driverName.Buffer leaked when the "(!NT_SUCCESS(status) || ServiceName != NULL)"
case is taken because ServiceName != NULL, and some of the functions fail.
- Fix CID 1477246: Uninitialized pointer read (UNINIT) (happens in
the last ExFreePoolWithTag(basicInfo, TAG_IO) call when the
"(!NT_SUCCESS(status) || ServiceName != NULL)" case is not taken).
- Centralize all the ExFreePoolWithTag(basicInfo, TAG_IO) cleanups
at the end of the function.
- Both cases "(driverName.Buffer == NULL)" and "(ServiceName != NULL)"
can only be taken when basicInfo != NULL, so assert on this fact.
- Fix/add comments;
- Reduce indentation level;
- Direct copy for registry integer values;
- Use for-loops for linked lists;
- Use ULONG when the API uses it (sizes for Ob, or REG_DWORD data in registry).
When freeing pages, free page entries with pages num == 3 were
incorrectly treated as entries with pages num >= 4 and thus
their re-insertion was not triggered. That lead to non paged pool
fragmentation (can be triggered by kmtest:ExPools, for example)
Also, altered the index acquisition code for MmNonPagedPoolFreeList
entries so it looks more clear
- Manage the lifetime of the temporary 'PartitionBuffer' buffer where
it is locally used only, and free it as soon as possible, just after
calculating the sector checksum. No need to then free it outside of
the main for-loop.
- When the 'DriveLayout' buffer is freed, ensure the pointer is NULL-ed
(and assert this at the top of the main for-loop), since it can also
be freed at cleanup outside this for-loop, and in this case a NULL
check is performed.
This will avoid the scenario of possibly double-freeing a pointer,
in the case the 'DriveLayout' was previously freed (when e.g. reading
the sector for checksum calculation failed), then the for-loop goes to
the next disk and stops early.
The purpose of 'SingleDisk' is the same as in the IopCreateArcNames()
function. It is an optimization for that when looking up the
firmware-recognized ARC disks list, in order to match one of these with
the current NT disk being analysed (see e.g. also in IopCreateArcNamesDisk()),
we avoid a possible IopVerifyDiskSignature() call and directly build a
corresponding ARC name NT symbolic link for it.
'SingleDisk' will actually be TRUE, whether the DiskSignatureListHead
list is empty or contains only one element: Indeed in only both these
cases, 'DiskSignatureListHead.Flink->Flink' will refer to the list head.
(If the list is empty but 'SingleDisk' is TRUE, this does not matter,
because the DiskSignatureListHead looking-up loop never starts.)
In addition to that, here are some stuff done in this commit whilst testing:
- ICIF_QUERY_SIZE_VARIABLE and friends were badly misused, they should be used only when an information class whose information length size is dyanmic and not fixed. By removing such flags from erroneous classes, this fixes the STATUS_INFO_LENGTH_MISMATCH testcases.
- Use CHAR instead of UCHAR for classes that do not need alignment probing, as every other class in the table do, for the sake of consistency.
- ProcessEnableAlignmentFaultFixup uses BOOLEAN as type size, not CHAR. This fixes a testcase failure on ROS.
- Check for information length size before proceeding further on querying the process' cookie information.
- ProcessHandleTracing wants an alignment of a ULONG, not CHAR.
- Move PROCESS_LDT_INFORMATION and PROCESS_LDT_SIZE outside of NTOS_MODE_USER macro case. This fixes a compilation issue when enabling the alignment probing. My mistake of having them inside NTOS_MODE_USER case, sorry.
- On functions like NtQueryInformationThread and the Process equivalent, complete probing is not done at the beginning of the function, complete probing including if the buffer is writable alongside with datatype misalignment check that is. Instead such check is done on each information class case basis. With that said, we have to explicitly tell DefaultQueryInfoBufferCheck if we want a complete probing or not initially.
KiSetTrapContext is an asm wrapper around RtlSetUnwindContext, which first stores an exception frame to assure that all non-volatile registers were put on the stack, then calls RtlSetUnwindContext to update their first saving positions on the stack and finally restore the exception frame to potentially load any updated registers, that haven't been saved elsewhere on the stack.
A few of these classes have fixed size lengths, the rest are arbitrary. Also the TokenAuditPolicy class hasn't a size length type specified in the table, which is wrong (and move the corresponding TOKEN_AUDIT_POLICY_INFORMATION structure into the private header).
PsImpersonateClient blindly impersonates the requested client even though it doesn't know if the actual token given to the call can be impersonated for the thread of the client which we are going to begin impersonation. In the case where impersonation is not possible, make a copy of the given token and assign the newly one for impersonation instead.
CORE-17539
Implement SepImpersonateAnonymousToken private helpers, which is necessary for the complete implementation of NtImpersonateAnonymousToken function and thus finally we're able to impersonate the anonymous logon token.
As of now the Object Manager private service, ObpCloseHandleTableEntry, looks for OBJ_PROTECT_CLOSE attribute if a handle should not be closed. However, in ObDuplicateObject if an attribute of OBJ_PROTECT_CLOSE is found as it's been filled to the caller (see L2466) this attribute is removed from the attributes list of the new handle and ObpAccessProtectCloseBit access is granted to the newly duplicated object handle.
With that being said ObpCloseHandleTableEntry indiscriminately closes the object handle albeit it shouldn't do so. As a matter of fact in Windows Server 2003 SP2 this service indeed checks for ObpAccessProtectCloseBit flag bit and if the condition is met then it returns STATUS_HANDLE_NOT_CLOSABLE as it should. Therefore we should do the same.
Now NtClose can properly warn the calling thread the object handle can't be closed which fixes a testcase failure within NtDuplicateObject NTDLL APITEST where this function gives handle close protection bit as requested by the caller.
* Guard the token in a lock whilst querying stuff
* Remove the piece of code that checks if the information class provided is above the maximum information class threshold. That code literally duplicates the inner functionality of the default case in the switch block, where the code falls in that case if an invalid information class is provided anyway.
* Remove the redundant information classes. Internally, this function in Windows has 12 switch case blocks (11 token info classes + the default case) and the other classes are supported in NtQueryInformationToken only so it doesn't make any logical sense to keep them in the codebase.
* Annotate the argument parameters with SAL and add documentation header