mirror of
https://github.com/reactos/reactos.git
synced 2024-12-27 09:34:43 +00:00
- Implement alldvrm and aulldvrm and export them from ntoskrnl. This fixes bug 467.
svn path=/trunk/; revision=18110
This commit is contained in:
parent
06190df7c1
commit
e4dc1dc22d
2 changed files with 397 additions and 1 deletions
|
@ -5,7 +5,34 @@
|
|||
* FILE: lib/rtl/i386/math.S
|
||||
* PROGRAMER: Alex Ionescu (alex@relsoft.net)
|
||||
* Eric Kohl (ekohl@rz-online.de)
|
||||
* REVISION HISTORY: 27/07/2005 Created
|
||||
*
|
||||
* Copyright (C) 2002 Michael Ringgaard.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the project nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/* GLOBALS ****************************************************************/
|
||||
|
@ -19,6 +46,8 @@
|
|||
.globl __aullrem
|
||||
.globl __allmul
|
||||
.globl __alldiv
|
||||
.globl __aulldvrm
|
||||
.globl __alldvrm
|
||||
|
||||
/* FUNCTIONS ***************************************************************/
|
||||
|
||||
|
@ -235,3 +264,368 @@ __ftol:
|
|||
/* Remove stack frame and return*/
|
||||
leave
|
||||
ret
|
||||
|
||||
__alldvrm:
|
||||
push edi
|
||||
push esi
|
||||
push ebp
|
||||
|
||||
// Set up the local stack and save the index registers. When this is done
|
||||
// the stack frame will look as follows (assuming that the expression a/b will
|
||||
// generate a call to alldvrm(a, b)):
|
||||
//
|
||||
// -----------------
|
||||
// | |
|
||||
// |---------------|
|
||||
// | |
|
||||
// |--divisor (b)--|
|
||||
// | |
|
||||
// |---------------|
|
||||
// | |
|
||||
// |--dividend (a)-|
|
||||
// | |
|
||||
// |---------------|
|
||||
// | return addr** |
|
||||
// |---------------|
|
||||
// | EDI |
|
||||
// |---------------|
|
||||
// | ESI |
|
||||
// |---------------|
|
||||
// ESP---->| EBP |
|
||||
// -----------------
|
||||
//
|
||||
|
||||
#define DVNDLO [esp + 16] // stack address of dividend (a)
|
||||
#define DVNDHI [esp + 20] // stack address of dividend (a)
|
||||
#define DVSRLO [esp + 24] // stack address of divisor (b)
|
||||
#define DVSRHI [esp + 28] // stack address of divisor (b)
|
||||
|
||||
// Determine sign of the quotient (edi = 0 if result is positive, non-zero
|
||||
// otherwise) and make operands positive.
|
||||
// Sign of the remainder is kept in ebp.
|
||||
|
||||
xor edi,edi // result sign assumed positive
|
||||
xor ebp,ebp // result sign assumed positive
|
||||
|
||||
mov eax,DVNDHI // hi word of a
|
||||
or eax,eax // test to see if signed
|
||||
jge short L1 // skip rest if a is already positive
|
||||
inc edi // complement result sign flag
|
||||
inc ebp // complement result sign flag
|
||||
mov edx,DVNDLO // lo word of a
|
||||
neg eax // make a positive
|
||||
neg edx
|
||||
sbb eax,0
|
||||
mov DVNDHI,eax // save positive value
|
||||
mov DVNDLO,edx
|
||||
L1:
|
||||
mov eax,DVSRHI // hi word of b
|
||||
or eax,eax // test to see if signed
|
||||
jge short L2 // skip rest if b is already positive
|
||||
inc edi // complement the result sign flag
|
||||
mov edx,DVSRLO // lo word of a
|
||||
neg eax // make b positive
|
||||
neg edx
|
||||
sbb eax,0
|
||||
mov DVSRHI,eax // save positive value
|
||||
mov DVSRLO,edx
|
||||
L2:
|
||||
|
||||
//
|
||||
// Now do the divide. First look to see if the divisor is less than 4194304K.
|
||||
// If so, then we can use a simple algorithm with word divides, otherwise
|
||||
// things get a little more complex.
|
||||
//
|
||||
// NOTE - eax currently contains the high order word of DVSR
|
||||
//
|
||||
|
||||
or eax,eax // check to see if divisor < 4194304K
|
||||
jnz short L3 // nope, gotta do this the hard way
|
||||
mov ecx,DVSRLO // load divisor
|
||||
mov eax,DVNDHI // load high word of dividend
|
||||
xor edx,edx
|
||||
div ecx // eax <- high order bits of quotient
|
||||
mov ebx,eax // save high bits of quotient
|
||||
mov eax,DVNDLO // edx:eax <- remainder:lo word of dividend
|
||||
div ecx // eax <- low order bits of quotient
|
||||
mov esi,eax // ebx:esi <- quotient
|
||||
//
|
||||
// Now we need to do a multiply so that we can compute the remainder.
|
||||
//
|
||||
mov eax,ebx // set up high word of quotient
|
||||
mul dword ptr DVSRLO // HIWORD(QUOT) * DVSR
|
||||
mov ecx,eax // save the result in ecx
|
||||
mov eax,esi // set up low word of quotient
|
||||
mul dword ptr DVSRLO // LOWORD(QUOT) * DVSR
|
||||
add edx,ecx // EDX:EAX = QUOT * DVSR
|
||||
jmp short L4 // complete remainder calculation
|
||||
|
||||
//
|
||||
// Here we do it the hard way. Remember, eax contains the high word of DVSR
|
||||
//
|
||||
|
||||
L3:
|
||||
mov ebx,eax // ebx:ecx <- divisor
|
||||
mov ecx,DVSRLO
|
||||
mov edx,DVNDHI // edx:eax <- dividend
|
||||
mov eax,DVNDLO
|
||||
L5:
|
||||
shr ebx,1 // shift divisor right one bit
|
||||
rcr ecx,1
|
||||
shr edx,1 // shift dividend right one bit
|
||||
rcr eax,1
|
||||
or ebx,ebx
|
||||
jnz short L5 // loop until divisor < 4194304K
|
||||
div ecx // now divide, ignore remainder
|
||||
mov esi,eax // save quotient
|
||||
|
||||
//
|
||||
// We may be off by one, so to check, we will multiply the quotient
|
||||
// by the divisor and check the result against the orignal dividend
|
||||
// Note that we must also check for overflow, which can occur if the
|
||||
// dividend is close to 2**64 and the quotient is off by 1.
|
||||
//
|
||||
|
||||
mul dword ptr DVSRHI // QUOT * DVSRHI
|
||||
mov ecx,eax
|
||||
mov eax,DVSRLO
|
||||
mul esi // QUOT * DVSRLO
|
||||
add edx,ecx // EDX:EAX = QUOT * DVSR
|
||||
jc short L6 // carry means Quotient is off by 1
|
||||
|
||||
//
|
||||
// do long compare here between original dividend and the result of the
|
||||
// multiply in edx:eax. If original is larger or equal, we are ok, otherwise
|
||||
// subtract one (1) from the quotient.
|
||||
//
|
||||
|
||||
cmp edx,DVNDHI // compare hi words of result and original
|
||||
ja short L6 // if result > original, do subtract
|
||||
jb short L7 // if result < original, we are ok
|
||||
cmp eax,DVNDLO // hi words are equal, compare lo words
|
||||
jbe short L7 // if less or equal we are ok, else subtract
|
||||
L6:
|
||||
dec esi // subtract 1 from quotient
|
||||
sub eax,DVSRLO // subtract divisor from result
|
||||
sbb edx,DVSRHI
|
||||
L7:
|
||||
xor ebx,ebx // ebx:esi <- quotient
|
||||
|
||||
L4:
|
||||
//
|
||||
// Calculate remainder by subtracting the result from the original dividend.
|
||||
// Since the result is already in a register, we will do the subtract in the
|
||||
// opposite direction and negate the result if necessary.
|
||||
//
|
||||
|
||||
sub eax,DVNDLO // subtract dividend from result
|
||||
sbb edx,DVNDHI
|
||||
|
||||
//
|
||||
// Now check the result sign flag to see if the result is supposed to be positive
|
||||
// or negative. It is currently negated (because we subtracted in the 'wrong'
|
||||
// direction), so if the sign flag is set we are done, otherwise we must negate
|
||||
// the result to make it positive again.
|
||||
//
|
||||
|
||||
dec ebp // check result sign flag
|
||||
jns short L9 // result is ok, set up the quotient
|
||||
neg edx // otherwise, negate the result
|
||||
neg eax
|
||||
sbb edx,0
|
||||
|
||||
//
|
||||
// Now we need to get the quotient into edx:eax and the remainder into ebx:ecx.
|
||||
//
|
||||
L9:
|
||||
mov ecx,edx
|
||||
mov edx,ebx
|
||||
mov ebx,ecx
|
||||
mov ecx,eax
|
||||
mov eax,esi
|
||||
|
||||
//
|
||||
// Just the cleanup left to do. edx:eax contains the quotient. Set the sign
|
||||
// according to the save value, cleanup the stack, and return.
|
||||
//
|
||||
|
||||
dec edi // check to see if result is negative
|
||||
jnz short L8 // if EDI == 0, result should be negative
|
||||
neg edx // otherwise, negate the result
|
||||
neg eax
|
||||
sbb edx,0
|
||||
|
||||
//
|
||||
// Restore the saved registers and return.
|
||||
//
|
||||
|
||||
L8:
|
||||
pop ebp
|
||||
pop esi
|
||||
pop edi
|
||||
|
||||
ret 16
|
||||
|
||||
__aulldvrm:
|
||||
|
||||
// ulldvrm - unsigned long divide and remainder
|
||||
//
|
||||
// Purpose:
|
||||
// Does a unsigned long divide and remainder of the arguments. Arguments
|
||||
// are not changed.
|
||||
//
|
||||
// Entry:
|
||||
// Arguments are passed on the stack:
|
||||
// 1st pushed: divisor (QWORD)
|
||||
// 2nd pushed: dividend (QWORD)
|
||||
//
|
||||
// Exit:
|
||||
// EDX:EAX contains the quotient (dividend/divisor)
|
||||
// EBX:ECX contains the remainder (divided % divisor)
|
||||
// NOTE: this routine removes the parameters from the stack.
|
||||
//
|
||||
// Uses:
|
||||
// ECX
|
||||
//
|
||||
push esi
|
||||
|
||||
// Set up the local stack and save the index registers. When this is done
|
||||
// the stack frame will look as follows (assuming that the expression a/b will
|
||||
// generate a call to aulldvrm(a, b)):
|
||||
//
|
||||
// -----------------
|
||||
// | |
|
||||
// |---------------|
|
||||
// | |
|
||||
// |--divisor (b)--|
|
||||
// | |
|
||||
// |---------------|
|
||||
// | |
|
||||
// |--dividend (a)-|
|
||||
// | |
|
||||
// |---------------|
|
||||
// | return addr** |
|
||||
// |---------------|
|
||||
// ESP---->| ESI |
|
||||
// -----------------
|
||||
//
|
||||
|
||||
#undef DVNDLO
|
||||
#undef DVNDHI
|
||||
#undef DVSRLO
|
||||
#undef DVSRHI
|
||||
#define DVNDLO [esp + 8] // stack address of dividend (a)
|
||||
#define DVNDHI [esp + 8] // stack address of dividend (a)
|
||||
#define DVSRLO [esp + 16] // stack address of divisor (b)
|
||||
#define DVSRHI [esp + 20] // stack address of divisor (b)
|
||||
|
||||
//
|
||||
// Now do the divide. First look to see if the divisor is less than 4194304K.
|
||||
// If so, then we can use a simple algorithm with word divides, otherwise
|
||||
// things get a little more complex.
|
||||
//
|
||||
|
||||
mov eax,DVSRHI // check to see if divisor < 4194304K
|
||||
or eax,eax
|
||||
jnz short .L1 // nope, gotta do this the hard way
|
||||
mov ecx,DVSRLO // load divisor
|
||||
mov eax,DVNDHI // load high word of dividend
|
||||
xor edx,edx
|
||||
div ecx // get high order bits of quotient
|
||||
mov ebx,eax // save high bits of quotient
|
||||
mov eax,DVNDLO // edx:eax <- remainder:lo word of dividend
|
||||
div ecx // get low order bits of quotient
|
||||
mov esi,eax // ebx:esi <- quotient
|
||||
|
||||
//
|
||||
// Now we need to do a multiply so that we can compute the remainder.
|
||||
//
|
||||
mov eax,ebx // set up high word of quotient
|
||||
mul dword ptr DVSRLO // HIWORD(QUOT) * DVSR
|
||||
mov ecx,eax // save the result in ecx
|
||||
mov eax,esi // set up low word of quotient
|
||||
mul dword ptr DVSRLO // LOWORD(QUOT) * DVSR
|
||||
add edx,ecx // EDX:EAX = QUOT * DVSR
|
||||
jmp short .L2 // complete remainder calculation
|
||||
|
||||
//
|
||||
// Here we do it the hard way. Remember, eax contains DVSRHI
|
||||
//
|
||||
|
||||
.L1:
|
||||
mov ecx,eax // ecx:ebx <- divisor
|
||||
mov ebx,DVSRLO
|
||||
mov edx,DVNDHI // edx:eax <- dividend
|
||||
mov eax,DVNDLO
|
||||
.L3:
|
||||
shr ecx,1 // shift divisor right one bit// hi bit <- 0
|
||||
rcr ebx,1
|
||||
shr edx,1 // shift dividend right one bit// hi bit <- 0
|
||||
rcr eax,1
|
||||
or ecx,ecx
|
||||
jnz short .L3 // loop until divisor < 4194304K
|
||||
div ebx // now divide, ignore remainder
|
||||
mov esi,eax // save quotient
|
||||
|
||||
//
|
||||
// We may be off by one, so to check, we will multiply the quotient
|
||||
// by the divisor and check the result against the orignal dividend
|
||||
// Note that we must also check for overflow, which can occur if the
|
||||
// dividend is close to 2**64 and the quotient is off by 1.
|
||||
//
|
||||
|
||||
mul dword ptr DVSRHI // QUOT * DVSRHI
|
||||
mov ecx,eax
|
||||
mov eax,DVSRLO
|
||||
mul esi // QUOT * DVSRLO
|
||||
add edx,ecx // EDX:EAX = QUOT * DVSR
|
||||
jc short .L4 // carry means Quotient is off by 1
|
||||
|
||||
//
|
||||
// do long compare here between original dividend and the result of the
|
||||
// multiply in edx:eax. If original is larger or equal, we are ok, otherwise
|
||||
// subtract one (1) from the quotient.
|
||||
//
|
||||
|
||||
cmp edx,DVNDHI // compare hi words of result and original
|
||||
ja short .L4 // if result > original, do subtract
|
||||
jb short .L5 // if result < original, we are ok
|
||||
cmp eax,DVNDLO // hi words are equal, compare lo words
|
||||
jbe short .L5 // if less or equal we are ok, else subtract
|
||||
.L4:
|
||||
dec esi // subtract 1 from quotient
|
||||
sub eax,DVSRLO // subtract divisor from result
|
||||
sbb edx,DVSRHI
|
||||
.L5:
|
||||
xor ebx,ebx // ebx:esi <- quotient
|
||||
|
||||
.L2:
|
||||
//
|
||||
// Calculate remainder by subtracting the result from the original dividend.
|
||||
// Since the result is already in a register, we will do the subtract in the
|
||||
// opposite direction and negate the result.
|
||||
//
|
||||
|
||||
sub eax,DVNDLO // subtract dividend from result
|
||||
sbb edx,DVNDHI
|
||||
neg edx // otherwise, negate the result
|
||||
neg eax
|
||||
sbb edx,0
|
||||
|
||||
//
|
||||
// Now we need to get the quotient into edx:eax and the remainder into ebx:ecx.
|
||||
//
|
||||
mov ecx,edx
|
||||
mov edx,ebx
|
||||
mov ebx,ecx
|
||||
mov ecx,eax
|
||||
mov eax,esi
|
||||
//
|
||||
// Just the cleanup left to do. edx:eax contains the quotient.
|
||||
// Restore the saved registers and return.
|
||||
//
|
||||
|
||||
pop esi
|
||||
|
||||
ret 16
|
||||
|
||||
|
|
|
@ -1411,7 +1411,9 @@ _alloca_probe
|
|||
_allrem
|
||||
_allshl
|
||||
_allshr
|
||||
_alldvrm
|
||||
_aulldiv
|
||||
_aulldvrm
|
||||
_aullrem
|
||||
_aullshr
|
||||
_except_handler2
|
||||
|
|
Loading…
Reference in a new issue