CORE-17470
+ KdpDebugLogInit: Add resources cleanup in failure code paths.
Fix, in an NT-compatible manner, how (and when) the KD/KDBG BootPhase >=2
initialization steps are performed.
These are necessary for any functionality KDBG needs, that would depend
on the NT I/O Manager and the storage and filesystem stacks to be running.
This includes, creating the debug log file, and for KDBG, loading its
KDBinit initialization file.
As a result, file debug logging is fixed.
The old ReactOS-specific (NT-incompatible) callback we did in the middle
of IoInitSystem() is removed, in favor of a runtime mechanism that should
work on Windows as well.
The idea for this new mechanism is loosely inspired by the TDL4 rootkit,
see http://blog.w4kfu.com/public/tdl4_article/draft_tdl4article.html
but contrary to it, a specific hook is used instead, as well as the
technique of driver reinitialization:
https://web.archive.org/web/20211021050515/https://driverentry.com.br/en/blog/?p=261
Its rationale is as follows:
We want to be able to perform I/O-related initialization (starting a
logger thread for file log debugging, loading KDBinit file for KDBG,
etc.). A good place for this would be as early as possible, once the
I/O Manager has started the storage and the boot filesystem drivers.
Here is an overview of the initialization steps of the NT Kernel and
Executive:
----
KiSystemStartup(KeLoaderBlock)
if (Cpu == 0) KdInitSystem(0, KeLoaderBlock);
KiSwitchToBootStack() -> KiSystemStartupBootStack()
-> KiInitializeKernel() -> ExpInitializeExecutive(Cpu, KeLoaderBlock)
(NOTE: Any unexpected debugger break will call KdInitSystem(0, NULL); )
KdInitSystem(0, LoaderBlock) -> KdDebuggerInitialize0(LoaderBlock);
ExpInitializeExecutive(Cpu == 0): ExpInitializationPhase = 0;
HalInitSystem(0, KeLoaderBlock); <-- Sets HalInitPnpDriver callback.
...
PsInitSystem(LoaderBlock)
PsCreateSystemThread(Phase1Initialization)
Phase1Initialization(Discard): ExpInitializationPhase = 1;
HalInitSystem(1, KeLoaderBlock);
...
Early initialization of Ob, Ex, Ke.
KdInitSystem(1, KeLoaderBlock);
...
KdDebuggerInitialize1(LoaderBlock);
...
IoInitSystem(LoaderBlock);
...
----
As we can see, KdDebuggerInitialize1() is the last KD initialization
routine the kernel calls, and is called *before* the I/O Manager starts.
Thus, direct Nt/ZwCreateFile ... calls done there would fail. Also,
we want to do the I/O initialization as soon as possible. There does
not seem to be any exported way to be notified about the I/O manager
initialization steps... that is, unless we somehow become a driver and
insert ourselves in the flow!
Since we are not a regular driver, we need to invoke IoCreateDriver()
to create one. However, remember that we are currently running *before*
IoInitSystem(), the I/O subsystem is not initialized yet. Due to this,
calling IoCreateDriver(), much like any other IO functions, would lead
to a crash, because it calls
ObCreateObject(..., IoDriverObjectType, ...), and IoDriverObjectType
is non-initialized yet (it's NULL).
The chosen solution is to hook a "known" exported callback: namely, the
HalInitPnpDriver() callback (it initializes the "HAL Root Bus Driver").
It is set very early on by the HAL via the HalInitSystem(0, ...) call,
and is called early on by IoInitSystem() before any driver is loaded,
but after the I/O Manager has been minimally set up so that new drivers
can be created.
When the hook: KdpInitDriver() is called, we create our driver with
IoCreateDriver(), specifying its entrypoint KdpDriverEntry(), then
restore and call the original HalInitPnpDriver() callback.
Another possible unexplored alternative, could be to insert ourselves
in the KeLoaderBlock->LoadOrderListHead boot modules list, or in the
KeLoaderBlock->BootDriverListHead boot-driver list. (Note that while
we may be able to do this, because boot-drivers are resident in memory,
much like we are, we cannot insert ourselves in the system-driver list
however, since those drivers are expected to come from PE image files.)
Once the KdpDriverEntry() driver entrypoint is called, we register
KdpDriverReinit() for re-initialization with the I/O Manager, in order
to provide more initialization points. KdpDriverReinit() calls the KD
providers at BootPhase >= 2, and schedules further reinitializations
(at most 3 more) if any of the providers request so.
- Remove KdbInit() macro and directly use KdbpCliInit() (since the place
where it was used was already within an #ifdef KDBG block).
- Declare KdpKdbgInit() only when KDBG is defined, move its definition
into kdio.c and remove the legacy wrappers/kdbg.c file.
And in KdbInitialize(), set KdpInitRoutine directly to the former,
instead of using the KdpKdbgInit indirection.
- Don't reset KdComPortInUse in KdpDebugLogInit().
- Minor refactorings: KdpSerialDebugPrint -> KdpSerialPrint and make it
static; argument name "Message" -> "String", "StringLength" -> "Length".
NtQueryInformationToken is by far the only system call in NT where ReturnLength simply cannot be optional. On Windows this parameter is always probed and an argument to NULL directly leads to an access violation exception.
This is due to the fact of how tokens work, as its information contents (token user, owner, primary group, et al) are dynamic and can vary throughout over time in memory.
What happens on current ReactOS master however is that ReturnLength is only probed if the parameter is not NULL. On a NULL case scenario the probing checks succeed and NtQueryInformationToken fails later. For this, just get rid of CompleteProbing
parameter and opt in for a bit mask flag based approach, with ICIF_FORCE_RETURN_LENGTH_PROBE being set on DefaultQueryInfoBufferCheck which NtQueryInformationToken calls it to do sanity checks.
In addition to that...
- Document the ICIF probe helpers
- Annotate the ICIF prope helpers with SAL
- With the riddance of CompleteProbing and adoption of flags based approach, add ICIF_PROBE_READ_WRITE and ICIF_PROBE_READ flags alongside with ICIF_FORCE_RETURN_LENGTH_PROBE
- Add a check for correct PDO before doing anything
- Process the request only for started devices
- Send the request synchronously during the start sequence
This makes Windows' i8042prt.sys work on ReactOS.
Addendum to cf0bc1c132
Implement the correct start-stop sequence for resource rebalancing
without the actual rebalancing. Also move IoInvalidateDeviceState
processing into the enumeration thread as it should be.
CORE-17519
Always create only non-volatile (sub)keys when registering a new device interface, so then they are saved after reboot.
On Windows, nearly all device interface keys are non-volatile, except the "Control" subkey, which is managed by IoSetDeviceInterfaceState instead.
In particular, it fixes MS sysaudio loading failure with MS audio drivers replacement (ks, portcls, swenum, sysaudio, wdmaud). My IoGetDeviceInterfaceAlias implementation is also required to be applied. MS sysaudio implementation(s) except that those keys are non-volatile (but we're creating them volatile instead), and trying to create a subkey(s) there (via other IoDeviceInterface* routines), to read/write some needed data. But then they fail to do that with STATUS_CHILD_MUST_BE_VOLATILE (0xc0000181), obviously because our keys are volatile.
The volatile keys can never have non-volatile subkeys.
CORE-17361
We have a special file, tag.h, which serves as a place to store whatever kernel pool allocation tag yet we still have some tags sparse over the kernel code... So just re-group them in one unique place.
NormalContext and NormalRoutine are just for good measure, but
SystemArgument2 is actually used by the function.
And yes, this appears to be a bug in Win 2003.
Only resources of HAL were checked against conflicts, not those of PnP Manager
Let IoReportResourceForDetection() make a silent conflict check.
Otherwise IopCheckResourceDescriptor() will always return 'no conflict'.
CORE-17789
Previous code did not detect equal resource ranges as conflicting.
Thanks Hervé Poussineau for pointing this out!
Meanwhile, simplify the code to make it more readable.
Certainly due to copy-pasta error from the original code.
A consequence of this oversight, was that the IoGetDeviceObjectPointer()
calls on these device names, in fltmgr!DriverEntry() couldn't work.
(See drivers/filters/fltmgr/Interface.c, line 1880 and below.)
Use REG_OPTION_NON_VOLATILE instead of REG_OPTION_VOLATILE in all ZwCreateKey calls of OpenRegistryHandlesFromSymbolicLink, since the keys created/opened by this function, should be non-volatile (in other words, be saved after reboot).
Also Device Parameters subkey that is created in IoOpenDeviceInterfaceRegistryKey (which uses that routine as well), is non-volatile too, so the parent keys whose contain it, cannot be volatile.
It will fix an error with status 0xc0000181 (STATUS_CHILD_MUST_BE_VOLATILE) occuring during loading kernel mode audio drivers from Windows XP/2003, especially checked (debug) versions, with my IoGetDeviceInterfaceAlias implementation. Also it may fix other error cases.
CORE-17361