for points and flags) have * been allocated; allocates larger arrays and copies the existing entries * to those arrays, if necessary. Returns TRUE if successful, else FALSE. */ BOOL FASTCALL PATH_ReserveEntries( PPATH pPath, INT numEntries) { INT numEntriesToAllocate; POINT *pPointsNew; BYTE *pFlagsNew; ASSERT(pPath != NULL); ASSERT(numEntries >= 0); /* Do we have to allocate more memory? */ if (numEntries > pPath->numEntriesAllocated) { /* Find number of entries to allocate. We let the size of the array * grow exponentially, since that will guarantee linear time * complexity. */ if (pPath->numEntriesAllocated) { numEntriesToAllocate = pPath->numEntriesAllocated; while (numEntriesToAllocate < numEntries) numEntriesToAllocate = numEntriesToAllocate * GROW_FACTOR_NUMER / GROW_FACTOR_DENOM; } else numEntriesToAllocate = numEntries; /* Allocate new arrays */ pPointsNew = (POINT *)ExAllocatePoolWithTag(PagedPool, numEntriesToAllocate * sizeof(POINT), TAG_PATH); if (!pPointsNew) return FALSE; pFlagsNew = (BYTE *)ExAllocatePoolWithTag(PagedPool, numEntriesToAllocate * sizeof(BYTE), TAG_PATH); if (!pFlagsNew) { ExFreePoolWithTag(pPointsNew, TAG_PATH); return FALSE; } /* Copy old arrays to new arrays and discard old arrays */ if (pPath->pPoints) { ASSERT(pPath->pFlags); memcpy(pPointsNew, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed); memcpy(pFlagsNew, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed); ExFreePoolWithTag(pPath->pPoints, TAG_PATH); ExFreePoolWithTag(pPath->pFlags, TAG_PATH); } pPath->pPoints = pPointsNew; pPath->pFlags = pFlagsNew; pPath->numEntriesAllocated = numEntriesToAllocate; } return TRUE; } /* PATH_DoArcPart * * Creates a Bezier spline that corresponds to part of an arc and appends the * corresponding points to the path. The start and end angles are passed in * "angleStart" and "angleEnd"; these angles should span a quarter circle * at most. If "startEntryType" is non-zero, an entry of that type for the first * control point is added to the path; otherwise, it is assumed that the current * position is equal to the first control point. */ BOOL FASTCALL PATH_DoArcPart( PPATH pPath, FLOAT_POINT corners[], double angleStart, double angleEnd, BYTE startEntryType) { double halfAngle, a; double xNorm[4], yNorm[4]; POINT point; int i; ASSERT(fabs(angleEnd - angleStart) <= M_PI_2); /* FIXME: Is there an easier way of computing this? */ /* Compute control points */ halfAngle = (angleEnd - angleStart) / 2.0; if (fabs(halfAngle) > 1e-8) { a = 4.0 / 3.0 * (1 - cos(halfAngle)) / sin(halfAngle); xNorm[0] = cos(angleStart); yNorm[0] = sin(angleStart); xNorm[1] = xNorm[0] - a * yNorm[0]; yNorm[1] = yNorm[0] + a * xNorm[0]; xNorm[3] = cos(angleEnd); yNorm[3] = sin(angleEnd); xNorm[2] = xNorm[3] + a * yNorm[3]; yNorm[2] = yNorm[3] - a * xNorm[3]; } else for (i = 0; i < 4; i++) { xNorm[i] = cos(angleStart); yNorm[i] = sin(angleStart); } /* Add starting point to path if desired */ if (startEntryType) { PATH_ScaleNormalizedPoint(corners, xNorm[0], yNorm[0], &point); if (!PATH_AddEntry(pPath, &point, startEntryType)) return FALSE; } /* Add remaining control points */ for (i = 1; i < 4; i++) { PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &point); if (!PATH_AddEntry(pPath, &point, PT_BEZIERTO)) return FALSE; } return TRUE; } /* PATH_ScaleNormalizedPoint * * Scales a normalized point (x, y) with respect to the box whose corners are * passed in "corners". The point is stored in "*pPoint". The normalized * coordinates (-1.0, -1.0) correspond to corners[0], the coordinates * (1.0, 1.0) correspond to corners[1]. */ VOID FASTCALL PATH_ScaleNormalizedPoint( FLOAT_POINT corners[], double x, double y, POINT *pPoint) { ASSERT(corners); ASSERT(pPoint); pPoint->x = GDI_ROUND((double)corners[0].x + (double)(corners[1].x - corners[0].x) * 0.5 * (x + 1.0)); pPoint->y = GDI_ROUND((double)corners[0].y + (double)(corners[1].y - corners[0].y) * 0.5 * (y + 1.0)); } /* PATH_NormalizePoint * * Normalizes a point with respect to the box whose corners are passed in * corners. The normalized coordinates are stored in *pX and *pY. */ VOID FASTCALL PATH_NormalizePoint( FLOAT_POINT corners[], const FLOAT_POINT *pPoint, double *pX, double *pY) { ASSERT(corners); ASSERT(pPoint); ASSERT(pX); ASSERT(pY); *pX = (double)(pPoint->x - corners[0].x) / (double)(corners[1].x - corners[0].x) * 2.0 - 1.0; *pY = (double)(pPoint->y - corners[0].y) / (double)(corners[1].y - corners[0].y) * 2.0 - 1.0; } BOOL FASTCALL PATH_StrokePath( DC *dc, PPATH pPath) { BOOL ret = FALSE; INT i = 0; INT nLinePts, nAlloc; POINT *pLinePts = NULL; POINT ptViewportOrg, ptWindowOrg; SIZE szViewportExt, szWindowExt; DWORD mapMode, graphicsMode; XFORM xform; PDC_ATTR pdcattr = dc->pdcattr; DPRINT("Enter %s\n", __FUNCTION__); if (pPath->state != PATH_Closed) return FALSE; /* Save the mapping mode info */ mapMode = pdcattr->iMapMode; szViewportExt = *DC_pszlViewportExt(dc); ptViewportOrg = dc->pdcattr->ptlViewportOrg; szWindowExt = dc->pdcattr->szlWindowExt; ptWindowOrg = dc->pdcattr->ptlWindowOrg; MatrixS2XForm(&xform, &dc->pdcattr->mxWorldToPage); /* Set MM_TEXT */ pdcattr->iMapMode = MM_TEXT; pdcattr->ptlViewportOrg.x = 0; pdcattr->ptlViewportOrg.y = 0; pdcattr->ptlWindowOrg.x = 0; pdcattr->ptlWindowOrg.y = 0; graphicsMode = pdcattr->iGraphicsMode; pdcattr->iGraphicsMode = GM_ADVANCED; GreModifyWorldTransform(dc, (XFORML*)&xform, MWT_IDENTITY); pdcattr->iGraphicsMode = graphicsMode; /* Allocate enough memory for the worst case without beziers (one PT_MOVETO * and the rest PT_LINETO with PT_CLOSEFIGURE at the end) plus some buffer * space in case we get one to keep the number of reallocations small. */ nAlloc = pPath->numEntriesUsed + 1 + 300; pLinePts = ExAllocatePoolWithTag(PagedPool, nAlloc * sizeof(POINT), TAG_PATH); if (!pLinePts) { DPRINT1("Can't allocate pool!\n"); EngSetLastError(ERROR_NOT_ENOUGH_MEMORY); goto end; } nLinePts = 0; for (i = 0; i < pPath->numEntriesUsed; i++) { if ((i == 0 || (pPath->pFlags[i - 1] & PT_CLOSEFIGURE)) && (pPath->pFlags[i] != PT_MOVETO)) { DPRINT1("Expected PT_MOVETO %s, got path flag %d\n", i == 0 ? "as first point" : "after PT_CLOSEFIGURE", (INT)pPath->pFlags[i]); goto end; } switch(pPath->pFlags[i]) { case PT_MOVETO: DPRINT("Got PT_MOVETO (%ld, %ld)\n", pPath->pPoints[i].x, pPath->pPoints[i].y); if (nLinePts >= 2) IntGdiPolyline(dc, pLinePts, nLinePts); nLinePts = 0; pLinePts[nLinePts++] = pPath->pPoints[i]; break; case PT_LINETO: case (PT_LINETO | PT_CLOSEFIGURE): DPRINT("Got PT_LINETO (%ld, %ld)\n", pPath->pPoints[i].x, pPath->pPoints[i].y); pLinePts[nLinePts++] = pPath->pPoints[i]; break; case PT_BEZIERTO: DPRINT("Got PT_BEZIERTO\n"); if (pPath->pFlags[i + 1] != PT_BEZIERTO || (pPath->pFlags[i + 2] & ~PT_CLOSEFIGURE) != PT_BEZIERTO) { DPRINT1("Path didn't contain 3 successive PT_BEZIERTOs\n"); ret = FALSE; goto end; } else { INT nBzrPts, nMinAlloc; POINT *pBzrPts = GDI_Bezier(&pPath->pPoints[i - 1], 4, &nBzrPts); /* Make sure we have allocated enough memory for the lines of * this bezier and the rest of the path, assuming we won't get * another one (since we won't reallocate again then). */ nMinAlloc = nLinePts + (pPath->numEntriesUsed - i) + nBzrPts; if (nAlloc < nMinAlloc) { // Reallocate memory POINT *Realloc = NULL; nAlloc = nMinAlloc * 2; Realloc = ExAllocatePoolWithTag(PagedPool, nAlloc * sizeof(POINT), TAG_PATH); if (!Realloc) { DPRINT1("Can't allocate pool!\n"); goto end; } memcpy(Realloc, pLinePts, nLinePts * sizeof(POINT)); ExFreePoolWithTag(pLinePts, TAG_PATH); pLinePts = Realloc; } memcpy(&pLinePts[nLinePts], &pBzrPts[1], (nBzrPts - 1) * sizeof(POINT)); nLinePts += nBzrPts - 1; ExFreePoolWithTag(pBzrPts, TAG_BEZIER); i += 2; } break; default: DPRINT1("Got path flag %d (not supported)\n", (INT)pPath->pFlags[i]); goto end; } if (pPath->pFlags[i] & PT_CLOSEFIGURE) { pLinePts[nLinePts++] = pLinePts[0]; } } if (nLinePts >= 2) IntGdiPolyline(dc, pLinePts, nLinePts); ret = TRUE; end: if (pLinePts) ExFreePoolWithTag(pLinePts, TAG_PATH); /* Restore the old mapping mode */ pdcattr->iMapMode = mapMode; pdcattr->szlWindowExt.cx = szWindowExt.cx; pdcattr->szlWindowExt.cy = szWindowExt.cy; pdcattr->ptlWindowOrg.x = ptWindowOrg.x; pdcattr->ptlWindowOrg.y = ptWindowOrg.y; pdcattr->szlViewportExt.cx = szViewportExt.cx; pdcattr->szlViewportExt.cy = szViewportExt.cy; pdcattr->ptlViewportOrg.x = ptViewportOrg.x; pdcattr->ptlViewportOrg.y = ptViewportOrg.y; /* Restore the world transform */ XForm2MatrixS(&dc->pdcattr->mxWorldToPage, &xform); /* If we've moved the current point then get its new position which will be in device (MM_TEXT) co-ords, convert it to logical co-ords and re-set it. This basically updates dc->CurPosX|Y so that their values are in the correct mapping mode. */ if (i > 0) { POINT pt; IntGetCurrentPositionEx(dc, &pt); IntDPtoLP(dc, &pt, 1); IntGdiMoveToEx(dc, pt.x, pt.y, NULL, FALSE); } DPRINT("Leave %s, ret=%d\n", __FUNCTION__, ret); return ret; } #define round(x) ((int)((x)>0?(x)+0.5:(x)-0.5)) static BOOL FASTCALL PATH_WidenPath(DC *dc) { INT i, j, numStrokes, numOldStrokes, penWidth, penWidthIn, penWidthOut, size, penStyle; BOOL ret = FALSE; PPATH pPath, pNewPath, *pStrokes = NULL, *pOldStrokes, pUpPath, pDownPath; EXTLOGPEN *elp; DWORD obj_type, joint, endcap, penType; PDC_ATTR pdcattr = dc->pdcattr; pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) return FALSE; if (pPath->state == PATH_Open) { PATH_UnlockPath(pPath); EngSetLastError(ERROR_CAN_NOT_COMPLETE); return FALSE; } PATH_FlattenPath(pPath); size = GreGetObject(pdcattr->hpen, 0, NULL); if (!size) { PATH_UnlockPath(pPath); EngSetLastError(ERROR_CAN_NOT_COMPLETE); return FALSE; } elp = ExAllocatePoolWithTag(PagedPool, size, TAG_PATH); GreGetObject(pdcattr->hpen, size, elp); obj_type = GDI_HANDLE_GET_TYPE(pdcattr->hpen); if (obj_type == GDI_OBJECT_TYPE_PEN) { penStyle = ((LOGPEN*)elp)->lopnStyle; } else if (obj_type == GDI_OBJECT_TYPE_EXTPEN) { penStyle = elp->elpPenStyle; } else { EngSetLastError(ERROR_CAN_NOT_COMPLETE); ExFreePoolWithTag(elp, TAG_PATH); PATH_UnlockPath(pPath); return FALSE; } penWidth = elp->elpWidth; ExFreePoolWithTag(elp, TAG_PATH); endcap = (PS_ENDCAP_MASK & penStyle); joint = (PS_JOIN_MASK & penStyle); penType = (PS_TYPE_MASK & penStyle); /* The function cannot apply to cosmetic pens */ if (obj_type == GDI_OBJECT_TYPE_EXTPEN && penType == PS_COSMETIC) { PATH_UnlockPath(pPath); EngSetLastError(ERROR_CAN_NOT_COMPLETE); return FALSE; } penWidthIn = penWidth / 2; penWidthOut = penWidth / 2; if (penWidthIn + penWidthOut < penWidth) penWidthOut++; numStrokes = 0; for (i = 0, j = 0; i < pPath->numEntriesUsed; i++, j++) { POINT point; if ((i == 0 || (pPath->pFlags[i - 1] & PT_CLOSEFIGURE)) && (pPath->pFlags[i] != PT_MOVETO)) { DPRINT1("Expected PT_MOVETO %s, got path flag %c\n", i == 0 ? "as first point" : "after PT_CLOSEFIGURE", pPath->pFlags[i]); return FALSE; } switch(pPath->pFlags[i]) { case PT_MOVETO: if (numStrokes > 0) { pStrokes[numStrokes - 1]->state = PATH_Closed; } numOldStrokes = numStrokes; numStrokes++; j = 0; if (numStrokes == 1) pStrokes = ExAllocatePoolWithTag(PagedPool, numStrokes * sizeof(PPATH), TAG_PATH); else { pOldStrokes = pStrokes; // Save old pointer. pStrokes = ExAllocatePoolWithTag(PagedPool, numStrokes * sizeof(PPATH), TAG_PATH); if (!pStrokes) return FALSE; RtlCopyMemory(pStrokes, pOldStrokes, numOldStrokes * sizeof(PPATH)); ExFreePoolWithTag(pOldStrokes, TAG_PATH); // Free old pointer. } if (!pStrokes) return FALSE; pStrokes[numStrokes - 1] = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH); if (!pStrokes[numStrokes - 1]) { ASSERT(FALSE); // FIXME } PATH_InitGdiPath(pStrokes[numStrokes - 1]); pStrokes[numStrokes - 1]->state = PATH_Open; case PT_LINETO: case (PT_LINETO | PT_CLOSEFIGURE): point.x = pPath->pPoints[i].x; point.y = pPath->pPoints[i].y; PATH_AddEntry(pStrokes[numStrokes - 1], &point, pPath->pFlags[i]); break; case PT_BEZIERTO: /* Should never happen because of the FlattenPath call */ DPRINT1("Should never happen\n"); break; default: DPRINT1("Got path flag %c\n", pPath->pFlags[i]); return FALSE; } } pNewPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH); if (!pNewPath) { ASSERT(FALSE); // FIXME } PATH_InitGdiPath(pNewPath); pNewPath->state = PATH_Open; for (i = 0; i < numStrokes; i++) { pUpPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH); PATH_InitGdiPath(pUpPath); pUpPath->state = PATH_Open; pDownPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH); PATH_InitGdiPath(pDownPath); pDownPath->state = PATH_Open; for (j = 0; j < pStrokes[i]->numEntriesUsed; j++) { /* Beginning or end of the path if not closed */ if ((!(pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) && (j == 0 || j == pStrokes[i]->numEntriesUsed - 1)) { /* Compute segment angle */ double xo, yo, xa, ya, theta; POINT pt; FLOAT_POINT corners[2]; if (j == 0) { xo = pStrokes[i]->pPoints[j].x; yo = pStrokes[i]->pPoints[j].y; xa = pStrokes[i]->pPoints[1].x; ya = pStrokes[i]->pPoints[1].y; } else { xa = pStrokes[i]->pPoints[j - 1].x; ya = pStrokes[i]->pPoints[j - 1].y; xo = pStrokes[i]->pPoints[j].x; yo = pStrokes[i]->pPoints[j].y; } theta = atan2(ya - yo, xa - xo); switch(endcap) { case PS_ENDCAP_SQUARE : pt.x = xo + round(sqrt(2) * penWidthOut * cos(M_PI_4 + theta)); pt.y = yo + round(sqrt(2) * penWidthOut * sin(M_PI_4 + theta)); PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO)); pt.x = xo + round(sqrt(2) * penWidthIn * cos(- M_PI_4 + theta)); pt.y = yo + round(sqrt(2) * penWidthIn * sin(- M_PI_4 + theta)); PATH_AddEntry(pUpPath, &pt, PT_LINETO); break; case PS_ENDCAP_FLAT : pt.x = xo + round(penWidthOut * cos(theta + M_PI_2)); pt.y = yo + round(penWidthOut * sin(theta + M_PI_2)); PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO)); pt.x = xo - round(penWidthIn * cos(theta + M_PI_2)); pt.y = yo - round(penWidthIn * sin(theta + M_PI_2)); PATH_AddEntry(pUpPath, &pt, PT_LINETO); break; case PS_ENDCAP_ROUND : default : corners[0].x = xo - penWidthIn; corners[0].y = yo - penWidthIn; corners[1].x = xo + penWidthOut; corners[1].y = yo + penWidthOut; PATH_DoArcPart(pUpPath , corners, theta + M_PI_2 , theta + 3 * M_PI_4, (j == 0 ? PT_MOVETO : FALSE)); PATH_DoArcPart(pUpPath , corners, theta + 3 * M_PI_4 , theta + M_PI, FALSE); PATH_DoArcPart(pUpPath , corners, theta + M_PI, theta + 5 * M_PI_4, FALSE); PATH_DoArcPart(pUpPath , corners, theta + 5 * M_PI_4 , theta + 3 * M_PI_2, FALSE); break; } } /* Corpse of the path */ else { /* Compute angle */ INT previous, next; double xa, ya, xb, yb, xo, yo; double alpha, theta, miterWidth; DWORD _joint = joint; POINT pt; PPATH pInsidePath, pOutsidePath; if (j > 0 && j < pStrokes[i]->numEntriesUsed - 1) { previous = j - 1; next = j + 1; } else if (j == 0) { previous = pStrokes[i]->numEntriesUsed - 1; next = j + 1; } else { previous = j - 1; next = 0; } xo = pStrokes[i]->pPoints[j].x; yo = pStrokes[i]->pPoints[j].y; xa = pStrokes[i]->pPoints[previous].x; ya = pStrokes[i]->pPoints[previous].y; xb = pStrokes[i]->pPoints[next].x; yb = pStrokes[i]->pPoints[next].y; theta = atan2(yo - ya, xo - xa); alpha = atan2(yb - yo, xb - xo) - theta; if (alpha > 0) alpha -= M_PI; else alpha += M_PI; if (_joint == PS_JOIN_MITER && dc->dclevel.laPath.eMiterLimit < fabs(1 / sin(alpha / 2))) { _joint = PS_JOIN_BEVEL; } if (alpha > 0) { pInsidePath = pUpPath; pOutsidePath = pDownPath; } else if (alpha < 0) { pInsidePath = pDownPath; pOutsidePath = pUpPath; } else { continue; } /* Inside angle points */ if (alpha > 0) { pt.x = xo - round(penWidthIn * cos(theta + M_PI_2)); pt.y = yo - round(penWidthIn * sin(theta + M_PI_2)); } else { pt.x = xo + round(penWidthIn * cos(theta + M_PI_2)); pt.y = yo + round(penWidthIn * sin(theta + M_PI_2)); } PATH_AddEntry(pInsidePath, &pt, PT_LINETO); if (alpha > 0) { pt.x = xo + round(penWidthIn * cos(M_PI_2 + alpha + theta)); pt.y = yo + round(penWidthIn * sin(M_PI_2 + alpha + theta)); } else { pt.x = xo - round(penWidthIn * cos(M_PI_2 + alpha + theta)); pt.y = yo - round(penWidthIn * sin(M_PI_2 + alpha + theta)); } PATH_AddEntry(pInsidePath, &pt, PT_LINETO); /* Outside angle point */ switch(_joint) { case PS_JOIN_MITER : miterWidth = fabs(penWidthOut / cos(M_PI_2 - fabs(alpha) / 2)); pt.x = xo + round(miterWidth * cos(theta + alpha / 2)); pt.y = yo + round(miterWidth * sin(theta + alpha / 2)); PATH_AddEntry(pOutsidePath, &pt, PT_LINETO); break; case PS_JOIN_BEVEL : if (alpha > 0) { pt.x = xo + round(penWidthOut * cos(theta + M_PI_2)); pt.y = yo + round(penWidthOut * sin(theta + M_PI_2)); } else { pt.x = xo - round(penWidthOut * cos(theta + M_PI_2)); pt.y = yo - round(penWidthOut * sin(theta + M_PI_2)); } PATH_AddEntry(pOutsidePath, &pt, PT_LINETO); if (alpha > 0) { pt.x = xo - round(penWidthOut * cos(M_PI_2 + alpha + theta)); pt.y = yo - round(penWidthOut * sin(M_PI_2 + alpha + theta)); } else { pt.x = xo + round(penWidthOut * cos(M_PI_2 + alpha + theta)); pt.y = yo + round(penWidthOut * sin(M_PI_2 + alpha + theta)); } PATH_AddEntry(pOutsidePath, &pt, PT_LINETO); break; case PS_JOIN_ROUND : default : if (alpha > 0) { pt.x = xo + round(penWidthOut * cos(theta + M_PI_2)); pt.y = yo + round(penWidthOut * sin(theta + M_PI_2)); } else { pt.x = xo - round(penWidthOut * cos(theta + M_PI_2)); pt.y = yo - round(penWidthOut * sin(theta + M_PI_2)); } PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO); pt.x = xo + round(penWidthOut * cos(theta + alpha / 2)); pt.y = yo + round(penWidthOut * sin(theta + alpha / 2)); PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO); if (alpha > 0) { pt.x = xo - round(penWidthOut * cos(M_PI_2 + alpha + theta)); pt.y = yo - round(penWidthOut * sin(M_PI_2 + alpha + theta)); } else { pt.x = xo + round(penWidthOut * cos(M_PI_2 + alpha + theta)); pt.y = yo + round(penWidthOut * sin(M_PI_2 + alpha + theta)); } PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO); break; } } } for (j = 0; j < pUpPath->numEntriesUsed; j++) { POINT pt; pt.x = pUpPath->pPoints[j].x; pt.y = pUpPath->pPoints[j].y; PATH_AddEntry(pNewPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO)); } for (j = 0; j < pDownPath->numEntriesUsed; j++) { POINT pt; pt.x = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].x; pt.y = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].y; PATH_AddEntry(pNewPath, &pt, ((j == 0 && (pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) ? PT_MOVETO : PT_LINETO)); } PATH_DestroyGdiPath(pStrokes[i]); ExFreePoolWithTag(pStrokes[i], TAG_PATH); PATH_DestroyGdiPath(pUpPath); ExFreePoolWithTag(pUpPath, TAG_PATH); PATH_DestroyGdiPath(pDownPath); ExFreePoolWithTag(pDownPath, TAG_PATH); } if (pStrokes) ExFreePoolWithTag(pStrokes, TAG_PATH); pNewPath->state = PATH_Closed; if (!(ret = PATH_AssignGdiPath(pPath, pNewPath))) DPRINT1("Assign path failed\n"); PATH_DestroyGdiPath(pNewPath); ExFreePoolWithTag(pNewPath, TAG_PATH); PATH_UnlockPath(pPath); return ret; } static inline INT int_from_fixed(FIXED f) { return (f.fract >= 0x8000) ? (f.value + 1) : f.value; } /********************************************************************** * PATH_BezierTo * * Internally used by PATH_add_outline */ static VOID FASTCALL PATH_BezierTo( PPATH pPath, POINT *lppt, INT n) { if (n < 2) return; if (n == 2) { PATH_AddEntry(pPath, &lppt[1], PT_LINETO); } else if (n == 3) { PATH_AddEntry(pPath, &lppt[0], PT_BEZIERTO); PATH_AddEntry(pPath, &lppt[1], PT_BEZIERTO); PATH_AddEntry(pPath, &lppt[2], PT_BEZIERTO); } else { POINT pt[3]; INT i = 0; pt[2] = lppt[0]; n--; while (n > 2) { pt[0] = pt[2]; pt[1] = lppt[i + 1]; pt[2].x = (lppt[i + 2].x + lppt[i + 1].x) / 2; pt[2].y = (lppt[i + 2].y + lppt[i + 1].y) / 2; PATH_BezierTo(pPath, pt, 3); n--; i++; } pt[0] = pt[2]; pt[1] = lppt[i + 1]; pt[2] = lppt[i + 2]; PATH_BezierTo(pPath, pt, 3); } } static BOOL FASTCALL PATH_add_outline( PDC dc, INT x, INT y, TTPOLYGONHEADER *header, DWORD size) { PPATH pPath; TTPOLYGONHEADER *start; POINT pt; BOOL bResult = FALSE; start = header; pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) { return FALSE; } while ((char *)header < (char *)start + size) { TTPOLYCURVE *curve; if (header->dwType != TT_POLYGON_TYPE) { DPRINT1("Unknown header type %lu\n", header->dwType); goto cleanup; } pt.x = x + int_from_fixed(header->pfxStart.x); pt.y = y - int_from_fixed(header->pfxStart.y); PATH_AddEntry(pPath, &pt, PT_MOVETO); curve = (TTPOLYCURVE *)(header + 1); while ((char *)curve < (char *)header + header->cb) { /*DPRINT1("curve->wType %d\n", curve->wType);*/ switch(curve->wType) { case TT_PRIM_LINE: { WORD i; for (i = 0; i < curve->cpfx; i++) { pt.x = x + int_from_fixed(curve->apfx[i].x); pt.y = y - int_from_fixed(curve->apfx[i].y); PATH_AddEntry(pPath, &pt, PT_LINETO); } break; } case TT_PRIM_QSPLINE: case TT_PRIM_CSPLINE: { WORD i; POINTFX ptfx; POINT *pts = ExAllocatePoolWithTag(PagedPool, (curve->cpfx + 1) * sizeof(POINT), TAG_PATH); if (!pts) goto cleanup; ptfx = *(POINTFX *)((char *)curve - sizeof(POINTFX)); pts[0].x = x + int_from_fixed(ptfx.x); pts[0].y = y - int_from_fixed(ptfx.y); for (i = 0; i < curve->cpfx; i++) { pts[i + 1].x = x + int_from_fixed(curve->apfx[i].x); pts[i + 1].y = y - int_from_fixed(curve->apfx[i].y); } PATH_BezierTo(pPath, pts, curve->cpfx + 1); ExFreePoolWithTag(pts, TAG_PATH); break; } default: DPRINT1("Unknown curve type %04x\n", curve->wType); goto cleanup; } curve = (TTPOLYCURVE *)&curve->apfx[curve->cpfx]; } header = (TTPOLYGONHEADER *)((char *)header + header->cb); } bResult = TRUE; cleanup: IntGdiCloseFigure(pPath); PATH_UnlockPath(pPath); return bResult; } /********************************************************************** * PATH_ExtTextOut */ BOOL FASTCALL PATH_ExtTextOut( PDC dc, INT x, INT y, UINT flags, const RECTL *lprc, LPCWSTR str, UINT count, const INT *dx) { unsigned int idx; POINT offset = {0, 0}; if (!count) return TRUE; for (idx = 0; idx < count; idx++) { MAT2 identity = { {0, 1}, {0, 0}, {0, 0}, {0, 1} }; GLYPHMETRICS gm; DWORD dwSize; void *outline; dwSize = ftGdiGetGlyphOutline(dc, str[idx], GGO_GLYPH_INDEX | GGO_NATIVE, &gm, 0, NULL, &identity, TRUE); if (dwSize == GDI_ERROR) return FALSE; /* Add outline only if char is printable */ if (dwSize) { outline = ExAllocatePoolWithTag(PagedPool, dwSize, TAG_PATH); if (!outline) return FALSE; ftGdiGetGlyphOutline(dc, str[idx], GGO_GLYPH_INDEX | GGO_NATIVE, &gm, dwSize, outline, &identity, TRUE); PATH_add_outline(dc, x + offset.x, y + offset.y, outline, dwSize); ExFreePoolWithTag(outline, TAG_PATH); } if (dx) { if (flags & ETO_PDY) { offset.x += dx[idx * 2]; offset.y += dx[idx * 2 + 1]; } else offset.x += dx[idx]; } else { offset.x += gm.gmCellIncX; offset.y += gm.gmCellIncY; } } return TRUE; } /*********************************************************************** * Exported functions */ BOOL APIENTRY NtGdiAbortPath(HDC hDC) { PPATH pPath; PDC dc = DC_LockDc(hDC); if (!dc) { EngSetLastError(ERROR_INVALID_HANDLE); return FALSE; } pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) { DC_UnlockDc(dc); return FALSE; } PATH_EmptyPath(pPath); PATH_UnlockPath(pPath); dc->dclevel.flPath &= ~DCPATH_ACTIVE; DC_UnlockDc(dc); return TRUE; } BOOL APIENTRY NtGdiBeginPath(HDC hDC) { PPATH pPath; PDC dc; dc = DC_LockDc(hDC); if (!dc) { EngSetLastError(ERROR_INVALID_HANDLE); return FALSE; } /* If path is already open, do nothing. Check if not Save DC state */ if ((dc->dclevel.flPath & DCPATH_ACTIVE) && !(dc->dclevel.flPath & DCPATH_SAVE)) { DC_UnlockDc(dc); return TRUE; } if (dc->dclevel.hPath) { DPRINT("BeginPath 1 0x%p\n", dc->dclevel.hPath); if (!(dc->dclevel.flPath & DCPATH_SAVE)) { // Remove previous handle. if (!PATH_Delete(dc->dclevel.hPath)) { DC_UnlockDc(dc); return FALSE; } } else { // Clear flags and Handle. dc->dclevel.flPath &= ~(DCPATH_SAVE | DCPATH_ACTIVE); dc->dclevel.hPath = NULL; } } pPath = PATH_AllocPathWithHandle(); if (!pPath) { EngSetLastError(ERROR_NOT_ENOUGH_MEMORY); return FALSE; } dc->dclevel.flPath |= DCPATH_ACTIVE; // Set active ASAP! dc->dclevel.hPath = pPath->BaseObject.hHmgr; DPRINT("BeginPath 2 h 0x%p p 0x%p\n", dc->dclevel.hPath, pPath); // Path handles are shared. Also due to recursion with in the same thread. GDIOBJ_vUnlockObject((POBJ)pPath); // Unlock pPath = PATH_LockPath(dc->dclevel.hPath); // Share Lock. /* Make sure that path is empty */ PATH_EmptyPath(pPath); /* Initialize variables for new path */ pPath->newStroke = TRUE; pPath->state = PATH_Open; PATH_UnlockPath(pPath); DC_UnlockDc(dc); return TRUE; } BOOL APIENTRY NtGdiCloseFigure(HDC hDC) { BOOL Ret = FALSE; // Default to failure PDC pDc; PPATH pPath; DPRINT("Enter %s\n", __FUNCTION__); pDc = DC_LockDc(hDC); if (!pDc) { EngSetLastError(ERROR_INVALID_PARAMETER); return FALSE; } pPath = PATH_LockPath(pDc->dclevel.hPath); if (!pPath) { DC_UnlockDc(pDc); return FALSE; } if (pPath->state == PATH_Open) { IntGdiCloseFigure(pPath); Ret = TRUE; } else { // FIXME: Check if lasterror is set correctly EngSetLastError(ERROR_CAN_NOT_COMPLETE); } PATH_UnlockPath(pPath); DC_UnlockDc(pDc); return Ret; } BOOL APIENTRY NtGdiEndPath(HDC hDC) { BOOL ret = TRUE; PPATH pPath; PDC dc; dc = DC_LockDc(hDC); if (!dc) { EngSetLastError(ERROR_INVALID_HANDLE); return FALSE; } pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) { DC_UnlockDc(dc); return FALSE; } /* Check that path is currently being constructed */ if ((pPath->state != PATH_Open) || !(dc->dclevel.flPath & DCPATH_ACTIVE)) { DPRINT1("EndPath ERROR! 0x%p\n", dc->dclevel.hPath); EngSetLastError(ERROR_CAN_NOT_COMPLETE); ret = FALSE; } /* Set flag to indicate that path is finished */ else { DPRINT("EndPath 0x%p\n", dc->dclevel.hPath); pPath->state = PATH_Closed; dc->dclevel.flPath &= ~DCPATH_ACTIVE; } PATH_UnlockPath(pPath); DC_UnlockDc(dc); return ret; } BOOL APIENTRY NtGdiFillPath(HDC hDC) { BOOL ret = FALSE; PPATH pPath; PDC_ATTR pdcattr; PDC dc; dc = DC_LockDc(hDC); if (!dc) { EngSetLastError(ERROR_INVALID_PARAMETER); return FALSE; } pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) { DC_UnlockDc(dc); return FALSE; } DC_vPrepareDCsForBlit(dc, NULL, NULL, NULL); pdcattr = dc->pdcattr; if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY)) DC_vUpdateLineBrush(dc); if (pdcattr->ulDirty_ & (DIRTY_FILL | DC_BRUSH_DIRTY)) DC_vUpdateFillBrush(dc); ret = PATH_FillPath(dc, pPath); if (ret) { /* FIXME: Should the path be emptied even if conversion failed? */ PATH_EmptyPath(pPath); } PATH_UnlockPath(pPath); DC_vFinishBlit(dc, NULL); DC_UnlockDc(dc); return ret; } BOOL APIENTRY NtGdiFlattenPath(HDC hDC) { BOOL Ret = FALSE; DC *pDc; PPATH pPath; DPRINT("Enter %s\n", __FUNCTION__); pDc = DC_LockDc(hDC); if (!pDc) { EngSetLastError(ERROR_INVALID_HANDLE); return FALSE; } pPath = PATH_LockPath(pDc->dclevel.hPath); if (!pPath) { DC_UnlockDc(pDc); return FALSE; } if (pPath->state == PATH_Open) Ret = PATH_FlattenPath(pPath); PATH_UnlockPath(pPath); DC_UnlockDc(pDc); return Ret; } _Success_(return != FALSE) BOOL APIENTRY NtGdiGetMiterLimit( _In_ HDC hdc, _Out_ PDWORD pdwOut) { DC *pDc; BOOL bResult = TRUE; if (!(pDc = DC_LockDc(hdc))) { EngSetLastError(ERROR_INVALID_PARAMETER); return FALSE; } _SEH2_TRY { ProbeForWrite(pdwOut, sizeof(DWORD), 1); *pdwOut = pDc->dclevel.laPath.eMiterLimit; } _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER) { SetLastNtError(_SEH2_GetExceptionCode()); bResult = FALSE; } _SEH2_END; DC_UnlockDc(pDc); return bResult; } INT APIENTRY NtGdiGetPath( HDC hDC, LPPOINT Points, LPBYTE Types, INT nSize) { INT ret = -1; PPATH pPath; DC *dc = DC_LockDc(hDC); if (!dc) { DPRINT1("Can't lock dc!\n"); EngSetLastError(ERROR_INVALID_PARAMETER); return -1; } pPath = PATH_LockPath(dc->dclevel.hPath); if (!pPath) { DC_UnlockDc(dc); return -1; } if (pPath->state != PATH_Closed) { EngSetLastError(ERROR_CAN_NOT_COMPLETE); goto done; } if (nSize == 0) { ret = pPath->numEntriesUsed; } else if (nSize < pPath->numEntriesUsed) { EngSetLastError(ERROR_INVALID_PARAMETER); goto done; } else { _SEH2_TRY { memcpy(Points, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed); memcpy(Types, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed); /* Convert the points to logical coordinates */ if (!GdiPathDPtoLP(dc, Points, pPath->numEntriesUsed)) { EngSetLastError(ERROR_ARITHMETIC_OVERFLOW); _SEH2_LEAVE; } ret = pPath->numEntriesUsed; } _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER) { SetLastNtError(_SEH2_GetExceptionCode()); } _SEH2_END } done: PATH_UnlockPath(pPath); DC_UnlockDc(dc); return ret; } HRGN APIENTRY NtGdiPathToRegion(HDC hDC) { PPATH pPath; HRGN hrgnRval = 0; PREGION Rgn; DC *pDc; PDC_ATTR pdcattr; DPRINT("Enter %s\n", __FUNCTION__); pDc = DC_LockDc(hDC); if (!pDc) { EngSetLastError(ERROR_INVALID_PARAMETER); return NULL; } pdcattr = pDc->pdcattr; pPath = PATH_LockPath(pDc->dclevel.hPath); if (!pPath) { DC_UnlockDc(pDc); return NULL; } if (pPath->state != PATH_Closed) { // FIXME: Check that setlasterror is being called correctly EngSetLastError(ERROR_CAN_NOT_COMPLETE); } else { /* Create the region and fill it with the path strokes */ Rgn = REGION_AllocUserRgnWithHandle(1); if (!Rgn) { PATH_UnlockPath(pPath); DC_UnlockDc(pDc); return NULL; } hrgnRval = Rgn->BaseObject.hHmgr; /* FIXME: Should we empty the path even if conversion failed? */ if (PATH_PathToRegion(pPath, pdcattr->jFillMode, Rgn)) { PATH_EmptyPath(pPath); RGNOBJAPI_Unlock(Rgn); } else { REGION_Delete(Rgn); hrgnRval = NULL; } } PATH_UnlockPath(pPath); DC_UnlockDc(pDc); return hrgnRval; } BOOL APIENTRY NtGdiSetMiterLimit( IN HDC hdc, IN DWORD dwNew, IN OUT OPTIONAL PDWORD pdwOut) { DC *pDc; gxf_long worker, worker1; BOOL bResult = TRUE; if (!(pDc = DC_LockDc(hdc))) { EngSetLastError(ERROR_INVALID_PARAMETER); return FALSE; } worker.l = dwNew; worker1.f = pDc->dclevel.laPath.eMiterLimit; pDc->dclevel.laPath.eMiterLimit = worker.f; if (pdwOut) { _SEH2_TRY { ProbeForWrite(pdwOut, sizeof(DWORD), 1); *pdwOut = worker1.l; } _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER) { SetLastNtError(_SEH2_GetExceptionCode()); bResult = FALSE; } _SEH2_END; } DC_UnlockDc(pDc); return bResult; } BOOL APIENTRY NtGdiStrokeAndFillPath(HDC hDC) { DC *pDc; PDC_ATTR pdcattr; PPATH pPath; BOOL bRet = FALSE; DPRINT1("Enter %s\n", __FUNCTION__); if (!(pDc = DC_LockDc(hDC))) { EngSetLastError(ERROR_INVALID_PARAMETER); return FALSE; } pPath = PATH_LockPath(pDc->dclevel.hPath); if (!pPath) { DC_UnlockDc(pDc); return FALSE; } DC_vPrepareDCsForBlit(pDc, NULL, NULL, NULL); pdcattr = pDc->pdcattr; if (pdcattr->ulDirty_ & (DIRTY_FILL | DC_BRUSH_DIRTY)) DC_vUpdateFillBrush(pDc); if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY)) DC_vUpdateLineBrush(pDc); bRet = PATH_FillPath(pDc, pPath); if (bRet) bRet = PATH_StrokePath(pDc, pPath); if (bRet) PATH_EmptyPath(pPath); PATH_UnlockPath(pPath); DC_vFinishBlit(pDc, NULL); DC_UnlockDc(pDc); return bRet; } BOOL APIENTRY NtGdiStrokePath(HDC hDC) { DC *pDc; PDC_ATTR pdcattr; PPATH pPath; BOOL bRet = FALSE; DPRINT("Enter %s\n", __FUNCTION__); if (!(pDc = DC_LockDc(hDC))) { EngSetLastError(ERROR_INVALID_PARAMETER); return FALSE; } pPath = PATH_LockPath(pDc->dclevel.hPath); if (!pPath) { DC_UnlockDc(pDc); return FALSE; } DC_vPrepareDCsForBlit(pDc, NULL, NULL, NULL); pdcattr = pDc->pdcattr; if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY)) DC_vUpdateLineBrush(pDc); bRet = PATH_StrokePath(pDc, pPath); DC_vFinishBlit(pDc, NULL); PATH_EmptyPath(pPath); PATH_UnlockPath(pPath); DC_UnlockDc(pDc); return bRet; } BOOL APIENTRY NtGdiWidenPath(HDC hDC) { BOOL Ret; PDC pdc = DC_LockDc(hDC); if (!pdc) { EngSetLastError(ERROR_INVALID_PARAMETER); return FALSE; } Ret = PATH_WidenPath(pdc); DC_UnlockDc(pdc); return Ret; } /* EOF */