Looks like public symbols contain this structure starting with Win7,
so we can deduce what it looked like in Win2003.
Note that our previous definition was missing a second ULONG at the
end, which can be seen in the SeQueryInfoToken kmtest -- if you
allocated only sizeof(AUX_ACCESS_DATA), the test would crash with
a 4 byte buffer overflow.
On ObpChargeQuotaForObject function, the kernel will either charge the default object type charges or the specified information charges obtained from ObCreateObject API call. What happens is that if a paged pool charge is specified on ObCreateObject call the kernel will charge that
but when an object is about to be de-allocated, the amount of quota to return back to the system is the amounting of the paged pool charge specified previously by the ObCreateObject call plus the amounting of the security descriptor charge (see oblife.c / line 98).
This will result in a fatal crash with a bugcheck of QUOTA_UNDERFLOW because we are returning quota with bits of it that was never charged and that's SecurityDescriptorCharge. A QUOTA_UNDERFLOW bugcheck occurs in two following scenarios:
-- When installing Virtualbox Guest Additions and prompting the installer to reboot the system for you
-- When logging off and on back to the system and then you restart the system normally
This bug has been discovered whilst working on #4555 PR.
As it currently stands the Object Manager doesn't charge any quotas when objects are created, nor it returns quotas when objects are de-allocated and freed from the objects namespace database. This alone can bring inconsistencies in the kernel as we simply don't know what is the amount charged in an object and thus we aren't keeping track of quotas flow.
Now with both PsReturnSharedPoolQuota and PsChargeSharedPoolQuota implemented, the Object Manager can now track the said flow of quotas every time an object is created or de-allocated, thus enforcing consistency with the use of quota resources.
We have a special file, tag.h, which serves as a place to store whatever kernel pool allocation tag yet we still have some tags sparse over the kernel code... So just re-group them in one unique place.
As of now the Object Manager private service, ObpCloseHandleTableEntry, looks for OBJ_PROTECT_CLOSE attribute if a handle should not be closed. However, in ObDuplicateObject if an attribute of OBJ_PROTECT_CLOSE is found as it's been filled to the caller (see L2466) this attribute is removed from the attributes list of the new handle and ObpAccessProtectCloseBit access is granted to the newly duplicated object handle.
With that being said ObpCloseHandleTableEntry indiscriminately closes the object handle albeit it shouldn't do so. As a matter of fact in Windows Server 2003 SP2 this service indeed checks for ObpAccessProtectCloseBit flag bit and if the condition is met then it returns STATUS_HANDLE_NOT_CLOSABLE as it should. Therefore we should do the same.
Now NtClose can properly warn the calling thread the object handle can't be closed which fixes a testcase failure within NtDuplicateObject NTDLL APITEST where this function gives handle close protection bit as requested by the caller.
- Rename ObDirectoryType to ObpDirectoryObjectType and remove it from NDK (this is not exported!)
- Rename ObSymbolicLinkType to ObpSymbolicLinkObjectType
- Remove duplicated ObpTypeObjectType from ob.h