As it currently stands the Object Manager doesn't charge any quotas when objects are created, nor it returns quotas when objects are de-allocated and freed from the objects namespace database. This alone can bring inconsistencies in the kernel as we simply don't know what is the amount charged in an object and thus we aren't keeping track of quotas flow.
Now with both PsReturnSharedPoolQuota and PsChargeSharedPoolQuota implemented, the Object Manager can now track the said flow of quotas every time an object is created or de-allocated, thus enforcing consistency with the use of quota resources.
Ensure that when we're cleaning up the EPROCESS object, that we are dereferencing the quota block the process in question was using. The routine will automatically request a quota block cleanup if the process that dereferenced the quota block was the last.
-- Rewrite PspChargeProcessQuotaSpecifiedPool and PspReturnProcessQuotaSpecifiedPool private kernel routines, with the goal to implement the algorithms necessary to manage the fields of quota blocks (Usage, Return, Limit and Peak).
-- Invoke the Mm if quota limit raising or returning has to be done
-- When destroying a quota block, make sure that we're giving back all the rest of non-returned quotas to Memory Mm
-- Crash the system with QUOTA_UNDERFLOW if someone is returning way too much quota than it was previously charged
-- When a process exits, ensure that it doesn't hold up any charged quotas in QuotaUsage field of the process object, that way we're enforcing proper kernel consistency
-- Implement PsChargeSharedPoolQuota and PsChargeProcessPageFileQuota functions, used exclusively by the Object Manager. These routines are used to charge or return amount of quotas of a newly created object.
-- On PspInheritQuota, when assigning to process the default quota block if no parent process is given, we must increment the reference counts as we're using it
-- Handle the ProcessCount reference field, as it wasn't used
-- Annotate the functions with SAL
-- Document the code
=== REMARKS ===
Windows LogOn (Winlogon) is responsible for setting up a different quota block for all the processes within an interactive session, which is what we don't do. What we're currently doing instead is we're using the default block, PspDefaultQuotaBlock, for all the processes
across the system. The default block contains the default limits of -1 (which would imply no limits). By definition, the kernel won't ever return STATUS_QUOTA_EXCEEDED as we literally don't set up a definite limit for regular processes. This situation has to be tackled
in the future.
=== TODO FOR FUTURE ===
Most of the code in PspChargeProcessQuotaSpecifiedPool and PspReturnProcessQuotaSpecifiedPool private routines must be refactored in order to reduce the usage of the quota spin lock, possibly wrapping such code in a loop and whatnot.
CORE-17784
This implements both MmRaisePoolQuota and MmReturnPoolQuota functions, which serve exclusively for quota pool management. The process manager communicates with the memory manager in a call of need to charge or return pool quota limits.
OBP_SYSTEM_PROCESS_QUOTA is a macro that'll be used as a way to assign a dummy quota block to system processes, as we mustn't do anything to those in case the Object Manager is charging or returning pool quotas.
Declare PsReturnSharedPoolQuota and PsChargeSharedPoolQuota prototypes and annotate the functions. Furthermore, add two definitions related to quota pool limits threshold -- PSP_NON_PAGED_POOL_QUOTA_THRESHOLD and PSP_PAGED_POOL_QUOTA_THRESHOLD. For further details, see the commit description of "[NTOS:MM] Add the pool quota prototypes and some definitions".
Declare the MmRaisePoolQuota and MmReturnPoolQuota prototypes in the header and add some definitions related to pool quotas, namely MmTotalNonPagedPoolQuota and MmTotalPagedPoolQuota. These variables are used internally by the kernel as sort of "containers" (for the lack of a better term)
which uphold the amount of quotas that the Process Manager is requesting the Memory Manager to raise or return the pool quota limit. In addition to that, add some definitions needed for both of these functions.
The definitions, MI_CHARGE_PAGED_POOL_QUOTA and MI_CHARGE_NON_PAGED_POOL_QUOTA respectively, bear some interesting aspect. Seemingly the 0x80000 and 0x10000 values (that would denote to 524288 and 65536 specifically) are used as quota "limits" or in other words, thresholds that the kernel
uses. So for example if one would want to raise the quota limit charge, MmRaisePoolQuota will raise it so based on this formula -- NewMaxQuota = CurrentQuota + LIMIT_VALUE. LIMIT_VALUE can be either MI_CHARGE_PAGED_POOL_QUOTA or MI_CHARGE_NON_PAGED_POOL_QUOTA, depending a per quota pool basis.
What's more interesting is that these values are pervasive in Process Manager even. This is when quotas are to be returned back and trim the limit of the quota block if needed, the kernel would either take the amount provided by the caller of quotas to return or the threshold (paged or not paged)
if the amount to return exceeds the said threshold in question.
This fixes an issue where ReactOS would assert on QuotaUsage == 0 as the process was still taking up quotas during a quota block de-reference with root cause of ThisBufferLength member field being 0 which made process quota charging/returning flow unbalanced.
In addition to that, on FsRtlCancelNotify routine API all we must ensure that if PsChargePoolQuota or ExAllocatePoolWithTag function fails we have to handle the raised exceptions accordingly and return the charged quota back (if we actually charged quotas that is). With said, wrap that part of code with SEH.
=== DOCUMENTATION REMARKS ===
The cause of the assert is due to the fact ThisBufferLength was being handled wrongly ever since, until this commit. When FsRtl of the Executive has to filter reported changes (with logic algorithm implemented in FsRtlNotifyFilterReportChange function), the said function will charge the quota of a given process
with an amount that is represented as the buffer length whose size is expressed in bytes. This length buffer is preserved in a local variable called NumberOfBytes, which is initialized from BufferLength member field of notification structure or from the length from stack parameters pointed from an IRP.
As it currently stands, the code is implemented in such a way that FsRtlNotifyFilterReportChange will charge quotas to a process but it doesn't assign the buffer length to ThisBufferLength. On the first glimpse ThisBufferLength and BufferLength are very similar members that serve exact same purpose but in reality there's a subtle distinction between the two.
BufferLength is a member whose length size is given by FSDs (filesystem drivers) during a notification dispatching. Whenever FsRtl receives the notification structure packed with data from the filesystem, the length pointed by BufferLength gets passed to ThisBufferLength and from now on the kernel has to use this member for the whole time of its task to accomplish
whatever request it's been given by the filesystem. In other words, BufferLength is strictly used only to pass length size data to the kernel by initializing ThisBufferLength based on that length and unequivocally the kernel uses this member field. What we're doing is that ThisBufferLength never receives the length from BufferLength therefore whenever FsRtl component
has to return quotas back it'll return an amount of 0 (which means no amount to return) and that's a bug in the kernel.
Also generate processor identifier properly based on this value
on the Configuration Manager machine-dependent initialization.
Update processor driver INF file accordingly.
CORE-17970 CORE-14922
We have a special file, tag.h, which serves as a place to store whatever kernel pool allocation tag yet we still have some tags sparse over the kernel code... So just re-group them in one unique place.
SIDs are variadic by nature which means their lengths can vary in a given amount of time and certain factors that allow for this happen. This also especially can lead to issues when capturing SIDs and attributes because SeCaptureSidAndAttributesArray might end up overwriting the buffer during the time it's been called.
Therefore when we're copying the SIDs, validate their lengths. In addition to that, update the documentation header accordingly and add some debug prints in code.
NormalContext and NormalRoutine are just for good measure, but
SystemArgument2 is actually used by the function.
And yes, this appears to be a bug in Win 2003.
This implements the support of token filtering within the kernel, where the kernel can create restricted tokens of regular ones on demand by the caller. The implementation can be accessed thorough a NT syscall, NtFilterToken, and a kernel mode routine, SeFilterToken.
The continue statements do not server any useful purpose in these loops so they're basically pointless. These have been introduced by mistake so my bad.
A scenario where it happens that an access token belongs to an administrators group but it's disabled (that is, SeAliasAdminsSid has no attributes or it doesn't have SE_GROUP_ENABLED turn ON), the function removes this group from the token but still has TOKEN_HAS_ADMIN_GROUP flag which can lead to erratic behavior across the kernel and security modules -- implying that the token still belongs to administrators group.
This is an oversight from my part.
Only resources of HAL were checked against conflicts, not those of PnP Manager
Let IoReportResourceForDetection() make a silent conflict check.
Otherwise IopCheckResourceDescriptor() will always return 'no conflict'.
CORE-17789
Previous code did not detect equal resource ranges as conflicting.
Thanks Hervé Poussineau for pointing this out!
Meanwhile, simplify the code to make it more readable.
In SeCaptureLuidAndAttributesArray we must ensure that we don't go onto a potential integer overflow scenario by checking against the maximum limit threshold the kernel states. In addition, write an explicit name macro for the value.
Certainly due to copy-pasta error from the original code.
A consequence of this oversight, was that the IoGetDeviceObjectPointer()
calls on these device names, in fltmgr!DriverEntry() couldn't work.
(See drivers/filters/fltmgr/Interface.c, line 1880 and below.)
- NtQuerySymbolicLinkObject(): Use an intermediate variable for the object header.
- Simplify code in ObpLookupEntryDirectory() by calling ObpReleaseLookupContextObject() instead.
- Use TAG_OBJECT_TYPE instead of hardcoded tag values.
- Disentangle the usage of ObpAcquireDirectoryLockExclusive() when it's
used only for accessing a directory structure, or as part of a lookup
operation.
The Obp*DirectoryLock*() -- both shared and exclusive -- functions
are only for locking an OB directory, for reading or writing its
structure members.
When performing lookup operations (insertions/deletions of entries
within a directory), use a ObpAcquireLookupContextLock() function that
exclusively locks the directory and saves extra lock state, that can
be used by ObpReleaseLookupContextObject() for cleanup.
- Add documentation for these functions.
The function might assign the flag yet it could possibly fail on creating a DACL and insert an "access allowed" right to the access entry within the DACL. In this case, make sure we actually succeeded on all the tasks and THEN assign the flag that the DACL is truly present.
Also, make sure that the Current buffer size variable gets its new size so that we avoid overidding the memory of the DACL if the security descriptor wants both a DACL and SACL and so that happens that the DACL memory gets overwritten by the SACL.
Implement the portion chunk of code that is responsible for setting the system access control list (SACL) to the World security descriptor, based from SeWorldSid (World security identifier).
Addendum to 608032bd and 835c3023.
The IRQL is actually raised by KeFreezeExecution() and lowered by
KeThawExecution(), always to HIGH_IRQL on MP systems, or if necessary
on UP. These functions are called respectively by KdEnterDebugger()
and KdExitDebugger().
When performing access security check, use the security descriptor that we've captured it to determine based on that descriptor if the client can be granted access or not.
As we now have the SEF_* flags declared within the SDK we can simply check for such flags directly wihout having to check for the hard-coded flag values.
This implements the EffectiveOnly option of SepDuplicateToken routine (used by NtDuplicateToken syscall and other functions alike) which makes the access token effective by removing the disabled parts like privileges and groups.
Fix a wrong returned datatype of the function, as SepSinglePrivilegeCheck calls the internal private SepPrivilegeCheck function which returns a BOOLEAN value.
When processing:
Make sure that the process is not terminating.
Make sure that the process WorkingSet is still valid
Protect accessing & writing to PTEs by acquiring the working set lock
CORE-17595 CORE-17642
When creating or duplicating an access token object, make sure that the logon session is getting referenced by the token must be inserted onto the logon reference member (a.k.a LogonSession) for proper logon session referencing tracking.
Also when a token object is about to be destroyed or that we are taking away a reference session from it, we must ensure that the referenced logon session data gets removed from the token in question.
CORE-17700
When duplicating an access token, the authentication ID is already copied from the existing token to the new one anyway so there's no point on having the commented call still left in the code.
Note to SELF and EVERYONE: the commit implements the initial logon session termination notification implementation, the SeMarkLogonSessionForTerminationNotification function, but as it currently stands there are several other tasks to be addressed in the future in order for the logon termination notification to be fully completed. The tasks as of which are.
1. Our SepRmDereferenceLogonSession is not fully implemented, as it doesn't inform the LSA and filesystems of logon deletion notification
2. Implement two worker routines that are actually in charge of such tasks of informing LSA and FSDs
3. Perform logon deletion
4. Do further investigations and check whatever that is left to address, if any
* Quality of service kernel stuff bears nothing with security descriptors in anyway, so just have a file specifically for it
* Annotate the function arguments parameters with SAL
* Document the functions
Use REG_OPTION_NON_VOLATILE instead of REG_OPTION_VOLATILE in all ZwCreateKey calls of OpenRegistryHandlesFromSymbolicLink, since the keys created/opened by this function, should be non-volatile (in other words, be saved after reboot).
Also Device Parameters subkey that is created in IoOpenDeviceInterfaceRegistryKey (which uses that routine as well), is non-volatile too, so the parent keys whose contain it, cannot be volatile.
It will fix an error with status 0xc0000181 (STATUS_CHILD_MUST_BE_VOLATILE) occuring during loading kernel mode audio drivers from Windows XP/2003, especially checked (debug) versions, with my IoGetDeviceInterfaceAlias implementation. Also it may fix other error cases.
CORE-17361
We allocate memory pool for a new security descriptor with specific info filled by the caller but we don't set the control flag bits for the newly allocated descriptor, which is wrong. Originally spotted by Vadim Galyant.
CORE-17650
KD64: Raise to HIGH_LEVEL when entering trap
KDBG: lower to DISPATCH_LEVEL when applying IRQL hack & use a worker thread to load symbols
KD&KDBG: Actually unload symbols when required
Raise IRQL before entering debugger, so that KeAcquireSpinLockAtDpcLevel works as expected.
- HIGH_LEVEL since we don't know where we are coming from.
Do not try to read debug symbol from files in KDBG.
- There is no reason that this works if Mm didn't map it in the first place.
GCC has some functions, variables & type attributes which can be used as aliases
for some of the SAL annotations. Although it's not as rich & precise, it's still useful
since we actually enable -Werror on GCC builds whereas we don't use such an option
on MSVC builds.
For now, _Must_inspect_result_ is aliased to warn_result_unused attribute.
ProcessUserModeIOPL, ProcessWow64Information and ThreadZeroTlsCell classes fail on AMD64 build because of wrong IQS values assigned to them. Also explicitly tell the compiler that ProcessUserModeIOPL is strictly for x86 as user mode I/O privilege level is 32-bit stuff.
In addition to that, implement IQS_NO_TYPE_LENGTH macro which it'll be used for classes such as ProcessUserModeIOPL where type length is not required and that it should be 0. With that said, we indirectly fix a size length mismatch issue with ProcessUserModeIOPL on 32-bit of ReactOS as well.