From bfdb1965c9d89e4512059d90af29fa2716ea9ef7 Mon Sep 17 00:00:00 2001 From: Colin Finck Date: Sat, 29 Sep 2007 11:39:06 +0000 Subject: [PATCH] - Remove the unneeded "stdafx.cpp" file - Remove the files I imported from the boot/freeldr/freeldr/math directory for adding 64-bit division support and use the -lgcc linker flag instead like it's done in ntoskrnl svn path=/trunk/; revision=29297 --- .../storage/ide/uniata/ros_glue/i386.h | 3207 ---------------- .../storage/ide/uniata/ros_glue/libgcc2.c | 2071 ----------- .../storage/ide/uniata/ros_glue/libgcc2.h | 301 -- .../storage/ide/uniata/ros_glue/longlong.h | 1503 -------- .../storage/ide/uniata/ros_glue/powerpc.h | 3208 ----------------- reactos/drivers/storage/ide/uniata/stdafx.cpp | 1 - .../drivers/storage/ide/uniata/uniata.rbuild | 4 +- 7 files changed, 2 insertions(+), 10293 deletions(-) delete mode 100644 reactos/drivers/storage/ide/uniata/ros_glue/i386.h delete mode 100644 reactos/drivers/storage/ide/uniata/ros_glue/libgcc2.c delete mode 100644 reactos/drivers/storage/ide/uniata/ros_glue/libgcc2.h delete mode 100644 reactos/drivers/storage/ide/uniata/ros_glue/longlong.h delete mode 100644 reactos/drivers/storage/ide/uniata/ros_glue/powerpc.h delete mode 100644 reactos/drivers/storage/ide/uniata/stdafx.cpp diff --git a/reactos/drivers/storage/ide/uniata/ros_glue/i386.h b/reactos/drivers/storage/ide/uniata/ros_glue/i386.h deleted file mode 100644 index a207241aac8..00000000000 --- a/reactos/drivers/storage/ide/uniata/ros_glue/i386.h +++ /dev/null @@ -1,3207 +0,0 @@ -/* Definitions of target machine for GNU compiler for IA-32. - Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, - 2001, 2002 Free Software Foundation, Inc. - -This file is part of GNU CC. - -GNU CC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU CC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU CC; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ - -/* The purpose of this file is to define the characteristics of the i386, - independent of assembler syntax or operating system. - - Three other files build on this one to describe a specific assembler syntax: - bsd386.h, att386.h, and sun386.h. - - The actual tm.h file for a particular system should include - this file, and then the file for the appropriate assembler syntax. - - Many macros that specify assembler syntax are omitted entirely from - this file because they really belong in the files for particular - assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR, - ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many - that start with ASM_ or end in ASM_OP. */ - -/* Stubs for half-pic support if not OSF/1 reference platform. */ - -#ifndef HALF_PIC_P -#define HALF_PIC_P() 0 -#define HALF_PIC_NUMBER_PTRS 0 -#define HALF_PIC_NUMBER_REFS 0 -#define HALF_PIC_ENCODE(DECL) -#define HALF_PIC_DECLARE(NAME) -#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it") -#define HALF_PIC_ADDRESS_P(X) 0 -#define HALF_PIC_PTR(X) (X) -#define HALF_PIC_FINISH(STREAM) -#endif - -/* Define the specific costs for a given cpu */ - -struct processor_costs { - const int add; /* cost of an add instruction */ - const int lea; /* cost of a lea instruction */ - const int shift_var; /* variable shift costs */ - const int shift_const; /* constant shift costs */ - const int mult_init; /* cost of starting a multiply */ - const int mult_bit; /* cost of multiply per each bit set */ - const int divide; /* cost of a divide/mod */ - int movsx; /* The cost of movsx operation. */ - int movzx; /* The cost of movzx operation. */ - const int large_insn; /* insns larger than this cost more */ - const int move_ratio; /* The threshold of number of scalar - memory-to-memory move insns. */ - const int movzbl_load; /* cost of loading using movzbl */ - const int int_load[3]; /* cost of loading integer registers - in QImode, HImode and SImode relative - to reg-reg move (2). */ - const int int_store[3]; /* cost of storing integer register - in QImode, HImode and SImode */ - const int fp_move; /* cost of reg,reg fld/fst */ - const int fp_load[3]; /* cost of loading FP register - in SFmode, DFmode and XFmode */ - const int fp_store[3]; /* cost of storing FP register - in SFmode, DFmode and XFmode */ - const int mmx_move; /* cost of moving MMX register. */ - const int mmx_load[2]; /* cost of loading MMX register - in SImode and DImode */ - const int mmx_store[2]; /* cost of storing MMX register - in SImode and DImode */ - const int sse_move; /* cost of moving SSE register. */ - const int sse_load[3]; /* cost of loading SSE register - in SImode, DImode and TImode*/ - const int sse_store[3]; /* cost of storing SSE register - in SImode, DImode and TImode*/ - const int mmxsse_to_integer; /* cost of moving mmxsse register to - integer and vice versa. */ - const int prefetch_block; /* bytes moved to cache for prefetch. */ - const int simultaneous_prefetches; /* number of parallel prefetch - operations. */ -}; - -extern const struct processor_costs *ix86_cost; - -/* Run-time compilation parameters selecting different hardware subsets. */ - -extern int target_flags; - -/* Macros used in the machine description to test the flags. */ - -/* configure can arrange to make this 2, to force a 486. */ - -#ifndef TARGET_CPU_DEFAULT -#define TARGET_CPU_DEFAULT 0 -#endif - -/* Masks for the -m switches */ -#define MASK_80387 0x00000001 /* Hardware floating point */ -#define MASK_RTD 0x00000002 /* Use ret that pops args */ -#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */ -#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */ -#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */ -#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */ -#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */ -#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */ -#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */ -#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */ -#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */ -#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */ -#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */ -#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000 -#define MASK_MMX 0x00004000 /* Support MMX regs/builtins */ -#define MASK_MMX_SET 0x00008000 -#define MASK_SSE 0x00010000 /* Support SSE regs/builtins */ -#define MASK_SSE_SET 0x00020000 -#define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */ -#define MASK_SSE2_SET 0x00080000 -#define MASK_3DNOW 0x00100000 /* Support 3Dnow builtins */ -#define MASK_3DNOW_SET 0x00200000 -#define MASK_3DNOW_A 0x00400000 /* Support Athlon 3Dnow builtins */ -#define MASK_3DNOW_A_SET 0x00800000 -#define MASK_128BIT_LONG_DOUBLE 0x01000000 /* long double size is 128bit */ -#define MASK_64BIT 0x02000000 /* Produce 64bit code */ -/* ... overlap with subtarget options starts by 0x04000000. */ -#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */ - -/* Use the floating point instructions */ -#define TARGET_80387 (target_flags & MASK_80387) - -/* Compile using ret insn that pops args. - This will not work unless you use prototypes at least - for all functions that can take varying numbers of args. */ -#define TARGET_RTD (target_flags & MASK_RTD) - -/* Align doubles to a two word boundary. This breaks compatibility with - the published ABI's for structures containing doubles, but produces - faster code on the pentium. */ -#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE) - -/* Use push instructions to save outgoing args. */ -#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS)) - -/* Accumulate stack adjustments to prologue/epilogue. */ -#define TARGET_ACCUMULATE_OUTGOING_ARGS \ - (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS) - -/* Put uninitialized locals into bss, not data. - Meaningful only on svr3. */ -#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB) - -/* Use IEEE floating point comparisons. These handle correctly the cases - where the result of a comparison is unordered. Normally SIGFPE is - generated in such cases, in which case this isn't needed. */ -#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP) - -/* Functions that return a floating point value may return that value - in the 387 FPU or in 386 integer registers. If set, this flag causes - the 387 to be used, which is compatible with most calling conventions. */ -#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS) - -/* Long double is 128bit instead of 96bit, even when only 80bits are used. - This mode wastes cache, but avoid misaligned data accesses and simplifies - address calculations. */ -#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE) - -/* Disable generation of FP sin, cos and sqrt operations for 387. - This is because FreeBSD lacks these in the math-emulator-code */ -#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387) - -/* Don't create frame pointers for leaf functions */ -#define TARGET_OMIT_LEAF_FRAME_POINTER \ - (target_flags & MASK_OMIT_LEAF_FRAME_POINTER) - -/* Debug GO_IF_LEGITIMATE_ADDRESS */ -#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0) - -/* Debug FUNCTION_ARG macros */ -#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0) - -/* 64bit Sledgehammer mode */ -#ifdef TARGET_BI_ARCH -#define TARGET_64BIT (target_flags & MASK_64BIT) -#else -#ifdef TARGET_64BIT_DEFAULT -#define TARGET_64BIT 1 -#else -#define TARGET_64BIT 0 -#endif -#endif - -#define TARGET_386 (ix86_cpu == PROCESSOR_I386) -#define TARGET_486 (ix86_cpu == PROCESSOR_I486) -#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM) -#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO) -#define TARGET_K6 (ix86_cpu == PROCESSOR_K6) -#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON) -#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4) - -#define CPUMASK (1 << ix86_cpu) -extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and; -extern const int x86_use_bit_test, x86_cmove, x86_deep_branch; -extern const int x86_branch_hints, x86_unroll_strlen; -extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx; -extern const int x86_use_loop, x86_use_fiop, x86_use_mov0; -extern const int x86_use_cltd, x86_read_modify_write; -extern const int x86_read_modify, x86_split_long_moves; -extern const int x86_promote_QImode, x86_single_stringop; -extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs; -extern const int x86_promote_hi_regs, x86_integer_DFmode_moves; -extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8; -extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall; -extern const int x86_accumulate_outgoing_args, x86_prologue_using_move; -extern const int x86_epilogue_using_move, x86_decompose_lea; -extern const int x86_arch_always_fancy_math_387; -extern int x86_prefetch_sse; - -#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK) -#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK) -#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK) -#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK) -#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK) -/* For sane SSE instruction set generation we need fcomi instruction. It is - safe to enable all CMOVE instructions. */ -#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE) -#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK) -#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK) -#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK) -#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT) -#define TARGET_MOVX (x86_movx & CPUMASK) -#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK) -#define TARGET_USE_LOOP (x86_use_loop & CPUMASK) -#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK) -#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK) -#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK) -#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK) -#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK) -#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK) -#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK) -#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK) -#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK) -#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK) -#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK) -#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK) -#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK) -#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK) -#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK) -#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK) -#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK) -#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK) -#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK) -#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK) -#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK) -#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK) -#define TARGET_PREFETCH_SSE (x86_prefetch_sse) - -#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE) - -#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS)) -#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS) - -#define ASSEMBLER_DIALECT (ix86_asm_dialect) - -#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0) -#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0) -#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0) -#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \ - && (ix86_fpmath & FPMATH_387)) -#define TARGET_MMX ((target_flags & MASK_MMX) != 0) -#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0) -#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0) - -#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE)) - -/* WARNING: Do not mark empty strings for translation, as calling - gettext on an empty string does NOT return an empty - string. */ - - -#define TARGET_SWITCHES \ -{ { "80387", MASK_80387, N_("Use hardware fp") }, \ - { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \ - { "hard-float", MASK_80387, N_("Use hardware fp") }, \ - { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \ - { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \ - { "386", 0, "" /*Deprecated.*/}, \ - { "486", 0, "" /*Deprecated.*/}, \ - { "pentium", 0, "" /*Deprecated.*/}, \ - { "pentiumpro", 0, "" /*Deprecated.*/}, \ - { "intel-syntax", 0, "" /*Deprecated.*/}, \ - { "no-intel-syntax", 0, "" /*Deprecated.*/}, \ - { "rtd", MASK_RTD, \ - N_("Alternate calling convention") }, \ - { "no-rtd", -MASK_RTD, \ - N_("Use normal calling convention") }, \ - { "align-double", MASK_ALIGN_DOUBLE, \ - N_("Align some doubles on dword boundary") }, \ - { "no-align-double", -MASK_ALIGN_DOUBLE, \ - N_("Align doubles on word boundary") }, \ - { "svr3-shlib", MASK_SVR3_SHLIB, \ - N_("Uninitialized locals in .bss") }, \ - { "no-svr3-shlib", -MASK_SVR3_SHLIB, \ - N_("Uninitialized locals in .data") }, \ - { "ieee-fp", MASK_IEEE_FP, \ - N_("Use IEEE math for fp comparisons") }, \ - { "no-ieee-fp", -MASK_IEEE_FP, \ - N_("Do not use IEEE math for fp comparisons") }, \ - { "fp-ret-in-387", MASK_FLOAT_RETURNS, \ - N_("Return values of functions in FPU registers") }, \ - { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \ - N_("Do not return values of functions in FPU registers")}, \ - { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \ - N_("Do not generate sin, cos, sqrt for FPU") }, \ - { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \ - N_("Generate sin, cos, sqrt for FPU")}, \ - { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \ - N_("Omit the frame pointer in leaf functions") }, \ - { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \ - { "stack-arg-probe", MASK_STACK_PROBE, \ - N_("Enable stack probing") }, \ - { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \ - { "windows", 0, 0 /* undocumented */ }, \ - { "dll", 0, 0 /* undocumented */ }, \ - { "align-stringops", -MASK_NO_ALIGN_STROPS, \ - N_("Align destination of the string operations") }, \ - { "no-align-stringops", MASK_NO_ALIGN_STROPS, \ - N_("Do not align destination of the string operations") }, \ - { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \ - N_("Inline all known string operations") }, \ - { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \ - N_("Do not inline all known string operations") }, \ - { "push-args", -MASK_NO_PUSH_ARGS, \ - N_("Use push instructions to save outgoing arguments") }, \ - { "no-push-args", MASK_NO_PUSH_ARGS, \ - N_("Do not use push instructions to save outgoing arguments") }, \ - { "accumulate-outgoing-args", (MASK_ACCUMULATE_OUTGOING_ARGS \ - | MASK_ACCUMULATE_OUTGOING_ARGS_SET), \ - N_("Use push instructions to save outgoing arguments") }, \ - { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET, \ - N_("Do not use push instructions to save outgoing arguments") }, \ - { "mmx", MASK_MMX | MASK_MMX_SET, \ - N_("Support MMX built-in functions") }, \ - { "no-mmx", -MASK_MMX, \ - N_("Do not support MMX built-in functions") }, \ - { "no-mmx", MASK_MMX_SET, "" }, \ - { "3dnow", MASK_3DNOW | MASK_3DNOW_SET, \ - N_("Support 3DNow! built-in functions") }, \ - { "no-3dnow", -MASK_3DNOW, "" }, \ - { "no-3dnow", MASK_3DNOW_SET, \ - N_("Do not support 3DNow! built-in functions") }, \ - { "sse", MASK_SSE | MASK_SSE_SET, \ - N_("Support MMX and SSE built-in functions and code generation") }, \ - { "no-sse", -MASK_SSE, "" }, \ - { "no-sse", MASK_SSE_SET, \ - N_("Do not support MMX and SSE built-in functions and code generation") },\ - { "sse2", MASK_SSE2 | MASK_SSE2_SET, \ - N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \ - { "no-sse2", -MASK_SSE2, "" }, \ - { "no-sse2", MASK_SSE2_SET, \ - N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \ - { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \ - N_("sizeof(long double) is 16") }, \ - { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \ - N_("sizeof(long double) is 12") }, \ - { "64", MASK_64BIT, \ - N_("Generate 64bit x86-64 code") }, \ - { "32", -MASK_64BIT, \ - N_("Generate 32bit i386 code") }, \ - { "red-zone", -MASK_NO_RED_ZONE, \ - N_("Use red-zone in the x86-64 code") }, \ - { "no-red-zone", MASK_NO_RED_ZONE, \ - N_("Do not use red-zone in the x86-64 code") }, \ - SUBTARGET_SWITCHES \ - { "", TARGET_DEFAULT, 0 }} - -#ifdef TARGET_64BIT_DEFAULT -#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT) -#else -#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT -#endif - -/* Which processor to schedule for. The cpu attribute defines a list that - mirrors this list, so changes to i386.md must be made at the same time. */ - -enum processor_type -{ - PROCESSOR_I386, /* 80386 */ - PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */ - PROCESSOR_PENTIUM, - PROCESSOR_PENTIUMPRO, - PROCESSOR_K6, - PROCESSOR_ATHLON, - PROCESSOR_PENTIUM4, - PROCESSOR_max -}; -enum fpmath_unit -{ - FPMATH_387 = 1, - FPMATH_SSE = 2 -}; - -extern enum processor_type ix86_cpu; -extern enum fpmath_unit ix86_fpmath; - -extern int ix86_arch; - -/* This macro is similar to `TARGET_SWITCHES' but defines names of - command options that have values. Its definition is an - initializer with a subgrouping for each command option. - - Each subgrouping contains a string constant, that defines the - fixed part of the option name, and the address of a variable. The - variable, type `char *', is set to the variable part of the given - option if the fixed part matches. The actual option name is made - by appending `-m' to the specified name. */ -#define TARGET_OPTIONS \ -{ { "cpu=", &ix86_cpu_string, \ - N_("Schedule code for given CPU")}, \ - { "fpmath=", &ix86_fpmath_string, \ - N_("Generate floating point mathematics using given instruction set")},\ - { "arch=", &ix86_arch_string, \ - N_("Generate code for given CPU")}, \ - { "regparm=", &ix86_regparm_string, \ - N_("Number of registers used to pass integer arguments") }, \ - { "align-loops=", &ix86_align_loops_string, \ - N_("Loop code aligned to this power of 2") }, \ - { "align-jumps=", &ix86_align_jumps_string, \ - N_("Jump targets are aligned to this power of 2") }, \ - { "align-functions=", &ix86_align_funcs_string, \ - N_("Function starts are aligned to this power of 2") }, \ - { "preferred-stack-boundary=", \ - &ix86_preferred_stack_boundary_string, \ - N_("Attempt to keep stack aligned to this power of 2") }, \ - { "branch-cost=", &ix86_branch_cost_string, \ - N_("Branches are this expensive (1-5, arbitrary units)") }, \ - { "cmodel=", &ix86_cmodel_string, \ - N_("Use given x86-64 code model") }, \ - { "debug-arg", &ix86_debug_arg_string, \ - "" /* Undocumented. */ }, \ - { "debug-addr", &ix86_debug_addr_string, \ - "" /* Undocumented. */ }, \ - { "asm=", &ix86_asm_string, \ - N_("Use given assembler dialect") }, \ - SUBTARGET_OPTIONS \ -} - -/* Sometimes certain combinations of command options do not make - sense on a particular target machine. You can define a macro - `OVERRIDE_OPTIONS' to take account of this. This macro, if - defined, is executed once just after all the command options have - been parsed. - - Don't use this macro to turn on various extra optimizations for - `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ - -#define OVERRIDE_OPTIONS override_options () - -/* These are meant to be redefined in the host dependent files */ -#define SUBTARGET_SWITCHES -#define SUBTARGET_OPTIONS - -/* Define this to change the optimizations performed by default. */ -#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \ - optimization_options ((LEVEL), (SIZE)) - -/* Specs for the compiler proper */ - -#ifndef CC1_CPU_SPEC -#define CC1_CPU_SPEC "\ -%{!mcpu*: \ -%{m386:-mcpu=i386 \ -%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \ -%{m486:-mcpu=i486 \ -%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \ -%{mpentium:-mcpu=pentium \ -%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \ -%{mpentiumpro:-mcpu=pentiumpro \ -%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \ -%{mintel-syntax:-masm=intel \ -%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \ -%{mno-intel-syntax:-masm=att \ -%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}" -#endif - -#define TARGET_CPU_DEFAULT_i386 0 -#define TARGET_CPU_DEFAULT_i486 1 -#define TARGET_CPU_DEFAULT_pentium 2 -#define TARGET_CPU_DEFAULT_pentium_mmx 3 -#define TARGET_CPU_DEFAULT_pentiumpro 4 -#define TARGET_CPU_DEFAULT_pentium2 5 -#define TARGET_CPU_DEFAULT_pentium3 6 -#define TARGET_CPU_DEFAULT_pentium4 7 -#define TARGET_CPU_DEFAULT_k6 8 -#define TARGET_CPU_DEFAULT_k6_2 9 -#define TARGET_CPU_DEFAULT_k6_3 10 -#define TARGET_CPU_DEFAULT_athlon 11 -#define TARGET_CPU_DEFAULT_athlon_sse 12 - -#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\ - "pentiumpro", "pentium2", "pentium3", \ - "pentium4", "k6", "k6-2", "k6-3",\ - "athlon", "athlon-4"} -#ifndef CPP_CPU_DEFAULT_SPEC -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\ --D__tune_pentium2__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\ --D__tune_pentium2__ -D__tune_pentium3__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon -#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse -#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__" -#endif -#ifndef CPP_CPU_DEFAULT_SPEC -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__" -#endif -#endif /* CPP_CPU_DEFAULT_SPEC */ - -#ifdef TARGET_BI_ARCH -#define NO_BUILTIN_SIZE_TYPE -#define NO_BUILTIN_PTRDIFF_TYPE -#endif - -#ifdef NO_BUILTIN_SIZE_TYPE -#define CPP_CPU32_SIZE_TYPE_SPEC \ - " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int" -#define CPP_CPU64_SIZE_TYPE_SPEC \ - " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int" -#else -#define CPP_CPU32_SIZE_TYPE_SPEC "" -#define CPP_CPU64_SIZE_TYPE_SPEC "" -#endif - -#define CPP_CPU32_SPEC \ - "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \ --D__i386__ %(cpp_cpu32sizet)" - -#define CPP_CPU64_SPEC \ - "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)" - -#define CPP_CPUCOMMON_SPEC "\ -%{march=i386:%{!mcpu*:-D__tune_i386__ }}\ -%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\ -%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \ - %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\ -%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \ - -D__pentium__mmx__ \ - %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\ -%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \ - -D__pentiumpro -D__pentiumpro__ \ - %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\ -%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\ -%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \ - %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\ -%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \ - %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\ -%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \ - %{!mcpu*:-D__tune_athlon__ }}\ -%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \ - -D__athlon_sse__ \ - %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\ -%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\ -%{m386|mcpu=i386:-D__tune_i386__ }\ -%{m486|mcpu=i486:-D__tune_i486__ }\ -%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\ -%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \ --D__tune_pentiumpro__ }\ -%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\ -%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\ --D__tune_athlon__ }\ -%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\ --D__tune_athlon_sse__ }\ -%{mcpu=pentium4:-D__tune_pentium4__ }\ -%{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\ --D__SSE__ }\ -%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\ -|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\ -|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\ -%{march=k6-2|march=k6-3\ -|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\ -|march=athlon-mp: -D__3dNOW__ }\ -%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\ -|march=athlon-mp: -D__3dNOW_A__ }\ -%{march=pentium4: -D__SSE2__ }\ -%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}" - -#ifndef CPP_CPU_SPEC -#ifdef TARGET_BI_ARCH -#ifdef TARGET_64BIT_DEFAULT -#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)" -#else -#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)" -#endif -#else -#ifdef TARGET_64BIT_DEFAULT -#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)" -#else -#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)" -#endif -#endif -#endif - -#ifndef CC1_SPEC -#define CC1_SPEC "%(cc1_cpu) " -#endif - -/* This macro defines names of additional specifications to put in the - specs that can be used in various specifications like CC1_SPEC. Its - definition is an initializer with a subgrouping for each command option. - - Each subgrouping contains a string constant, that defines the - specification name, and a string constant that used by the GNU CC driver - program. - - Do not define this macro if it does not need to do anything. */ - -#ifndef SUBTARGET_EXTRA_SPECS -#define SUBTARGET_EXTRA_SPECS -#endif - -#define EXTRA_SPECS \ - { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \ - { "cpp_cpu", CPP_CPU_SPEC }, \ - { "cpp_cpu32", CPP_CPU32_SPEC }, \ - { "cpp_cpu64", CPP_CPU64_SPEC }, \ - { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC }, \ - { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC }, \ - { "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \ - { "cc1_cpu", CC1_CPU_SPEC }, \ - SUBTARGET_EXTRA_SPECS - -/* target machine storage layout */ - -/* Define for XFmode or TFmode extended real floating point support. - This will automatically cause REAL_ARITHMETIC to be defined. - - The XFmode is specified by i386 ABI, while TFmode may be faster - due to alignment and simplifications in the address calculations. - */ -#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96) -#define MAX_LONG_DOUBLE_TYPE_SIZE 128 -#ifdef __x86_64__ -#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128 -#else -#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96 -#endif -/* Tell real.c that this is the 80-bit Intel extended float format - packaged in a 128-bit or 96bit entity. */ -#define INTEL_EXTENDED_IEEE_FORMAT 1 - - -#define SHORT_TYPE_SIZE 16 -#define INT_TYPE_SIZE 32 -#define FLOAT_TYPE_SIZE 32 -#define LONG_TYPE_SIZE BITS_PER_WORD -#define MAX_WCHAR_TYPE_SIZE 32 -#define DOUBLE_TYPE_SIZE 64 -#define LONG_LONG_TYPE_SIZE 64 - -#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT) -#define MAX_BITS_PER_WORD 64 -#define MAX_LONG_TYPE_SIZE 64 -#else -#define MAX_BITS_PER_WORD 32 -#define MAX_LONG_TYPE_SIZE 32 -#endif - -/* Define if you don't want extended real, but do want to use the - software floating point emulator for REAL_ARITHMETIC and - decimal <-> binary conversion. */ -/* #define REAL_ARITHMETIC */ - -/* Define this if most significant byte of a word is the lowest numbered. */ -/* That is true on the 80386. */ - -#define BITS_BIG_ENDIAN 0 - -/* Define this if most significant byte of a word is the lowest numbered. */ -/* That is not true on the 80386. */ -#define BYTES_BIG_ENDIAN 0 - -/* Define this if most significant word of a multiword number is the lowest - numbered. */ -/* Not true for 80386 */ -#define WORDS_BIG_ENDIAN 0 - -/* number of bits in an addressable storage unit */ -#define BITS_PER_UNIT 8 - -/* Width in bits of a "word", which is the contents of a machine register. - Note that this is not necessarily the width of data type `int'; - if using 16-bit ints on a 80386, this would still be 32. - But on a machine with 16-bit registers, this would be 16. */ -#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32) - -/* Width of a word, in units (bytes). */ -#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) -#define MIN_UNITS_PER_WORD 4 - -/* Width in bits of a pointer. - See also the macro `Pmode' defined below. */ -#define POINTER_SIZE BITS_PER_WORD - -/* Allocation boundary (in *bits*) for storing arguments in argument list. */ -#define PARM_BOUNDARY BITS_PER_WORD - -/* Boundary (in *bits*) on which stack pointer should be aligned. */ -#define STACK_BOUNDARY BITS_PER_WORD - -/* Boundary (in *bits*) on which the stack pointer preferrs to be - aligned; the compiler cannot rely on having this alignment. */ -#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary - -/* As of July 2001, many runtimes to not align the stack properly when - entering main. This causes expand_main_function to forcably align - the stack, which results in aligned frames for functions called from - main, though it does nothing for the alignment of main itself. */ -#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \ - (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT) - -/* Allocation boundary for the code of a function. */ -#define FUNCTION_BOUNDARY 16 - -/* Alignment of field after `int : 0' in a structure. */ - -#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD - -/* Minimum size in bits of the largest boundary to which any - and all fundamental data types supported by the hardware - might need to be aligned. No data type wants to be aligned - rounder than this. - - Pentium+ preferrs DFmode values to be aligned to 64 bit boundary - and Pentium Pro XFmode values at 128 bit boundaries. */ - -#define BIGGEST_ALIGNMENT 128 - -/* Decide whether a variable of mode MODE must be 128 bit aligned. */ -#define ALIGN_MODE_128(MODE) \ - ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \ - || (MODE) == V4SFmode || (MODE) == V4SImode) - -/* The published ABIs say that doubles should be aligned on word - boundaries, so lower the aligment for structure fields unless - -malign-double is set. */ -/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be - constant. Use the smaller value in that context. */ -#ifndef IN_TARGET_LIBS -#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32)) -#else -#define BIGGEST_FIELD_ALIGNMENT 32 -#endif - -/* If defined, a C expression to compute the alignment given to a - constant that is being placed in memory. EXP is the constant - and ALIGN is the alignment that the object would ordinarily have. - The value of this macro is used instead of that alignment to align - the object. - - If this macro is not defined, then ALIGN is used. - - The typical use of this macro is to increase alignment for string - constants to be word aligned so that `strcpy' calls that copy - constants can be done inline. */ - -#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN)) - -/* If defined, a C expression to compute the alignment for a static - variable. TYPE is the data type, and ALIGN is the alignment that - the object would ordinarily have. The value of this macro is used - instead of that alignment to align the object. - - If this macro is not defined, then ALIGN is used. - - One use of this macro is to increase alignment of medium-size - data to make it all fit in fewer cache lines. Another is to - cause character arrays to be word-aligned so that `strcpy' calls - that copy constants to character arrays can be done inline. */ - -#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN)) - -/* If defined, a C expression to compute the alignment for a local - variable. TYPE is the data type, and ALIGN is the alignment that - the object would ordinarily have. The value of this macro is used - instead of that alignment to align the object. - - If this macro is not defined, then ALIGN is used. - - One use of this macro is to increase alignment of medium-size - data to make it all fit in fewer cache lines. */ - -#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN)) - -/* If defined, a C expression that gives the alignment boundary, in - bits, of an argument with the specified mode and type. If it is - not defined, `PARM_BOUNDARY' is used for all arguments. */ - -#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ - ix86_function_arg_boundary ((MODE), (TYPE)) - -/* Set this non-zero if move instructions will actually fail to work - when given unaligned data. */ -#define STRICT_ALIGNMENT 0 - -/* If bit field type is int, don't let it cross an int, - and give entire struct the alignment of an int. */ -/* Required on the 386 since it doesn't have bitfield insns. */ -#define PCC_BITFIELD_TYPE_MATTERS 1 - -/* Standard register usage. */ - -/* This processor has special stack-like registers. See reg-stack.c - for details. */ - -#define STACK_REGS -#define IS_STACK_MODE(MODE) \ - ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \ - || (MODE) == TFmode) - -/* Number of actual hardware registers. - The hardware registers are assigned numbers for the compiler - from 0 to just below FIRST_PSEUDO_REGISTER. - All registers that the compiler knows about must be given numbers, - even those that are not normally considered general registers. - - In the 80386 we give the 8 general purpose registers the numbers 0-7. - We number the floating point registers 8-15. - Note that registers 0-7 can be accessed as a short or int, - while only 0-3 may be used with byte `mov' instructions. - - Reg 16 does not correspond to any hardware register, but instead - appears in the RTL as an argument pointer prior to reload, and is - eliminated during reloading in favor of either the stack or frame - pointer. */ - -#define FIRST_PSEUDO_REGISTER 53 - -/* Number of hardware registers that go into the DWARF-2 unwind info. - If not defined, equals FIRST_PSEUDO_REGISTER. */ - -#define DWARF_FRAME_REGISTERS 17 - -/* 1 for registers that have pervasive standard uses - and are not available for the register allocator. - On the 80386, the stack pointer is such, as is the arg pointer. - - The value is an mask - bit 1 is set for fixed registers - for 32bit target, while 2 is set for fixed registers for 64bit. - Proper value is computed in the CONDITIONAL_REGISTER_USAGE. - */ -#define FIXED_REGISTERS \ -/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ -{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \ -/*arg,flags,fpsr,dir,frame*/ \ - 3, 3, 3, 3, 3, \ -/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ - 0, 0, 0, 0, 0, 0, 0, 0, \ -/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \ - 0, 0, 0, 0, 0, 0, 0, 0, \ -/* r8, r9, r10, r11, r12, r13, r14, r15*/ \ - 1, 1, 1, 1, 1, 1, 1, 1, \ -/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ - 1, 1, 1, 1, 1, 1, 1, 1} - - -/* 1 for registers not available across function calls. - These must include the FIXED_REGISTERS and also any - registers that can be used without being saved. - The latter must include the registers where values are returned - and the register where structure-value addresses are passed. - Aside from that, you can include as many other registers as you like. - - The value is an mask - bit 1 is set for call used - for 32bit target, while 2 is set for call used for 64bit. - Proper value is computed in the CONDITIONAL_REGISTER_USAGE. -*/ -#define CALL_USED_REGISTERS \ -/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ -{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \ -/*arg,flags,fpsr,dir,frame*/ \ - 3, 3, 3, 3, 3, \ -/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ - 3, 3, 3, 3, 3, 3, 3, 3, \ -/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \ - 3, 3, 3, 3, 3, 3, 3, 3, \ -/* r8, r9, r10, r11, r12, r13, r14, r15*/ \ - 3, 3, 3, 3, 1, 1, 1, 1, \ -/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ - 3, 3, 3, 3, 3, 3, 3, 3} \ - -/* Order in which to allocate registers. Each register must be - listed once, even those in FIXED_REGISTERS. List frame pointer - late and fixed registers last. Note that, in general, we prefer - registers listed in CALL_USED_REGISTERS, keeping the others - available for storage of persistent values. - - The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order, - so this is just empty initializer for array. */ - -#define REG_ALLOC_ORDER \ -{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\ - 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \ - 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \ - 48, 49, 50, 51, 52 } - -/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order - to be rearranged based on a particular function. When using sse math, - we want to allocase SSE before x87 registers and vice vera. */ - -#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc () - - -/* Macro to conditionally modify fixed_regs/call_used_regs. */ -#define CONDITIONAL_REGISTER_USAGE \ -do { \ - int i; \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - { \ - fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \ - call_used_regs[i] = (call_used_regs[i] \ - & (TARGET_64BIT ? 2 : 1)) != 0; \ - } \ - if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \ - { \ - fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ - call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ - } \ - if (! TARGET_MMX) \ - { \ - int i; \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \ - fixed_regs[i] = call_used_regs[i] = 1; \ - } \ - if (! TARGET_SSE) \ - { \ - int i; \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \ - fixed_regs[i] = call_used_regs[i] = 1; \ - } \ - if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \ - { \ - int i; \ - HARD_REG_SET x; \ - COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - if (TEST_HARD_REG_BIT (x, i)) \ - fixed_regs[i] = call_used_regs[i] = 1; \ - } \ - } while (0) - -/* Return number of consecutive hard regs needed starting at reg REGNO - to hold something of mode MODE. - This is ordinarily the length in words of a value of mode MODE - but can be less for certain modes in special long registers. - - Actually there are no two word move instructions for consecutive - registers. And only registers 0-3 may have mov byte instructions - applied to them. - */ - -#define HARD_REGNO_NREGS(REGNO, MODE) \ - (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \ - ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ - : ((MODE) == TFmode \ - ? (TARGET_64BIT ? 2 : 3) \ - : (MODE) == TCmode \ - ? (TARGET_64BIT ? 4 : 6) \ - : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))) - -#define VALID_SSE_REG_MODE(MODE) \ - ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \ - || (MODE) == SFmode \ - || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE)))) - -#define VALID_MMX_REG_MODE_3DNOW(MODE) \ - ((MODE) == V2SFmode || (MODE) == SFmode) - -#define VALID_MMX_REG_MODE(MODE) \ - ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \ - || (MODE) == V2SImode || (MODE) == SImode) - -#define VECTOR_MODE_SUPPORTED_P(MODE) \ - (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \ - : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \ - : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0) - -#define VALID_FP_MODE_P(MODE) \ - ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \ - || (!TARGET_64BIT && (MODE) == XFmode) \ - || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \ - || (!TARGET_64BIT && (MODE) == XCmode)) - -#define VALID_INT_MODE_P(MODE) \ - ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \ - || (MODE) == DImode \ - || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \ - || (MODE) == CDImode \ - || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode))) - -/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */ - -#define HARD_REGNO_MODE_OK(REGNO, MODE) \ - ix86_hard_regno_mode_ok ((REGNO), (MODE)) - -/* Value is 1 if it is a good idea to tie two pseudo registers - when one has mode MODE1 and one has mode MODE2. - If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, - for any hard reg, then this must be 0 for correct output. */ - -#define MODES_TIEABLE_P(MODE1, MODE2) \ - ((MODE1) == (MODE2) \ - || (((MODE1) == HImode || (MODE1) == SImode \ - || ((MODE1) == QImode \ - && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \ - || ((MODE1) == DImode && TARGET_64BIT)) \ - && ((MODE2) == HImode || (MODE2) == SImode \ - || ((MODE1) == QImode \ - && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \ - || ((MODE2) == DImode && TARGET_64BIT)))) - - -/* Specify the modes required to caller save a given hard regno. - We do this on i386 to prevent flags from being saved at all. - - Kill any attempts to combine saving of modes. */ - -#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ - (CC_REGNO_P (REGNO) ? VOIDmode \ - : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \ - : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \ - : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \ - : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \ - : (MODE)) -/* Specify the registers used for certain standard purposes. - The values of these macros are register numbers. */ - -/* on the 386 the pc register is %eip, and is not usable as a general - register. The ordinary mov instructions won't work */ -/* #define PC_REGNUM */ - -/* Register to use for pushing function arguments. */ -#define STACK_POINTER_REGNUM 7 - -/* Base register for access to local variables of the function. */ -#define HARD_FRAME_POINTER_REGNUM 6 - -/* Base register for access to local variables of the function. */ -#define FRAME_POINTER_REGNUM 20 - -/* First floating point reg */ -#define FIRST_FLOAT_REG 8 - -/* First & last stack-like regs */ -#define FIRST_STACK_REG FIRST_FLOAT_REG -#define LAST_STACK_REG (FIRST_FLOAT_REG + 7) - -#define FLAGS_REG 17 -#define FPSR_REG 18 -#define DIRFLAG_REG 19 - -#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1) -#define LAST_SSE_REG (FIRST_SSE_REG + 7) - -#define FIRST_MMX_REG (LAST_SSE_REG + 1) -#define LAST_MMX_REG (FIRST_MMX_REG + 7) - -#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) -#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7) - -#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) -#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7) - -/* Value should be nonzero if functions must have frame pointers. - Zero means the frame pointer need not be set up (and parms - may be accessed via the stack pointer) in functions that seem suitable. - This is computed in `reload', in reload1.c. */ -#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required () - -/* Override this in other tm.h files to cope with various OS losage - requiring a frame pointer. */ -#ifndef SUBTARGET_FRAME_POINTER_REQUIRED -#define SUBTARGET_FRAME_POINTER_REQUIRED 0 -#endif - -/* Make sure we can access arbitrary call frames. */ -#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses () - -/* Base register for access to arguments of the function. */ -#define ARG_POINTER_REGNUM 16 - -/* Register in which static-chain is passed to a function. - We do use ECX as static chain register for 32 bit ABI. On the - 64bit ABI, ECX is an argument register, so we use R10 instead. */ -#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2) - -/* Register to hold the addressing base for position independent - code access to data items. We don't use PIC pointer for 64bit - mode. Define the regnum to dummy value to prevent gcc from - pessimizing code dealing with EBX. */ -#define PIC_OFFSET_TABLE_REGNUM \ - (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3) - -/* Register in which address to store a structure value - arrives in the function. On the 386, the prologue - copies this from the stack to register %eax. */ -#define STRUCT_VALUE_INCOMING 0 - -/* Place in which caller passes the structure value address. - 0 means push the value on the stack like an argument. */ -#define STRUCT_VALUE 0 - -/* A C expression which can inhibit the returning of certain function - values in registers, based on the type of value. A nonzero value - says to return the function value in memory, just as large - structures are always returned. Here TYPE will be a C expression - of type `tree', representing the data type of the value. - - Note that values of mode `BLKmode' must be explicitly handled by - this macro. Also, the option `-fpcc-struct-return' takes effect - regardless of this macro. On most systems, it is possible to - leave the macro undefined; this causes a default definition to be - used, whose value is the constant 1 for `BLKmode' values, and 0 - otherwise. - - Do not use this macro to indicate that structures and unions - should always be returned in memory. You should instead use - `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */ - -#define RETURN_IN_MEMORY(TYPE) \ - ix86_return_in_memory (TYPE) - - -/* Define the classes of registers for register constraints in the - machine description. Also define ranges of constants. - - One of the classes must always be named ALL_REGS and include all hard regs. - If there is more than one class, another class must be named NO_REGS - and contain no registers. - - The name GENERAL_REGS must be the name of a class (or an alias for - another name such as ALL_REGS). This is the class of registers - that is allowed by "g" or "r" in a register constraint. - Also, registers outside this class are allocated only when - instructions express preferences for them. - - The classes must be numbered in nondecreasing order; that is, - a larger-numbered class must never be contained completely - in a smaller-numbered class. - - For any two classes, it is very desirable that there be another - class that represents their union. - - It might seem that class BREG is unnecessary, since no useful 386 - opcode needs reg %ebx. But some systems pass args to the OS in ebx, - and the "b" register constraint is useful in asms for syscalls. - - The flags and fpsr registers are in no class. */ - -enum reg_class -{ - NO_REGS, - AREG, DREG, CREG, BREG, SIREG, DIREG, - AD_REGS, /* %eax/%edx for DImode */ - Q_REGS, /* %eax %ebx %ecx %edx */ - NON_Q_REGS, /* %esi %edi %ebp %esp */ - INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */ - LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */ - GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/ - FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */ - FLOAT_REGS, - SSE_REGS, - MMX_REGS, - FP_TOP_SSE_REGS, - FP_SECOND_SSE_REGS, - FLOAT_SSE_REGS, - FLOAT_INT_REGS, - INT_SSE_REGS, - FLOAT_INT_SSE_REGS, - ALL_REGS, LIM_REG_CLASSES -}; - -#define N_REG_CLASSES ((int) LIM_REG_CLASSES) - -#define INTEGER_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), GENERAL_REGS) -#define FLOAT_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), FLOAT_REGS) -#define SSE_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), SSE_REGS) -#define MMX_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), MMX_REGS) -#define MAYBE_INTEGER_CLASS_P(CLASS) \ - reg_classes_intersect_p ((CLASS), GENERAL_REGS) -#define MAYBE_FLOAT_CLASS_P(CLASS) \ - reg_classes_intersect_p ((CLASS), FLOAT_REGS) -#define MAYBE_SSE_CLASS_P(CLASS) \ - reg_classes_intersect_p (SSE_REGS, (CLASS)) -#define MAYBE_MMX_CLASS_P(CLASS) \ - reg_classes_intersect_p (MMX_REGS, (CLASS)) - -#define Q_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), Q_REGS) - -/* Give names of register classes as strings for dump file. */ - -#define REG_CLASS_NAMES \ -{ "NO_REGS", \ - "AREG", "DREG", "CREG", "BREG", \ - "SIREG", "DIREG", \ - "AD_REGS", \ - "Q_REGS", "NON_Q_REGS", \ - "INDEX_REGS", \ - "LEGACY_REGS", \ - "GENERAL_REGS", \ - "FP_TOP_REG", "FP_SECOND_REG", \ - "FLOAT_REGS", \ - "SSE_REGS", \ - "MMX_REGS", \ - "FP_TOP_SSE_REGS", \ - "FP_SECOND_SSE_REGS", \ - "FLOAT_SSE_REGS", \ - "FLOAT_INT_REGS", \ - "INT_SSE_REGS", \ - "FLOAT_INT_SSE_REGS", \ - "ALL_REGS" } - -/* Define which registers fit in which classes. - This is an initializer for a vector of HARD_REG_SET - of length N_REG_CLASSES. */ - -#define REG_CLASS_CONTENTS \ -{ { 0x00, 0x0 }, \ - { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \ - { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \ - { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \ - { 0x03, 0x0 }, /* AD_REGS */ \ - { 0x0f, 0x0 }, /* Q_REGS */ \ - { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \ - { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \ - { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \ - { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \ - { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\ - { 0xff00, 0x0 }, /* FLOAT_REGS */ \ -{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \ -{ 0xe0000000, 0x1f }, /* MMX_REGS */ \ -{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \ -{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \ -{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \ - { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \ -{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \ -{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \ -{ 0xffffffff,0x1fffff } \ -} - -/* The same information, inverted: - Return the class number of the smallest class containing - reg number REGNO. This could be a conditional expression - or could index an array. */ - -#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) - -/* When defined, the compiler allows registers explicitly used in the - rtl to be used as spill registers but prevents the compiler from - extending the lifetime of these registers. */ - -#define SMALL_REGISTER_CLASSES 1 - -#define QI_REG_P(X) \ - (REG_P (X) && REGNO (X) < 4) - -#define GENERAL_REGNO_P(N) \ - ((N) < 8 || REX_INT_REGNO_P (N)) - -#define GENERAL_REG_P(X) \ - (REG_P (X) && GENERAL_REGNO_P (REGNO (X))) - -#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X)) - -#define NON_QI_REG_P(X) \ - (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER) - -#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG) -#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X))) - -#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X))) -#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG) -#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X))) -#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N)) - -#define SSE_REGNO_P(N) \ - (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \ - || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)) - -#define SSE_REGNO(N) \ - ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8) -#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N))) - -#define SSE_FLOAT_MODE_P(MODE) \ - ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode)) - -#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG) -#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP))) - -#define STACK_REG_P(XOP) \ - (REG_P (XOP) && \ - REGNO (XOP) >= FIRST_STACK_REG && \ - REGNO (XOP) <= LAST_STACK_REG) - -#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP)) - -#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG) - -#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X))) -#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG) - -/* Indicate whether hard register numbered REG_NO should be converted - to SSA form. */ -#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \ - ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM) - -/* The class value for index registers, and the one for base regs. */ - -#define INDEX_REG_CLASS INDEX_REGS -#define BASE_REG_CLASS GENERAL_REGS - -/* Get reg_class from a letter such as appears in the machine description. */ - -#define REG_CLASS_FROM_LETTER(C) \ - ((C) == 'r' ? GENERAL_REGS : \ - (C) == 'R' ? LEGACY_REGS : \ - (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \ - (C) == 'Q' ? Q_REGS : \ - (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ - ? FLOAT_REGS \ - : NO_REGS) : \ - (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ - ? FP_TOP_REG \ - : NO_REGS) : \ - (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ - ? FP_SECOND_REG \ - : NO_REGS) : \ - (C) == 'a' ? AREG : \ - (C) == 'b' ? BREG : \ - (C) == 'c' ? CREG : \ - (C) == 'd' ? DREG : \ - (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \ - (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \ - (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \ - (C) == 'A' ? AD_REGS : \ - (C) == 'D' ? DIREG : \ - (C) == 'S' ? SIREG : NO_REGS) - -/* The letters I, J, K, L and M in a register constraint string - can be used to stand for particular ranges of immediate operands. - This macro defines what the ranges are. - C is the letter, and VALUE is a constant value. - Return 1 if VALUE is in the range specified by C. - - I is for non-DImode shifts. - J is for DImode shifts. - K is for signed imm8 operands. - L is for andsi as zero-extending move. - M is for shifts that can be executed by the "lea" opcode. - N is for immedaite operands for out/in instructions (0-255) - */ - -#define CONST_OK_FOR_LETTER_P(VALUE, C) \ - ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \ - : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \ - : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \ - : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \ - : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \ - : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \ - : 0) - -/* Similar, but for floating constants, and defining letters G and H. - Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if - TARGET_387 isn't set, because the stack register converter may need to - load 0.0 into the function value register. */ - -#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ - ((C) == 'G' ? standard_80387_constant_p (VALUE) \ - : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0)) - -/* A C expression that defines the optional machine-dependent - constraint letters that can be used to segregate specific types of - operands, usually memory references, for the target machine. Any - letter that is not elsewhere defined and not matched by - `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not - be defined. - - If it is required for a particular target machine, it should - return 1 if VALUE corresponds to the operand type represented by - the constraint letter C. If C is not defined as an extra - constraint, the value returned should be 0 regardless of VALUE. */ - -#define EXTRA_CONSTRAINT(VALUE, C) \ - ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \ - : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \ - : 0) - -/* Place additional restrictions on the register class to use when it - is necessary to be able to hold a value of mode MODE in a reload - register for which class CLASS would ordinarily be used. */ - -#define LIMIT_RELOAD_CLASS(MODE, CLASS) \ - ((MODE) == QImode && !TARGET_64BIT \ - && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \ - || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \ - ? Q_REGS : (CLASS)) - -/* Given an rtx X being reloaded into a reg required to be - in class CLASS, return the class of reg to actually use. - In general this is just CLASS; but on some machines - in some cases it is preferable to use a more restrictive class. - On the 80386 series, we prevent floating constants from being - reloaded into floating registers (since no move-insn can do that) - and we ensure that QImodes aren't reloaded into the esi or edi reg. */ - -/* Put float CONST_DOUBLE in the constant pool instead of fp regs. - QImode must go into class Q_REGS. - Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and - movdf to do mem-to-mem moves through integer regs. */ - -#define PREFERRED_RELOAD_CLASS(X, CLASS) \ - ix86_preferred_reload_class ((X), (CLASS)) - -/* If we are copying between general and FP registers, we need a memory - location. The same is true for SSE and MMX registers. */ -#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ - ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1) - -/* QImode spills from non-QI registers need a scratch. This does not - happen often -- the only example so far requires an uninitialized - pseudo. */ - -#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \ - (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \ - || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \ - ? Q_REGS : NO_REGS) - -/* Return the maximum number of consecutive registers - needed to represent mode MODE in a register of class CLASS. */ -/* On the 80386, this is the size of MODE in words, - except in the FP regs, where a single reg is always enough. - The TFmodes are really just 80bit values, so we use only 3 registers - to hold them, instead of 4, as the size would suggest. - */ -#define CLASS_MAX_NREGS(CLASS, MODE) \ - (!MAYBE_INTEGER_CLASS_P (CLASS) \ - ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ - : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \ - + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) - -/* A C expression whose value is nonzero if pseudos that have been - assigned to registers of class CLASS would likely be spilled - because registers of CLASS are needed for spill registers. - - The default value of this macro returns 1 if CLASS has exactly one - register and zero otherwise. On most machines, this default - should be used. Only define this macro to some other expression - if pseudo allocated by `local-alloc.c' end up in memory because - their hard registers were needed for spill registers. If this - macro returns nonzero for those classes, those pseudos will only - be allocated by `global.c', which knows how to reallocate the - pseudo to another register. If there would not be another - register available for reallocation, you should not change the - definition of this macro since the only effect of such a - definition would be to slow down register allocation. */ - -#define CLASS_LIKELY_SPILLED_P(CLASS) \ - (((CLASS) == AREG) \ - || ((CLASS) == DREG) \ - || ((CLASS) == CREG) \ - || ((CLASS) == BREG) \ - || ((CLASS) == AD_REGS) \ - || ((CLASS) == SIREG) \ - || ((CLASS) == DIREG)) - -/* A C statement that adds to CLOBBERS any hard regs the port wishes - to automatically clobber for all asms. - - We do this in the new i386 backend to maintain source compatibility - with the old cc0-based compiler. */ - -#define MD_ASM_CLOBBERS(CLOBBERS) \ - do { \ - (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \ - (CLOBBERS)); \ - (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \ - (CLOBBERS)); \ - (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \ - (CLOBBERS)); \ - } while (0) - -/* Stack layout; function entry, exit and calling. */ - -/* Define this if pushing a word on the stack - makes the stack pointer a smaller address. */ -#define STACK_GROWS_DOWNWARD - -/* Define this if the nominal address of the stack frame - is at the high-address end of the local variables; - that is, each additional local variable allocated - goes at a more negative offset in the frame. */ -#define FRAME_GROWS_DOWNWARD - -/* Offset within stack frame to start allocating local variables at. - If FRAME_GROWS_DOWNWARD, this is the offset to the END of the - first local allocated. Otherwise, it is the offset to the BEGINNING - of the first local allocated. */ -#define STARTING_FRAME_OFFSET 0 - -/* If we generate an insn to push BYTES bytes, - this says how many the stack pointer really advances by. - On 386 pushw decrements by exactly 2 no matter what the position was. - On the 386 there is no pushb; we use pushw instead, and this - has the effect of rounding up to 2. - - For 64bit ABI we round up to 8 bytes. - */ - -#define PUSH_ROUNDING(BYTES) \ - (TARGET_64BIT \ - ? (((BYTES) + 7) & (-8)) \ - : (((BYTES) + 1) & (-2))) - -/* If defined, the maximum amount of space required for outgoing arguments will - be computed and placed into the variable - `current_function_outgoing_args_size'. No space will be pushed onto the - stack for each call; instead, the function prologue should increase the stack - frame size by this amount. */ - -#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS - -/* If defined, a C expression whose value is nonzero when we want to use PUSH - instructions to pass outgoing arguments. */ - -#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS) - -/* Offset of first parameter from the argument pointer register value. */ -#define FIRST_PARM_OFFSET(FNDECL) 0 - -/* Define this macro if functions should assume that stack space has been - allocated for arguments even when their values are passed in registers. - - The value of this macro is the size, in bytes, of the area reserved for - arguments passed in registers for the function represented by FNDECL. - - This space can be allocated by the caller, or be a part of the - machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says - which. */ -#define REG_PARM_STACK_SPACE(FNDECL) 0 - -/* Define as a C expression that evaluates to nonzero if we do not know how - to pass TYPE solely in registers. The file expr.h defines a - definition that is usually appropriate, refer to expr.h for additional - documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be - computed in the stack and then loaded into a register. */ -#define MUST_PASS_IN_STACK(MODE, TYPE) \ - ((TYPE) != 0 \ - && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \ - || TREE_ADDRESSABLE (TYPE) \ - || ((MODE) == TImode) \ - || ((MODE) == BLKmode \ - && ! ((TYPE) != 0 \ - && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \ - && 0 == (int_size_in_bytes (TYPE) \ - % (PARM_BOUNDARY / BITS_PER_UNIT))) \ - && (FUNCTION_ARG_PADDING (MODE, TYPE) \ - == (BYTES_BIG_ENDIAN ? upward : downward))))) - -/* Value is the number of bytes of arguments automatically - popped when returning from a subroutine call. - FUNDECL is the declaration node of the function (as a tree), - FUNTYPE is the data type of the function (as a tree), - or for a library call it is an identifier node for the subroutine name. - SIZE is the number of bytes of arguments passed on the stack. - - On the 80386, the RTD insn may be used to pop them if the number - of args is fixed, but if the number is variable then the caller - must pop them all. RTD can't be used for library calls now - because the library is compiled with the Unix compiler. - Use of RTD is a selectable option, since it is incompatible with - standard Unix calling sequences. If the option is not selected, - the caller must always pop the args. - - The attribute NTAPI is equivalent to RTD on a per module basis. */ - -#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \ - ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE)) - -/* Define how to find the value returned by a function. - VALTYPE is the data type of the value (as a tree). - If the precise function being called is known, FUNC is its FUNCTION_DECL; - otherwise, FUNC is 0. */ -#define FUNCTION_VALUE(VALTYPE, FUNC) \ - ix86_function_value (VALTYPE) - -#define FUNCTION_VALUE_REGNO_P(N) \ - ix86_function_value_regno_p (N) - -/* Define how to find the value returned by a library function - assuming the value has mode MODE. */ - -#define LIBCALL_VALUE(MODE) \ - ix86_libcall_value (MODE) - -/* Define the size of the result block used for communication between - untyped_call and untyped_return. The block contains a DImode value - followed by the block used by fnsave and frstor. */ - -#define APPLY_RESULT_SIZE (8+108) - -/* 1 if N is a possible register number for function argument passing. */ -#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N) - -/* Define a data type for recording info about an argument list - during the scan of that argument list. This data type should - hold all necessary information about the function itself - and about the args processed so far, enough to enable macros - such as FUNCTION_ARG to determine where the next arg should go. */ - -typedef struct ix86_args { - int words; /* # words passed so far */ - int nregs; /* # registers available for passing */ - int regno; /* next available register number */ - int sse_words; /* # sse words passed so far */ - int sse_nregs; /* # sse registers available for passing */ - int sse_regno; /* next available sse register number */ - int maybe_vaarg; /* true for calls to possibly vardic fncts. */ -} CUMULATIVE_ARGS; - -/* Initialize a variable CUM of type CUMULATIVE_ARGS - for a call to a function whose data type is FNTYPE. - For a library call, FNTYPE is 0. */ - -#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \ - init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME)) - -/* Update the data in CUM to advance over an argument - of mode MODE and data type TYPE. - (TYPE is null for libcalls where that information may not be available.) */ - -#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ - function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED)) - -/* Define where to put the arguments to a function. - Value is zero to push the argument on the stack, - or a hard register in which to store the argument. - - MODE is the argument's machine mode. - TYPE is the data type of the argument (as a tree). - This is null for libcalls where that information may - not be available. - CUM is a variable of type CUMULATIVE_ARGS which gives info about - the preceding args and about the function being called. - NAMED is nonzero if this argument is a named parameter - (otherwise it is an extra parameter matching an ellipsis). */ - -#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ - function_arg (&(CUM), (MODE), (TYPE), (NAMED)) - -/* For an arg passed partly in registers and partly in memory, - this is the number of registers used. - For args passed entirely in registers or entirely in memory, zero. */ - -#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0 - -/* If PIC, we cannot make sibling calls to global functions - because the PLT requires %ebx live. - If we are returning floats on the register stack, we cannot make - sibling calls to functions that return floats. (The stack adjust - instruction will wind up after the sibcall jump, and not be executed.) */ -#define FUNCTION_OK_FOR_SIBCALL(DECL) \ - ((DECL) \ - && (! flag_pic || ! TREE_PUBLIC (DECL)) \ - && (! TARGET_FLOAT_RETURNS_IN_80387 \ - || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \ - || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl)))))) - -/* Perform any needed actions needed for a function that is receiving a - variable number of arguments. - - CUM is as above. - - MODE and TYPE are the mode and type of the current parameter. - - PRETEND_SIZE is a variable that should be set to the amount of stack - that must be pushed by the prolog to pretend that our caller pushed - it. - - Normally, this macro will push all remaining incoming registers on the - stack and set PRETEND_SIZE to the length of the registers pushed. */ - -#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \ - ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \ - (NO_RTL)) - -/* Define the `__builtin_va_list' type for the ABI. */ -#define BUILD_VA_LIST_TYPE(VALIST) \ - ((VALIST) = ix86_build_va_list ()) - -/* Implement `va_start' for varargs and stdarg. */ -#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \ - ix86_va_start ((STDARG), (VALIST), (NEXTARG)) - -/* Implement `va_arg'. */ -#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \ - ix86_va_arg ((VALIST), (TYPE)) - -/* This macro is invoked at the end of compilation. It is used here to - output code for -fpic that will load the return address into %ebx. */ - -#undef ASM_FILE_END -#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE) - -/* Output assembler code to FILE to increment profiler label # LABELNO - for profiling a function entry. */ - -#define FUNCTION_PROFILER(FILE, LABELNO) \ -do { \ - if (flag_pic) \ - { \ - fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \ - LPREFIX, (LABELNO)); \ - fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \ - } \ - else \ - { \ - fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \ - fprintf ((FILE), "\tcall\t_mcount\n"); \ - } \ -} while (0) - -/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, - the stack pointer does not matter. The value is tested only in - functions that have frame pointers. - No definition is equivalent to always zero. */ -/* Note on the 386 it might be more efficient not to define this since - we have to restore it ourselves from the frame pointer, in order to - use pop */ - -#define EXIT_IGNORE_STACK 1 - -/* Output assembler code for a block containing the constant parts - of a trampoline, leaving space for the variable parts. */ - -/* On the 386, the trampoline contains two instructions: - mov #STATIC,ecx - jmp FUNCTION - The trampoline is generated entirely at runtime. The operand of JMP - is the address of FUNCTION relative to the instruction following the - JMP (which is 5 bytes long). */ - -/* Length in units of the trampoline for entering a nested function. */ - -#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10) - -/* Emit RTL insns to initialize the variable parts of a trampoline. - FNADDR is an RTX for the address of the function's pure code. - CXT is an RTX for the static chain value for the function. */ - -#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ - x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT)) - -/* Definitions for register eliminations. - - This is an array of structures. Each structure initializes one pair - of eliminable registers. The "from" register number is given first, - followed by "to". Eliminations of the same "from" register are listed - in order of preference. - - There are two registers that can always be eliminated on the i386. - The frame pointer and the arg pointer can be replaced by either the - hard frame pointer or to the stack pointer, depending upon the - circumstances. The hard frame pointer is not used before reload and - so it is not eligible for elimination. */ - -#define ELIMINABLE_REGS \ -{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ - { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ - -/* Given FROM and TO register numbers, say whether this elimination is - allowed. Frame pointer elimination is automatically handled. - - All other eliminations are valid. */ - -#define CAN_ELIMINATE(FROM, TO) \ - ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1) - -/* Define the offset between two registers, one to be eliminated, and the other - its replacement, at the start of a routine. */ - -#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ - ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO))) - -/* Addressing modes, and classification of registers for them. */ - -/* #define HAVE_POST_INCREMENT 0 */ -/* #define HAVE_POST_DECREMENT 0 */ - -/* #define HAVE_PRE_DECREMENT 0 */ -/* #define HAVE_PRE_INCREMENT 0 */ - -/* Macros to check register numbers against specific register classes. */ - -/* These assume that REGNO is a hard or pseudo reg number. - They give nonzero only if REGNO is a hard reg of the suitable class - or a pseudo reg currently allocated to a suitable hard reg. - Since they use reg_renumber, they are safe only once reg_renumber - has been allocated, which happens in local-alloc.c. */ - -#define REGNO_OK_FOR_INDEX_P(REGNO) \ - ((REGNO) < STACK_POINTER_REGNUM \ - || (REGNO >= FIRST_REX_INT_REG \ - && (REGNO) <= LAST_REX_INT_REG) \ - || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \ - && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \ - || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM) - -#define REGNO_OK_FOR_BASE_P(REGNO) \ - ((REGNO) <= STACK_POINTER_REGNUM \ - || (REGNO) == ARG_POINTER_REGNUM \ - || (REGNO) == FRAME_POINTER_REGNUM \ - || (REGNO >= FIRST_REX_INT_REG \ - && (REGNO) <= LAST_REX_INT_REG) \ - || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \ - && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \ - || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM) - -#define REGNO_OK_FOR_SIREG_P(REGNO) \ - ((REGNO) == 4 || reg_renumber[(REGNO)] == 4) -#define REGNO_OK_FOR_DIREG_P(REGNO) \ - ((REGNO) == 5 || reg_renumber[(REGNO)] == 5) - -/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx - and check its validity for a certain class. - We have two alternate definitions for each of them. - The usual definition accepts all pseudo regs; the other rejects - them unless they have been allocated suitable hard regs. - The symbol REG_OK_STRICT causes the latter definition to be used. - - Most source files want to accept pseudo regs in the hope that - they will get allocated to the class that the insn wants them to be in. - Source files for reload pass need to be strict. - After reload, it makes no difference, since pseudo regs have - been eliminated by then. */ - - -/* Non strict versions, pseudos are ok */ -#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \ - (REGNO (X) < STACK_POINTER_REGNUM \ - || (REGNO (X) >= FIRST_REX_INT_REG \ - && REGNO (X) <= LAST_REX_INT_REG) \ - || REGNO (X) >= FIRST_PSEUDO_REGISTER) - -#define REG_OK_FOR_BASE_NONSTRICT_P(X) \ - (REGNO (X) <= STACK_POINTER_REGNUM \ - || REGNO (X) == ARG_POINTER_REGNUM \ - || REGNO (X) == FRAME_POINTER_REGNUM \ - || (REGNO (X) >= FIRST_REX_INT_REG \ - && REGNO (X) <= LAST_REX_INT_REG) \ - || REGNO (X) >= FIRST_PSEUDO_REGISTER) - -/* Strict versions, hard registers only */ -#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) -#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) - -#ifndef REG_OK_STRICT -#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X) -#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X) - -#else -#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X) -#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X) -#endif - -/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression - that is a valid memory address for an instruction. - The MODE argument is the machine mode for the MEM expression - that wants to use this address. - - The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, - except for CONSTANT_ADDRESS_P which is usually machine-independent. - - See legitimize_pic_address in i386.c for details as to what - constitutes a legitimate address when -fpic is used. */ - -#define MAX_REGS_PER_ADDRESS 2 - -#define CONSTANT_ADDRESS_P(X) \ - (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ - || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ - || GET_CODE (X) == CONST_DOUBLE) - -/* Nonzero if the constant value X is a legitimate general operand. - It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ - -#define LEGITIMATE_CONSTANT_P(X) 1 - -#ifdef REG_OK_STRICT -#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -do { \ - if (legitimate_address_p ((MODE), (X), 1)) \ - goto ADDR; \ -} while (0) - -#else -#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -do { \ - if (legitimate_address_p ((MODE), (X), 0)) \ - goto ADDR; \ -} while (0) - -#endif - -/* If defined, a C expression to determine the base term of address X. - This macro is used in only one place: `find_base_term' in alias.c. - - It is always safe for this macro to not be defined. It exists so - that alias analysis can understand machine-dependent addresses. - - The typical use of this macro is to handle addresses containing - a label_ref or symbol_ref within an UNSPEC. */ - -#define FIND_BASE_TERM(X) ix86_find_base_term (X) - -/* Try machine-dependent ways of modifying an illegitimate address - to be legitimate. If we find one, return the new, valid address. - This macro is used in only one place: `memory_address' in explow.c. - - OLDX is the address as it was before break_out_memory_refs was called. - In some cases it is useful to look at this to decide what needs to be done. - - MODE and WIN are passed so that this macro can use - GO_IF_LEGITIMATE_ADDRESS. - - It is always safe for this macro to do nothing. It exists to recognize - opportunities to optimize the output. - - For the 80386, we handle X+REG by loading X into a register R and - using R+REG. R will go in a general reg and indexing will be used. - However, if REG is a broken-out memory address or multiplication, - nothing needs to be done because REG can certainly go in a general reg. - - When -fpic is used, special handling is needed for symbolic references. - See comments by legitimize_pic_address in i386.c for details. */ - -#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ -do { \ - (X) = legitimize_address ((X), (OLDX), (MODE)); \ - if (memory_address_p ((MODE), (X))) \ - goto WIN; \ -} while (0) - -#define REWRITE_ADDRESS(X) rewrite_address (X) - -/* Nonzero if the constant value X is a legitimate general operand - when generating PIC code. It is given that flag_pic is on and - that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ - -#define LEGITIMATE_PIC_OPERAND_P(X) \ - (! SYMBOLIC_CONST (X) \ - || legitimate_pic_address_disp_p (X)) - -#define SYMBOLIC_CONST(X) \ - (GET_CODE (X) == SYMBOL_REF \ - || GET_CODE (X) == LABEL_REF \ - || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) - -/* Go to LABEL if ADDR (a legitimate address expression) - has an effect that depends on the machine mode it is used for. - On the 80386, only postdecrement and postincrement address depend thus - (the amount of decrement or increment being the length of the operand). */ -#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ -do { \ - if (GET_CODE (ADDR) == POST_INC \ - || GET_CODE (ADDR) == POST_DEC) \ - goto LABEL; \ -} while (0) - -/* Codes for all the SSE/MMX builtins. */ -enum ix86_builtins -{ - IX86_BUILTIN_ADDPS, - IX86_BUILTIN_ADDSS, - IX86_BUILTIN_DIVPS, - IX86_BUILTIN_DIVSS, - IX86_BUILTIN_MULPS, - IX86_BUILTIN_MULSS, - IX86_BUILTIN_SUBPS, - IX86_BUILTIN_SUBSS, - - IX86_BUILTIN_CMPEQPS, - IX86_BUILTIN_CMPLTPS, - IX86_BUILTIN_CMPLEPS, - IX86_BUILTIN_CMPGTPS, - IX86_BUILTIN_CMPGEPS, - IX86_BUILTIN_CMPNEQPS, - IX86_BUILTIN_CMPNLTPS, - IX86_BUILTIN_CMPNLEPS, - IX86_BUILTIN_CMPNGTPS, - IX86_BUILTIN_CMPNGEPS, - IX86_BUILTIN_CMPORDPS, - IX86_BUILTIN_CMPUNORDPS, - IX86_BUILTIN_CMPNEPS, - IX86_BUILTIN_CMPEQSS, - IX86_BUILTIN_CMPLTSS, - IX86_BUILTIN_CMPLESS, - IX86_BUILTIN_CMPGTSS, - IX86_BUILTIN_CMPGESS, - IX86_BUILTIN_CMPNEQSS, - IX86_BUILTIN_CMPNLTSS, - IX86_BUILTIN_CMPNLESS, - IX86_BUILTIN_CMPNGTSS, - IX86_BUILTIN_CMPNGESS, - IX86_BUILTIN_CMPORDSS, - IX86_BUILTIN_CMPUNORDSS, - IX86_BUILTIN_CMPNESS, - - IX86_BUILTIN_COMIEQSS, - IX86_BUILTIN_COMILTSS, - IX86_BUILTIN_COMILESS, - IX86_BUILTIN_COMIGTSS, - IX86_BUILTIN_COMIGESS, - IX86_BUILTIN_COMINEQSS, - IX86_BUILTIN_UCOMIEQSS, - IX86_BUILTIN_UCOMILTSS, - IX86_BUILTIN_UCOMILESS, - IX86_BUILTIN_UCOMIGTSS, - IX86_BUILTIN_UCOMIGESS, - IX86_BUILTIN_UCOMINEQSS, - - IX86_BUILTIN_CVTPI2PS, - IX86_BUILTIN_CVTPS2PI, - IX86_BUILTIN_CVTSI2SS, - IX86_BUILTIN_CVTSS2SI, - IX86_BUILTIN_CVTTPS2PI, - IX86_BUILTIN_CVTTSS2SI, - - IX86_BUILTIN_MAXPS, - IX86_BUILTIN_MAXSS, - IX86_BUILTIN_MINPS, - IX86_BUILTIN_MINSS, - - IX86_BUILTIN_LOADAPS, - IX86_BUILTIN_LOADUPS, - IX86_BUILTIN_STOREAPS, - IX86_BUILTIN_STOREUPS, - IX86_BUILTIN_LOADSS, - IX86_BUILTIN_STORESS, - IX86_BUILTIN_MOVSS, - - IX86_BUILTIN_MOVHLPS, - IX86_BUILTIN_MOVLHPS, - IX86_BUILTIN_LOADHPS, - IX86_BUILTIN_LOADLPS, - IX86_BUILTIN_STOREHPS, - IX86_BUILTIN_STORELPS, - - IX86_BUILTIN_MASKMOVQ, - IX86_BUILTIN_MOVMSKPS, - IX86_BUILTIN_PMOVMSKB, - - IX86_BUILTIN_MOVNTPS, - IX86_BUILTIN_MOVNTQ, - - IX86_BUILTIN_PACKSSWB, - IX86_BUILTIN_PACKSSDW, - IX86_BUILTIN_PACKUSWB, - - IX86_BUILTIN_PADDB, - IX86_BUILTIN_PADDW, - IX86_BUILTIN_PADDD, - IX86_BUILTIN_PADDSB, - IX86_BUILTIN_PADDSW, - IX86_BUILTIN_PADDUSB, - IX86_BUILTIN_PADDUSW, - IX86_BUILTIN_PSUBB, - IX86_BUILTIN_PSUBW, - IX86_BUILTIN_PSUBD, - IX86_BUILTIN_PSUBSB, - IX86_BUILTIN_PSUBSW, - IX86_BUILTIN_PSUBUSB, - IX86_BUILTIN_PSUBUSW, - - IX86_BUILTIN_PAND, - IX86_BUILTIN_PANDN, - IX86_BUILTIN_POR, - IX86_BUILTIN_PXOR, - - IX86_BUILTIN_PAVGB, - IX86_BUILTIN_PAVGW, - - IX86_BUILTIN_PCMPEQB, - IX86_BUILTIN_PCMPEQW, - IX86_BUILTIN_PCMPEQD, - IX86_BUILTIN_PCMPGTB, - IX86_BUILTIN_PCMPGTW, - IX86_BUILTIN_PCMPGTD, - - IX86_BUILTIN_PEXTRW, - IX86_BUILTIN_PINSRW, - - IX86_BUILTIN_PMADDWD, - - IX86_BUILTIN_PMAXSW, - IX86_BUILTIN_PMAXUB, - IX86_BUILTIN_PMINSW, - IX86_BUILTIN_PMINUB, - - IX86_BUILTIN_PMULHUW, - IX86_BUILTIN_PMULHW, - IX86_BUILTIN_PMULLW, - - IX86_BUILTIN_PSADBW, - IX86_BUILTIN_PSHUFW, - - IX86_BUILTIN_PSLLW, - IX86_BUILTIN_PSLLD, - IX86_BUILTIN_PSLLQ, - IX86_BUILTIN_PSRAW, - IX86_BUILTIN_PSRAD, - IX86_BUILTIN_PSRLW, - IX86_BUILTIN_PSRLD, - IX86_BUILTIN_PSRLQ, - IX86_BUILTIN_PSLLWI, - IX86_BUILTIN_PSLLDI, - IX86_BUILTIN_PSLLQI, - IX86_BUILTIN_PSRAWI, - IX86_BUILTIN_PSRADI, - IX86_BUILTIN_PSRLWI, - IX86_BUILTIN_PSRLDI, - IX86_BUILTIN_PSRLQI, - - IX86_BUILTIN_PUNPCKHBW, - IX86_BUILTIN_PUNPCKHWD, - IX86_BUILTIN_PUNPCKHDQ, - IX86_BUILTIN_PUNPCKLBW, - IX86_BUILTIN_PUNPCKLWD, - IX86_BUILTIN_PUNPCKLDQ, - - IX86_BUILTIN_SHUFPS, - - IX86_BUILTIN_RCPPS, - IX86_BUILTIN_RCPSS, - IX86_BUILTIN_RSQRTPS, - IX86_BUILTIN_RSQRTSS, - IX86_BUILTIN_SQRTPS, - IX86_BUILTIN_SQRTSS, - - IX86_BUILTIN_UNPCKHPS, - IX86_BUILTIN_UNPCKLPS, - - IX86_BUILTIN_ANDPS, - IX86_BUILTIN_ANDNPS, - IX86_BUILTIN_ORPS, - IX86_BUILTIN_XORPS, - - IX86_BUILTIN_EMMS, - IX86_BUILTIN_LDMXCSR, - IX86_BUILTIN_STMXCSR, - IX86_BUILTIN_SFENCE, - - /* 3DNow! Original */ - IX86_BUILTIN_FEMMS, - IX86_BUILTIN_PAVGUSB, - IX86_BUILTIN_PF2ID, - IX86_BUILTIN_PFACC, - IX86_BUILTIN_PFADD, - IX86_BUILTIN_PFCMPEQ, - IX86_BUILTIN_PFCMPGE, - IX86_BUILTIN_PFCMPGT, - IX86_BUILTIN_PFMAX, - IX86_BUILTIN_PFMIN, - IX86_BUILTIN_PFMUL, - IX86_BUILTIN_PFRCP, - IX86_BUILTIN_PFRCPIT1, - IX86_BUILTIN_PFRCPIT2, - IX86_BUILTIN_PFRSQIT1, - IX86_BUILTIN_PFRSQRT, - IX86_BUILTIN_PFSUB, - IX86_BUILTIN_PFSUBR, - IX86_BUILTIN_PI2FD, - IX86_BUILTIN_PMULHRW, - - /* 3DNow! Athlon Extensions */ - IX86_BUILTIN_PF2IW, - IX86_BUILTIN_PFNACC, - IX86_BUILTIN_PFPNACC, - IX86_BUILTIN_PI2FW, - IX86_BUILTIN_PSWAPDSI, - IX86_BUILTIN_PSWAPDSF, - - IX86_BUILTIN_SSE_ZERO, - IX86_BUILTIN_MMX_ZERO, - - IX86_BUILTIN_MAX -}; - -/* Define this macro if references to a symbol must be treated - differently depending on something about the variable or - function named by the symbol (such as what section it is in). - - On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol - so that we may access it directly in the GOT. */ - -#define ENCODE_SECTION_INFO(DECL) \ -do { \ - if (flag_pic) \ - { \ - rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \ - ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \ - \ - if (GET_CODE (rtl) == MEM) \ - { \ - if (TARGET_DEBUG_ADDR \ - && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \ - { \ - fprintf (stderr, "Encode %s, public = %d\n", \ - IDENTIFIER_POINTER (DECL_NAME (DECL)), \ - TREE_PUBLIC (DECL)); \ - } \ - \ - SYMBOL_REF_FLAG (XEXP (rtl, 0)) \ - = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \ - || ! TREE_PUBLIC (DECL)); \ - } \ - } \ -} while (0) - -/* The `FINALIZE_PIC' macro serves as a hook to emit these special - codes once the function is being compiled into assembly code, but - not before. (It is not done before, because in the case of - compiling an inline function, it would lead to multiple PIC - prologues being included in functions which used inline functions - and were compiled to assembly language.) */ - -#define FINALIZE_PIC \ - (current_function_uses_pic_offset_table |= current_function_profile) - - -/* Max number of args passed in registers. If this is more than 3, we will - have problems with ebx (register #4), since it is a caller save register and - is also used as the pic register in ELF. So for now, don't allow more than - 3 registers to be passed in registers. */ - -#define REGPARM_MAX (TARGET_64BIT ? 6 : 3) - -#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0) - - -/* Specify the machine mode that this machine uses - for the index in the tablejump instruction. */ -#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode) - -/* Define as C expression which evaluates to nonzero if the tablejump - instruction expects the table to contain offsets from the address of the - table. - Do not define this if the table should contain absolute addresses. */ -/* #define CASE_VECTOR_PC_RELATIVE 1 */ - -/* Define this as 1 if `char' should by default be signed; else as 0. */ -#define DEFAULT_SIGNED_CHAR 1 - -/* Number of bytes moved into a data cache for a single prefetch operation. */ -#define PREFETCH_BLOCK ix86_cost->prefetch_block - -/* Number of prefetch operations that can be done in parallel. */ -#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches - -/* Max number of bytes we can move from memory to memory - in one reasonably fast instruction. */ -#define MOVE_MAX 16 - -/* MOVE_MAX_PIECES is the number of bytes at a time which we can - move efficiently, as opposed to MOVE_MAX which is the maximum - number of bytes we can move with a single instruction. */ -#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4) - -/* If a memory-to-memory move would take MOVE_RATIO or more simple - move-instruction pairs, we will do a movstr or libcall instead. - Increasing the value will always make code faster, but eventually - incurs high cost in increased code size. - - If you don't define this, a reasonable default is used. */ - -#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio) - -/* Define if shifts truncate the shift count - which implies one can omit a sign-extension or zero-extension - of a shift count. */ -/* On i386, shifts do truncate the count. But bit opcodes don't. */ - -/* #define SHIFT_COUNT_TRUNCATED */ - -/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits - is done just by pretending it is already truncated. */ -#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 - -/* We assume that the store-condition-codes instructions store 0 for false - and some other value for true. This is the value stored for true. */ - -#define STORE_FLAG_VALUE 1 - -/* When a prototype says `char' or `short', really pass an `int'. - (The 386 can't easily push less than an int.) */ - -#define PROMOTE_PROTOTYPES (!TARGET_64BIT) - -/* A macro to update M and UNSIGNEDP when an object whose type is - TYPE and which has the specified mode and signedness is to be - stored in a register. This macro is only called when TYPE is a - scalar type. - - On i386 it is sometimes useful to promote HImode and QImode - quantities to SImode. The choice depends on target type. */ - -#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ -do { \ - if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \ - || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \ - (MODE) = SImode; \ -} while (0) - -/* Specify the machine mode that pointers have. - After generation of rtl, the compiler makes no further distinction - between pointers and any other objects of this machine mode. */ -#define Pmode (TARGET_64BIT ? DImode : SImode) - -/* A function address in a call instruction - is a byte address (for indexing purposes) - so give the MEM rtx a byte's mode. */ -#define FUNCTION_MODE QImode - -/* A part of a C `switch' statement that describes the relative costs - of constant RTL expressions. It must contain `case' labels for - expression codes `const_int', `const', `symbol_ref', `label_ref' - and `const_double'. Each case must ultimately reach a `return' - statement to return the relative cost of the use of that kind of - constant value in an expression. The cost may depend on the - precise value of the constant, which is available for examination - in X, and the rtx code of the expression in which it is contained, - found in OUTER_CODE. - - CODE is the expression code--redundant, since it can be obtained - with `GET_CODE (X)'. */ - -#define CONST_COSTS(RTX, CODE, OUTER_CODE) \ - case CONST_INT: \ - case CONST: \ - case LABEL_REF: \ - case SYMBOL_REF: \ - if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \ - return 3; \ - if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \ - return 2; \ - return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \ - \ - case CONST_DOUBLE: \ - { \ - int code; \ - if (GET_MODE (RTX) == VOIDmode) \ - return 0; \ - \ - code = standard_80387_constant_p (RTX); \ - return code == 1 ? 1 : \ - code == 2 ? 2 : \ - 3; \ - } - -/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */ -#define TOPLEVEL_COSTS_N_INSNS(N) \ - do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0) - -/* Like `CONST_COSTS' but applies to nonconstant RTL expressions. - This can be used, for example, to indicate how costly a multiply - instruction is. In writing this macro, you can use the construct - `COSTS_N_INSNS (N)' to specify a cost equal to N fast - instructions. OUTER_CODE is the code of the expression in which X - is contained. - - This macro is optional; do not define it if the default cost - assumptions are adequate for the target machine. */ - -#define RTX_COSTS(X, CODE, OUTER_CODE) \ - case ZERO_EXTEND: \ - /* The zero extensions is often completely free on x86_64, so make \ - it as cheap as possible. */ \ - if (TARGET_64BIT && GET_MODE (X) == DImode \ - && GET_MODE (XEXP (X, 0)) == SImode) \ - { \ - total = 1; goto egress_rtx_costs; \ - } \ - else \ - TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \ - ix86_cost->add : ix86_cost->movzx); \ - break; \ - case SIGN_EXTEND: \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \ - break; \ - case ASHIFT: \ - if (GET_CODE (XEXP (X, 1)) == CONST_INT \ - && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \ - { \ - HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \ - if (value == 1) \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \ - if ((value == 2 || value == 3) \ - && !TARGET_DECOMPOSE_LEA \ - && ix86_cost->lea <= ix86_cost->shift_const) \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \ - } \ - /* fall through */ \ - \ - case ROTATE: \ - case ASHIFTRT: \ - case LSHIFTRT: \ - case ROTATERT: \ - if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \ - { \ - if (GET_CODE (XEXP (X, 1)) == CONST_INT) \ - { \ - if (INTVAL (XEXP (X, 1)) > 32) \ - TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \ - else \ - TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \ - } \ - else \ - { \ - if (GET_CODE (XEXP (X, 1)) == AND) \ - TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \ - else \ - TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \ - } \ - } \ - else \ - { \ - if (GET_CODE (XEXP (X, 1)) == CONST_INT) \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \ - else \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \ - } \ - break; \ - \ - case MULT: \ - if (GET_CODE (XEXP (X, 1)) == CONST_INT) \ - { \ - unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \ - int nbits = 0; \ - \ - while (value != 0) \ - { \ - nbits++; \ - value >>= 1; \ - } \ - \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \ - + nbits * ix86_cost->mult_bit); \ - } \ - else /* This is arbitrary */ \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \ - + 7 * ix86_cost->mult_bit); \ - \ - case DIV: \ - case UDIV: \ - case MOD: \ - case UMOD: \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \ - \ - case PLUS: \ - if (!TARGET_DECOMPOSE_LEA \ - && INTEGRAL_MODE_P (GET_MODE (X)) \ - && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \ - { \ - if (GET_CODE (XEXP (X, 0)) == PLUS \ - && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \ - && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \ - && CONSTANT_P (XEXP (X, 1))) \ - { \ - HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\ - if (val == 2 || val == 4 || val == 8) \ - { \ - return (COSTS_N_INSNS (ix86_cost->lea) \ - + rtx_cost (XEXP (XEXP (X, 0), 1), \ - (OUTER_CODE)) \ - + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \ - (OUTER_CODE)) \ - + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \ - } \ - } \ - else if (GET_CODE (XEXP (X, 0)) == MULT \ - && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \ - { \ - HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \ - if (val == 2 || val == 4 || val == 8) \ - { \ - return (COSTS_N_INSNS (ix86_cost->lea) \ - + rtx_cost (XEXP (XEXP (X, 0), 0), \ - (OUTER_CODE)) \ - + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \ - } \ - } \ - else if (GET_CODE (XEXP (X, 0)) == PLUS) \ - { \ - return (COSTS_N_INSNS (ix86_cost->lea) \ - + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \ - + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \ - + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \ - } \ - } \ - \ - /* fall through */ \ - case AND: \ - case IOR: \ - case XOR: \ - case MINUS: \ - if (!TARGET_64BIT && GET_MODE (X) == DImode) \ - return (COSTS_N_INSNS (ix86_cost->add) * 2 \ - + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \ - << (GET_MODE (XEXP (X, 0)) != DImode)) \ - + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \ - << (GET_MODE (XEXP (X, 1)) != DImode))); \ - \ - /* fall through */ \ - case NEG: \ - case NOT: \ - if (!TARGET_64BIT && GET_MODE (X) == DImode) \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \ - \ - egress_rtx_costs: \ - break; - - -/* An expression giving the cost of an addressing mode that contains - ADDRESS. If not defined, the cost is computed from the ADDRESS - expression and the `CONST_COSTS' values. - - For most CISC machines, the default cost is a good approximation - of the true cost of the addressing mode. However, on RISC - machines, all instructions normally have the same length and - execution time. Hence all addresses will have equal costs. - - In cases where more than one form of an address is known, the form - with the lowest cost will be used. If multiple forms have the - same, lowest, cost, the one that is the most complex will be used. - - For example, suppose an address that is equal to the sum of a - register and a constant is used twice in the same basic block. - When this macro is not defined, the address will be computed in a - register and memory references will be indirect through that - register. On machines where the cost of the addressing mode - containing the sum is no higher than that of a simple indirect - reference, this will produce an additional instruction and - possibly require an additional register. Proper specification of - this macro eliminates this overhead for such machines. - - Similar use of this macro is made in strength reduction of loops. - - ADDRESS need not be valid as an address. In such a case, the cost - is not relevant and can be any value; invalid addresses need not be - assigned a different cost. - - On machines where an address involving more than one register is as - cheap as an address computation involving only one register, - defining `ADDRESS_COST' to reflect this can cause two registers to - be live over a region of code where only one would have been if - `ADDRESS_COST' were not defined in that manner. This effect should - be considered in the definition of this macro. Equivalent costs - should probably only be given to addresses with different numbers - of registers on machines with lots of registers. - - This macro will normally either not be defined or be defined as a - constant. - - For i386, it is better to use a complex address than let gcc copy - the address into a reg and make a new pseudo. But not if the address - requires to two regs - that would mean more pseudos with longer - lifetimes. */ - -#define ADDRESS_COST(RTX) \ - ix86_address_cost (RTX) - -/* A C expression for the cost of moving data from a register in class FROM to - one in class TO. The classes are expressed using the enumeration values - such as `GENERAL_REGS'. A value of 2 is the default; other values are - interpreted relative to that. - - It is not required that the cost always equal 2 when FROM is the same as TO; - on some machines it is expensive to move between registers if they are not - general registers. */ - -#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \ - ix86_register_move_cost ((MODE), (CLASS1), (CLASS2)) - -/* A C expression for the cost of moving data of mode M between a - register and memory. A value of 2 is the default; this cost is - relative to those in `REGISTER_MOVE_COST'. - - If moving between registers and memory is more expensive than - between two registers, you should define this macro to express the - relative cost. */ - -#define MEMORY_MOVE_COST(MODE, CLASS, IN) \ - ix86_memory_move_cost ((MODE), (CLASS), (IN)) - -/* A C expression for the cost of a branch instruction. A value of 1 - is the default; other values are interpreted relative to that. */ - -#define BRANCH_COST ix86_branch_cost - -/* Define this macro as a C expression which is nonzero if accessing - less than a word of memory (i.e. a `char' or a `short') is no - faster than accessing a word of memory, i.e., if such access - require more than one instruction or if there is no difference in - cost between byte and (aligned) word loads. - - When this macro is not defined, the compiler will access a field by - finding the smallest containing object; when it is defined, a - fullword load will be used if alignment permits. Unless bytes - accesses are faster than word accesses, using word accesses is - preferable since it may eliminate subsequent memory access if - subsequent accesses occur to other fields in the same word of the - structure, but to different bytes. */ - -#define SLOW_BYTE_ACCESS 0 - -/* Nonzero if access to memory by shorts is slow and undesirable. */ -#define SLOW_SHORT_ACCESS 0 - -/* Define this macro to be the value 1 if unaligned accesses have a - cost many times greater than aligned accesses, for example if they - are emulated in a trap handler. - - When this macro is non-zero, the compiler will act as if - `STRICT_ALIGNMENT' were non-zero when generating code for block - moves. This can cause significantly more instructions to be - produced. Therefore, do not set this macro non-zero if unaligned - accesses only add a cycle or two to the time for a memory access. - - If the value of this macro is always zero, it need not be defined. */ - -/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */ - -/* Define this macro to inhibit strength reduction of memory - addresses. (On some machines, such strength reduction seems to do - harm rather than good.) */ - -/* #define DONT_REDUCE_ADDR */ - -/* Define this macro if it is as good or better to call a constant - function address than to call an address kept in a register. - - Desirable on the 386 because a CALL with a constant address is - faster than one with a register address. */ - -#define NO_FUNCTION_CSE - -/* Define this macro if it is as good or better for a function to call - itself with an explicit address than to call an address kept in a - register. */ - -#define NO_RECURSIVE_FUNCTION_CSE - -/* Add any extra modes needed to represent the condition code. - - For the i386, we need separate modes when floating-point - equality comparisons are being done. - - Add CCNO to indicate comparisons against zero that requires - Overflow flag to be unset. Sign bit test is used instead and - thus can be used to form "a&b>0" type of tests. - - Add CCGC to indicate comparisons agains zero that allows - unspecified garbage in the Carry flag. This mode is used - by inc/dec instructions. - - Add CCGOC to indicate comparisons agains zero that allows - unspecified garbage in the Carry and Overflow flag. This - mode is used to simulate comparisons of (a-b) and (a+b) - against zero using sub/cmp/add operations. - - Add CCZ to indicate that only the Zero flag is valid. */ - -#define EXTRA_CC_MODES \ - CC (CCGCmode, "CCGC") \ - CC (CCGOCmode, "CCGOC") \ - CC (CCNOmode, "CCNO") \ - CC (CCZmode, "CCZ") \ - CC (CCFPmode, "CCFP") \ - CC (CCFPUmode, "CCFPU") - -/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, - return the mode to be used for the comparison. - - For floating-point equality comparisons, CCFPEQmode should be used. - VOIDmode should be used in all other cases. - - For integer comparisons against zero, reduce to CCNOmode or CCZmode if - possible, to allow for more combinations. */ - -#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y)) - -/* Return non-zero if MODE implies a floating point inequality can be - reversed. */ - -#define REVERSIBLE_CC_MODE(MODE) 1 - -/* A C expression whose value is reversed condition code of the CODE for - comparison done in CC_MODE mode. */ -#define REVERSE_CONDITION(CODE, MODE) \ - ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \ - : reverse_condition_maybe_unordered (CODE)) - - -/* Control the assembler format that we output, to the extent - this does not vary between assemblers. */ - -/* How to refer to registers in assembler output. - This sequence is indexed by compiler's hard-register-number (see above). */ - -/* In order to refer to the first 8 regs as 32 bit regs prefix an "e" - For non floating point regs, the following are the HImode names. - - For float regs, the stack top is sometimes referred to as "%st(0)" - instead of just "%st". PRINT_REG handles this with the "y" code. */ - -#undef HI_REGISTER_NAMES -#define HI_REGISTER_NAMES \ -{"ax","dx","cx","bx","si","di","bp","sp", \ - "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \ - "flags","fpsr", "dirflag", "frame", \ - "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \ - "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \ - "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ - "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"} - -#define REGISTER_NAMES HI_REGISTER_NAMES - -/* Table of additional register names to use in user input. */ - -#define ADDITIONAL_REGISTER_NAMES \ -{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \ - { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \ - { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \ - { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \ - { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \ - { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \ - { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \ - { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} } - -/* Note we are omitting these since currently I don't know how -to get gcc to use these, since they want the same but different -number as al, and ax. -*/ - -#define QI_REGISTER_NAMES \ -{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",} - -/* These parallel the array above, and can be used to access bits 8:15 - of regs 0 through 3. */ - -#define QI_HIGH_REGISTER_NAMES \ -{"ah", "dh", "ch", "bh", } - -/* How to renumber registers for dbx and gdb. */ - -#define DBX_REGISTER_NUMBER(N) \ - (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)]) - -extern int const dbx_register_map[FIRST_PSEUDO_REGISTER]; -extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER]; -extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER]; - -/* Before the prologue, RA is at 0(%esp). */ -#define INCOMING_RETURN_ADDR_RTX \ - gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM)) - -/* After the prologue, RA is at -4(AP) in the current frame. */ -#define RETURN_ADDR_RTX(COUNT, FRAME) \ - ((COUNT) == 0 \ - ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \ - : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD))) - -/* PC is dbx register 8; let's use that column for RA. */ -#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8) - -/* Before the prologue, the top of the frame is at 4(%esp). */ -#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD - -/* Describe how we implement __builtin_eh_return. */ -#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM) -#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2) - - -/* Select a format to encode pointers in exception handling data. CODE - is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is - true if the symbol may be affected by dynamic relocations. - - ??? All x86 object file formats are capable of representing this. - After all, the relocation needed is the same as for the call insn. - Whether or not a particular assembler allows us to enter such, I - guess we'll have to see. */ -#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ - (flag_pic \ - ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\ - : DW_EH_PE_absptr) - -/* This is how to output the definition of a user-level label named NAME, - such as the label on a static function or variable NAME. */ - -#define ASM_OUTPUT_LABEL(FILE, NAME) \ - (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE))) - -/* Store in OUTPUT a string (made with alloca) containing - an assembler-name for a local static variable named NAME. - LABELNO is an integer which is different for each call. */ - -#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ -( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ - sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) - -/* This is how to output an insn to push a register on the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \ - asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]) - -/* This is how to output an insn to pop a register from the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_POP(FILE, REGNO) \ - asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]) - -/* This is how to output an element of a case-vector that is absolute. */ - -#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ - ix86_output_addr_vec_elt ((FILE), (VALUE)) - -/* This is how to output an element of a case-vector that is relative. */ - -#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ - ix86_output_addr_diff_elt ((FILE), (VALUE), (REL)) - -/* Under some conditions we need jump tables in the text section, because - the assembler cannot handle label differences between sections. */ - -#define JUMP_TABLES_IN_TEXT_SECTION \ - (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA) - -/* A C statement that outputs an address constant appropriate to - for DWARF debugging. */ - -#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \ - i386_dwarf_output_addr_const ((FILE), (X)) - -/* Either simplify a location expression, or return the original. */ - -#define ASM_SIMPLIFY_DWARF_ADDR(X) \ - i386_simplify_dwarf_addr (X) - -/* Switch to init or fini section via SECTION_OP, emit a call to FUNC, - and switch back. For x86 we do this only to save a few bytes that - would otherwise be unused in the text section. */ -#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ - asm (SECTION_OP "\n\t" \ - "call " USER_LABEL_PREFIX #FUNC "\n" \ - TEXT_SECTION_ASM_OP); - -/* Print operand X (an rtx) in assembler syntax to file FILE. - CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. - Effect of various CODE letters is described in i386.c near - print_operand function. */ - -#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ - ((CODE) == '*' || (CODE) == '+') - -/* Print the name of a register based on its machine mode and number. - If CODE is 'w', pretend the mode is HImode. - If CODE is 'b', pretend the mode is QImode. - If CODE is 'k', pretend the mode is SImode. - If CODE is 'q', pretend the mode is DImode. - If CODE is 'h', pretend the reg is the `high' byte register. - If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */ - -#define PRINT_REG(X, CODE, FILE) \ - print_reg ((X), (CODE), (FILE)) - -#define PRINT_OPERAND(FILE, X, CODE) \ - print_operand ((FILE), (X), (CODE)) - -#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ - print_operand_address ((FILE), (ADDR)) - -/* Print the name of a register for based on its machine mode and number. - This macro is used to print debugging output. - This macro is different from PRINT_REG in that it may be used in - programs that are not linked with aux-output.o. */ - -#define DEBUG_PRINT_REG(X, CODE, FILE) \ - do { static const char * const hi_name[] = HI_REGISTER_NAMES; \ - static const char * const qi_name[] = QI_REGISTER_NAMES; \ - fprintf ((FILE), "%d ", REGNO (X)); \ - if (REGNO (X) == FLAGS_REG) \ - { fputs ("flags", (FILE)); break; } \ - if (REGNO (X) == DIRFLAG_REG) \ - { fputs ("dirflag", (FILE)); break; } \ - if (REGNO (X) == FPSR_REG) \ - { fputs ("fpsr", (FILE)); break; } \ - if (REGNO (X) == ARG_POINTER_REGNUM) \ - { fputs ("argp", (FILE)); break; } \ - if (REGNO (X) == FRAME_POINTER_REGNUM) \ - { fputs ("frame", (FILE)); break; } \ - if (STACK_TOP_P (X)) \ - { fputs ("st(0)", (FILE)); break; } \ - if (FP_REG_P (X)) \ - { fputs (hi_name[REGNO(X)], (FILE)); break; } \ - if (REX_INT_REG_P (X)) \ - { \ - switch (GET_MODE_SIZE (GET_MODE (X))) \ - { \ - default: \ - case 8: \ - fprintf ((FILE), "r%i", REGNO (X) \ - - FIRST_REX_INT_REG + 8); \ - break; \ - case 4: \ - fprintf ((FILE), "r%id", REGNO (X) \ - - FIRST_REX_INT_REG + 8); \ - break; \ - case 2: \ - fprintf ((FILE), "r%iw", REGNO (X) \ - - FIRST_REX_INT_REG + 8); \ - break; \ - case 1: \ - fprintf ((FILE), "r%ib", REGNO (X) \ - - FIRST_REX_INT_REG + 8); \ - break; \ - } \ - break; \ - } \ - switch (GET_MODE_SIZE (GET_MODE (X))) \ - { \ - case 8: \ - fputs ("r", (FILE)); \ - fputs (hi_name[REGNO (X)], (FILE)); \ - break; \ - default: \ - fputs ("e", (FILE)); \ - case 2: \ - fputs (hi_name[REGNO (X)], (FILE)); \ - break; \ - case 1: \ - fputs (qi_name[REGNO (X)], (FILE)); \ - break; \ - } \ - } while (0) - -/* a letter which is not needed by the normal asm syntax, which - we can use for operand syntax in the extended asm */ - -#define ASM_OPERAND_LETTER '#' -#define RET return "" -#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx)) - -/* Define the codes that are matched by predicates in i386.c. */ - -#define PREDICATE_CODES \ - {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \ - SYMBOL_REF, LABEL_REF}}, \ - {"shiftdi_operand", {SUBREG, REG, MEM}}, \ - {"const_int_1_operand", {CONST_INT}}, \ - {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \ - {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \ - LABEL_REF, SUBREG, REG, MEM}}, \ - {"pic_symbolic_operand", {CONST}}, \ - {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \ - {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \ - {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \ - {"const1_operand", {CONST_INT}}, \ - {"const248_operand", {CONST_INT}}, \ - {"incdec_operand", {CONST_INT}}, \ - {"mmx_reg_operand", {REG}}, \ - {"reg_no_sp_operand", {SUBREG, REG}}, \ - {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \ - SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \ - {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \ - {"q_regs_operand", {SUBREG, REG}}, \ - {"non_q_regs_operand", {SUBREG, REG}}, \ - {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \ - ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \ - GE, UNGE, LTGT, UNEQ}}, \ - {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \ - ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \ - }}, \ - {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \ - GTU, UNORDERED, ORDERED, UNLE, UNLT, \ - UNGE, UNGT, LTGT, UNEQ }}, \ - {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \ - {"ext_register_operand", {SUBREG, REG}}, \ - {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \ - {"mult_operator", {MULT}}, \ - {"div_operator", {DIV}}, \ - {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \ - UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \ - UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \ - LSHIFTRT, ROTATERT}}, \ - {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \ - {"memory_displacement_operand", {MEM}}, \ - {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \ - LABEL_REF, SUBREG, REG, MEM, AND}}, \ - {"long_memory_operand", {MEM}}, - -/* A list of predicates that do special things with modes, and so - should not elicit warnings for VOIDmode match_operand. */ - -#define SPECIAL_MODE_PREDICATES \ - "ext_register_operand", - -/* CM_32 is used by 32bit ABI - CM_SMALL is small model assuming that all code and data fits in the first - 31bits of address space. - CM_KERNEL is model assuming that all code and data fits in the negative - 31bits of address space. - CM_MEDIUM is model assuming that code fits in the first 31bits of address - space. Size of data is unlimited. - CM_LARGE is model making no assumptions about size of particular sections. - - CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt - tables first in 31bits of address space. - */ -enum cmodel { - CM_32, - CM_SMALL, - CM_KERNEL, - CM_MEDIUM, - CM_LARGE, - CM_SMALL_PIC -}; - -/* Size of the RED_ZONE area. */ -#define RED_ZONE_SIZE 128 -/* Reserved area of the red zone for temporaries. */ -#define RED_ZONE_RESERVE 8 -extern const char *ix86_debug_arg_string, *ix86_debug_addr_string; - -enum asm_dialect { - ASM_ATT, - ASM_INTEL -}; -extern const char *ix86_asm_string; -extern enum asm_dialect ix86_asm_dialect; -/* Value of -mcmodel specified by user. */ -extern const char *ix86_cmodel_string; -extern enum cmodel ix86_cmodel; - -/* Variables in i386.c */ -extern const char *ix86_cpu_string; /* for -mcpu= */ -extern const char *ix86_arch_string; /* for -march= */ -extern const char *ix86_fpmath_string; /* for -mfpmath= */ -extern const char *ix86_regparm_string; /* # registers to use to pass args */ -extern const char *ix86_align_loops_string; /* power of two alignment for loops */ -extern const char *ix86_align_jumps_string; /* power of two alignment for non-loop jumps */ -extern const char *ix86_align_funcs_string; /* power of two alignment for functions */ -extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */ -extern const char *ix86_branch_cost_string; /* values 1-5: see jump.c */ -extern int ix86_regparm; /* ix86_regparm_string as a number */ -extern int ix86_preferred_stack_boundary; /* preferred stack boundary alignment in bits */ -extern int ix86_branch_cost; /* values 1-5: see jump.c */ -extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */ -// Commented out the following two lines due to lack of definition for "rtx" - Brian -//extern rtx ix86_compare_op0; /* operand 0 for comparisons */ -//extern rtx ix86_compare_op1; /* operand 1 for comparisons */ - -/* To properly truncate FP values into integers, we need to set i387 control - word. We can't emit proper mode switching code before reload, as spills - generated by reload may truncate values incorrectly, but we still can avoid - redundant computation of new control word by the mode switching pass. - The fldcw instructions are still emitted redundantly, but this is probably - not going to be noticeable problem, as most CPUs do have fast path for - the sequence. - - The machinery is to emit simple truncation instructions and split them - before reload to instructions having USEs of two memory locations that - are filled by this code to old and new control word. - - Post-reload pass may be later used to eliminate the redundant fildcw if - needed. */ - -enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY}; - -/* Define this macro if the port needs extra instructions inserted - for mode switching in an optimizing compilation. */ - -#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1 - -/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as - initializer for an array of integers. Each initializer element N - refers to an entity that needs mode switching, and specifies the - number of different modes that might need to be set for this - entity. The position of the initializer in the initializer - - starting counting at zero - determines the integer that is used to - refer to the mode-switched entity in question. */ - -#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY } - -/* ENTITY is an integer specifying a mode-switched entity. If - `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to - return an integer value not larger than the corresponding element - in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY - must be switched into prior to the execution of INSN. */ - -#define MODE_NEEDED(ENTITY, I) \ - (GET_CODE (I) == CALL_INSN \ - || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \ - || GET_CODE (PATTERN (I)) == ASM_INPUT))\ - ? FP_CW_UNINITIALIZED \ - : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \ - ? FP_CW_ANY \ - : FP_CW_STORED) - -/* This macro specifies the order in which modes for ENTITY are - processed. 0 is the highest priority. */ - -#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N) - -/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE - is the set of hard registers live at the point where the insn(s) - are to be inserted. */ - -#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \ - ((MODE) == FP_CW_STORED \ - ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \ - assign_386_stack_local (HImode, 2)), 0\ - : 0) - -/* Avoid renaming of stack registers, as doing so in combination with - scheduling just increases amount of live registers at time and in - the turn amount of fxch instructions needed. - - ??? Maybe Pentium chips benefits from renaming, someone can try... */ - -#define HARD_REGNO_RENAME_OK(SRC, TARGET) \ - ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG) - - -/* -Local variables: -version-control: t -End: -*/ diff --git a/reactos/drivers/storage/ide/uniata/ros_glue/libgcc2.c b/reactos/drivers/storage/ide/uniata/ros_glue/libgcc2.c deleted file mode 100644 index 5096fc2bc91..00000000000 --- a/reactos/drivers/storage/ide/uniata/ros_glue/libgcc2.c +++ /dev/null @@ -1,2071 +0,0 @@ -/* More subroutines needed by GCC output code on some machines. */ -/* Compile this one with gcc. */ -/* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, - 2000, 2001 Free Software Foundation, Inc. - -This file is part of GCC. - -GCC is free software; you can redistribute it and/or modify it under -the terms of the GNU General Public License as published by the Free -Software Foundation; either version 2, or (at your option) any later -version. - -In addition to the permissions in the GNU General Public License, the -Free Software Foundation gives you unlimited permission to link the -compiled version of this file into combinations with other programs, -and to distribute those combinations without any restriction coming -from the use of this file. (The General Public License restrictions -do apply in other respects; for example, they cover modification of -the file, and distribution when not linked into a combine -executable.) - -GCC is distributed in the hope that it will be useful, but WITHOUT ANY -WARRANTY; without even the implied warranty of MERCHANTABILITY or -FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -for more details. - -You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 59 Temple Place - Suite 330, Boston, MA -02111-1307, USA. */ - -/* It is incorrect to include config.h here, because this file is being - compiled for the target, and hence definitions concerning only the host - do not apply. */ - -/* - * This file was taken from the GCC v3.1 source - Brian - */ - -#ifdef __i386__ -#include "i386.h" -#elif defined(_M_PPC) -#include "powerpc.h" -#endif -#define L_clz -#define L_divdi3 -#define L_udivdi3 -#define L_umoddi3 - -#include - -//#include "tconfig.h" -//#include "tsystem.h" - -//#include "machmode.h" - -/* Don't use `fancy_abort' here even if config.h says to use it. */ -#ifdef abort -#undef abort -#endif - -#include "libgcc2.h" - -#if defined (L_negdi2) || defined (L_divdi3) || defined (L_moddi3) -#if defined (L_divdi3) || defined (L_moddi3) -static __inline -#endif -DWtype -__negdi2 (DWtype u) -{ - DWunion w; - DWunion uu; - - uu.ll = u; - - w.s.low = -uu.s.low; - w.s.high = -uu.s.high - ((UWtype) w.s.low > 0); - - return w.ll; -} -#endif - -#ifdef L_addvsi3 -Wtype -__addvsi3 (Wtype a, Wtype b) -{ - Wtype w; - - w = a + b; - - if (b >= 0 ? w < a : w > a) - abort (); - - return w; -} -#endif - -#ifdef L_addvdi3 -DWtype -__addvdi3 (DWtype a, DWtype b) -{ - DWtype w; - - w = a + b; - - if (b >= 0 ? w < a : w > a) - abort (); - - return w; -} -#endif - -#ifdef L_subvsi3 -Wtype -__subvsi3 (Wtype a, Wtype b) -{ -#ifdef L_addvsi3 - return __addvsi3 (a, (-b)); -#else - DWtype w; - - w = a - b; - - if (b >= 0 ? w > a : w < a) - abort (); - - return w; -#endif -} -#endif - -#ifdef L_subvdi3 -DWtype -__subvdi3 (DWtype a, DWtype b) -{ -#ifdef L_addvdi3 - return (a, (-b)); -#else - DWtype w; - - w = a - b; - - if (b >= 0 ? w > a : w < a) - abort (); - - return w; -#endif -} -#endif - -#ifdef L_mulvsi3 -Wtype -__mulvsi3 (Wtype a, Wtype b) -{ - DWtype w; - - w = a * b; - - if (((a >= 0) == (b >= 0)) ? w < 0 : w > 0) - abort (); - - return w; -} -#endif - -#ifdef L_negvsi2 -Wtype -__negvsi2 (Wtype a) -{ - Wtype w; - - w = -a; - - if (a >= 0 ? w > 0 : w < 0) - abort (); - - return w; -} -#endif - -#ifdef L_negvdi2 -DWtype -__negvdi2 (DWtype a) -{ - DWtype w; - - w = -a; - - if (a >= 0 ? w > 0 : w < 0) - abort (); - - return w; -} -#endif - -#ifdef L_absvsi2 -Wtype -__absvsi2 (Wtype a) -{ - Wtype w = a; - - if (a < 0) -#ifdef L_negvsi2 - w = __negvsi2 (a); -#else - w = -a; - - if (w < 0) - abort (); -#endif - - return w; -} -#endif - -#ifdef L_absvdi2 -DWtype -__absvdi2 (DWtype a) -{ - DWtype w = a; - - if (a < 0) -#ifdef L_negvsi2 - w = __negvsi2 (a); -#else - w = -a; - - if (w < 0) - abort (); -#endif - - return w; -} -#endif - -#ifdef L_mulvdi3 -DWtype -__mulvdi3 (DWtype u, DWtype v) -{ - DWtype w; - - w = u * v; - - if (((u >= 0) == (v >= 0)) ? w < 0 : w > 0) - abort (); - - return w; -} -#endif - - -/* Unless shift functions are defined whith full ANSI prototypes, - parameter b will be promoted to int if word_type is smaller than an int. */ -#ifdef L_lshrdi3 -DWtype -__lshrdi3 (DWtype u, word_type b) -{ - DWunion w; - word_type bm; - DWunion uu; - - if (b == 0) - return u; - - uu.ll = u; - - bm = (sizeof (Wtype) * BITS_PER_UNIT) - b; - if (bm <= 0) - { - w.s.high = 0; - w.s.low = (UWtype) uu.s.high >> -bm; - } - else - { - UWtype carries = (UWtype) uu.s.high << bm; - - w.s.high = (UWtype) uu.s.high >> b; - w.s.low = ((UWtype) uu.s.low >> b) | carries; - } - - return w.ll; -} -#endif - -#ifdef L_ashldi3 -DWtype -__ashldi3 (DWtype u, word_type b) -{ - DWunion w; - word_type bm; - DWunion uu; - - if (b == 0) - return u; - - uu.ll = u; - - bm = (sizeof (Wtype) * BITS_PER_UNIT) - b; - if (bm <= 0) - { - w.s.low = 0; - w.s.high = (UWtype) uu.s.low << -bm; - } - else - { - UWtype carries = (UWtype) uu.s.low >> bm; - - w.s.low = (UWtype) uu.s.low << b; - w.s.high = ((UWtype) uu.s.high << b) | carries; - } - - return w.ll; -} -#endif - -#ifdef L_ashrdi3 -DWtype -__ashrdi3 (DWtype u, word_type b) -{ - DWunion w; - word_type bm; - DWunion uu; - - if (b == 0) - return u; - - uu.ll = u; - - bm = (sizeof (Wtype) * BITS_PER_UNIT) - b; - if (bm <= 0) - { - /* w.s.high = 1..1 or 0..0 */ - w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1); - w.s.low = uu.s.high >> -bm; - } - else - { - UWtype carries = (UWtype) uu.s.high << bm; - - w.s.high = uu.s.high >> b; - w.s.low = ((UWtype) uu.s.low >> b) | carries; - } - - return w.ll; -} -#endif - -#ifdef L_ffsdi2 -DWtype -__ffsdi2 (DWtype u) -{ - DWunion uu; - UWtype word, count, add; - - uu.ll = u; - if (uu.s.low != 0) - word = uu.s.low, add = 0; - else if (uu.s.high != 0) - word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype); - else - return 0; - - count_trailing_zeros (count, word); - return count + add + 1; -} -#endif - -#ifdef L_muldi3 -DWtype -__muldi3 (DWtype u, DWtype v) -{ - DWunion w; - DWunion uu, vv; - - uu.ll = u, - vv.ll = v; - - w.ll = __umulsidi3 (uu.s.low, vv.s.low); - w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high - + (UWtype) uu.s.high * (UWtype) vv.s.low); - - return w.ll; -} -#endif - -#ifdef L_udiv_w_sdiv -#if defined (sdiv_qrnnd) -UWtype -__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d) -{ - UWtype q, r; - UWtype c0, c1, b1; - - if ((Wtype) d >= 0) - { - if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1))) - { - /* dividend, divisor, and quotient are nonnegative */ - sdiv_qrnnd (q, r, a1, a0, d); - } - else - { - /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */ - sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1)); - /* Divide (c1*2^32 + c0) by d */ - sdiv_qrnnd (q, r, c1, c0, d); - /* Add 2^31 to quotient */ - q += (UWtype) 1 << (W_TYPE_SIZE - 1); - } - } - else - { - b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ - c1 = a1 >> 1; /* A/2 */ - c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1); - - if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ - { - sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ - - r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ - if ((d & 1) != 0) - { - if (r >= q) - r = r - q; - else if (q - r <= d) - { - r = r - q + d; - q--; - } - else - { - r = r - q + 2*d; - q -= 2; - } - } - } - else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ - { - c1 = (b1 - 1) - c1; - c0 = ~c0; /* logical NOT */ - - sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ - - q = ~q; /* (A/2)/b1 */ - r = (b1 - 1) - r; - - r = 2*r + (a0 & 1); /* A/(2*b1) */ - - if ((d & 1) != 0) - { - if (r >= q) - r = r - q; - else if (q - r <= d) - { - r = r - q + d; - q--; - } - else - { - r = r - q + 2*d; - q -= 2; - } - } - } - else /* Implies c1 = b1 */ - { /* Hence a1 = d - 1 = 2*b1 - 1 */ - if (a0 >= -d) - { - q = -1; - r = a0 + d; - } - else - { - q = -2; - r = a0 + 2*d; - } - } - } - - *rp = r; - return q; -} -#else -/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */ -UWtype -__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)), - UWtype a1 __attribute__ ((__unused__)), - UWtype a0 __attribute__ ((__unused__)), - UWtype d __attribute__ ((__unused__))) -{ - return 0; -} -#endif -#endif - -#if (defined (L_udivdi3) || defined (L_divdi3) || \ - defined (L_umoddi3) || defined (L_moddi3)) -#define L_udivmoddi4 -#endif - -#ifdef L_clz -const UQItype __clz_tab[] = -{ - 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, - 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, - 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, - 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, -}; -#endif - -#ifdef L_udivmoddi4 - -#if (defined (L_udivdi3) || defined (L_divdi3) || \ - defined (L_umoddi3) || defined (L_moddi3)) -static __inline -#endif -UDWtype -__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp) -{ - DWunion ww; - DWunion nn, dd; - DWunion rr; - UWtype d0, d1, n0, n1, n2; - UWtype q0, q1; - UWtype b, bm; - - nn.ll = n; - dd.ll = d; - - d0 = dd.s.low; - d1 = dd.s.high; - n0 = nn.s.low; - n1 = nn.s.high; - -#if !UDIV_NEEDS_NORMALIZATION - if (d1 == 0) - { - if (d0 > n1) - { - /* 0q = nn / 0D */ - - udiv_qrnnd (q0, n0, n1, n0, d0); - q1 = 0; - - /* Remainder in n0. */ - } - else - { - /* qq = NN / 0d */ - - if (d0 == 0) - d0 = 1 / d0; /* Divide intentionally by zero. */ - - udiv_qrnnd (q1, n1, 0, n1, d0); - udiv_qrnnd (q0, n0, n1, n0, d0); - - /* Remainder in n0. */ - } - - if (rp != 0) - { - rr.s.low = n0; - rr.s.high = 0; - *rp = rr.ll; - } - } - -#else /* UDIV_NEEDS_NORMALIZATION */ - - if (d1 == 0) - { - if (d0 > n1) - { - /* 0q = nn / 0D */ - - count_leading_zeros (bm, d0); - - if (bm != 0) - { - /* Normalize, i.e. make the most significant bit of the - denominator set. */ - - d0 = d0 << bm; - n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm)); - n0 = n0 << bm; - } - - udiv_qrnnd (q0, n0, n1, n0, d0); - q1 = 0; - - /* Remainder in n0 >> bm. */ - } - else - { - /* qq = NN / 0d */ - - if (d0 == 0) - d0 = 1 / d0; /* Divide intentionally by zero. */ - - count_leading_zeros (bm, d0); - - if (bm == 0) - { - /* From (n1 >= d0) /\ (the most significant bit of d0 is set), - conclude (the most significant bit of n1 is set) /\ (the - leading quotient digit q1 = 1). - - This special case is necessary, not an optimization. - (Shifts counts of W_TYPE_SIZE are undefined.) */ - - n1 -= d0; - q1 = 1; - } - else - { - /* Normalize. */ - - b = W_TYPE_SIZE - bm; - - d0 = d0 << bm; - n2 = n1 >> b; - n1 = (n1 << bm) | (n0 >> b); - n0 = n0 << bm; - - udiv_qrnnd (q1, n1, n2, n1, d0); - } - - /* n1 != d0... */ - - udiv_qrnnd (q0, n0, n1, n0, d0); - - /* Remainder in n0 >> bm. */ - } - - if (rp != 0) - { - rr.s.low = n0 >> bm; - rr.s.high = 0; - *rp = rr.ll; - } - } -#endif /* UDIV_NEEDS_NORMALIZATION */ - - else - { - if (d1 > n1) - { - /* 00 = nn / DD */ - - q0 = 0; - q1 = 0; - - /* Remainder in n1n0. */ - if (rp != 0) - { - rr.s.low = n0; - rr.s.high = n1; - *rp = rr.ll; - } - } - else - { - /* 0q = NN / dd */ - - count_leading_zeros (bm, d1); - if (bm == 0) - { - /* From (n1 >= d1) /\ (the most significant bit of d1 is set), - conclude (the most significant bit of n1 is set) /\ (the - quotient digit q0 = 0 or 1). - - This special case is necessary, not an optimization. */ - - /* The condition on the next line takes advantage of that - n1 >= d1 (true due to program flow). */ - if (n1 > d1 || n0 >= d0) - { - q0 = 1; - sub_ddmmss (n1, n0, n1, n0, d1, d0); - } - else - q0 = 0; - - q1 = 0; - - if (rp != 0) - { - rr.s.low = n0; - rr.s.high = n1; - *rp = rr.ll; - } - } - else - { - UWtype m1, m0; - /* Normalize. */ - - b = W_TYPE_SIZE - bm; - - d1 = (d1 << bm) | (d0 >> b); - d0 = d0 << bm; - n2 = n1 >> b; - n1 = (n1 << bm) | (n0 >> b); - n0 = n0 << bm; - - udiv_qrnnd (q0, n1, n2, n1, d1); - umul_ppmm (m1, m0, q0, d0); - - if (m1 > n1 || (m1 == n1 && m0 > n0)) - { - q0--; - sub_ddmmss (m1, m0, m1, m0, d1, d0); - } - - q1 = 0; - - /* Remainder in (n1n0 - m1m0) >> bm. */ - if (rp != 0) - { - sub_ddmmss (n1, n0, n1, n0, m1, m0); - rr.s.low = (n1 << b) | (n0 >> bm); - rr.s.high = n1 >> bm; - *rp = rr.ll; - } - } - } - } - - ww.s.low = q0; - ww.s.high = q1; - return ww.ll; -} -#endif - -#ifdef L_divdi3 -DWtype -__divdi3 (DWtype u, DWtype v) -{ - word_type c = 0; - DWunion uu, vv; - DWtype w; - - uu.ll = u; - vv.ll = v; - - if (uu.s.high < 0) - c = ~c, - uu.ll = __negdi2 (uu.ll); - if (vv.s.high < 0) - c = ~c, - vv.ll = __negdi2 (vv.ll); - - w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0); - if (c) - w = __negdi2 (w); - - return w; -} -#endif - -#ifdef L_moddi3 -DWtype -__moddi3 (DWtype u, DWtype v) -{ - word_type c = 0; - DWunion uu, vv; - DWtype w; - - uu.ll = u; - vv.ll = v; - - if (uu.s.high < 0) - c = ~c, - uu.ll = __negdi2 (uu.ll); - if (vv.s.high < 0) - vv.ll = __negdi2 (vv.ll); - - (void) __udivmoddi4 (uu.ll, vv.ll, &w); - if (c) - w = __negdi2 (w); - - return w; -} -#endif - -#ifdef L_umoddi3 -UDWtype -__umoddi3 (UDWtype u, UDWtype v) -{ - UDWtype w; - - (void) __udivmoddi4 (u, v, &w); - - return w; -} -#endif - -#ifdef L_udivdi3 -UDWtype -__udivdi3 (UDWtype n, UDWtype d) -{ - return __udivmoddi4 (n, d, (UDWtype *) 0); -} -#endif - -#ifdef L_cmpdi2 -word_type -__cmpdi2 (DWtype a, DWtype b) -{ - DWunion au, bu; - - au.ll = a, bu.ll = b; - - if (au.s.high < bu.s.high) - return 0; - else if (au.s.high > bu.s.high) - return 2; - if ((UWtype) au.s.low < (UWtype) bu.s.low) - return 0; - else if ((UWtype) au.s.low > (UWtype) bu.s.low) - return 2; - return 1; -} -#endif - -#ifdef L_ucmpdi2 -word_type -__ucmpdi2 (DWtype a, DWtype b) -{ - DWunion au, bu; - - au.ll = a, bu.ll = b; - - if ((UWtype) au.s.high < (UWtype) bu.s.high) - return 0; - else if ((UWtype) au.s.high > (UWtype) bu.s.high) - return 2; - if ((UWtype) au.s.low < (UWtype) bu.s.low) - return 0; - else if ((UWtype) au.s.low > (UWtype) bu.s.low) - return 2; - return 1; -} -#endif - -#if defined(L_fixunstfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128) -#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) -#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) - -DWtype -__fixunstfDI (TFtype a) -{ - TFtype b; - UDWtype v; - - if (a < 0) - return 0; - - /* Compute high word of result, as a flonum. */ - b = (a / HIGH_WORD_COEFF); - /* Convert that to fixed (but not to DWtype!), - and shift it into the high word. */ - v = (UWtype) b; - v <<= WORD_SIZE; - /* Remove high part from the TFtype, leaving the low part as flonum. */ - a -= (TFtype)v; - /* Convert that to fixed (but not to DWtype!) and add it in. - Sometimes A comes out negative. This is significant, since - A has more bits than a long int does. */ - if (a < 0) - v -= (UWtype) (- a); - else - v += (UWtype) a; - return v; -} -#endif - -#if defined(L_fixtfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128) -DWtype -__fixtfdi (TFtype a) -{ - if (a < 0) - return - __fixunstfDI (-a); - return __fixunstfDI (a); -} -#endif - -#if defined(L_fixunsxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96) -#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) -#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) - -DWtype -__fixunsxfDI (XFtype a) -{ - XFtype b; - UDWtype v; - - if (a < 0) - return 0; - - /* Compute high word of result, as a flonum. */ - b = (a / HIGH_WORD_COEFF); - /* Convert that to fixed (but not to DWtype!), - and shift it into the high word. */ - v = (UWtype) b; - v <<= WORD_SIZE; - /* Remove high part from the XFtype, leaving the low part as flonum. */ - a -= (XFtype)v; - /* Convert that to fixed (but not to DWtype!) and add it in. - Sometimes A comes out negative. This is significant, since - A has more bits than a long int does. */ - if (a < 0) - v -= (UWtype) (- a); - else - v += (UWtype) a; - return v; -} -#endif - -#if defined(L_fixxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96) -DWtype -__fixxfdi (XFtype a) -{ - if (a < 0) - return - __fixunsxfDI (-a); - return __fixunsxfDI (a); -} -#endif - -#ifdef L_fixunsdfdi -#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) -#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) - -DWtype -__fixunsdfDI (DFtype a) -{ - DFtype b; - UDWtype v; - - if (a < 0) - return 0; - - /* Compute high word of result, as a flonum. */ - b = (a / HIGH_WORD_COEFF); - /* Convert that to fixed (but not to DWtype!), - and shift it into the high word. */ - v = (UWtype) b; - v <<= WORD_SIZE; - /* Remove high part from the DFtype, leaving the low part as flonum. */ - a -= (DFtype)v; - /* Convert that to fixed (but not to DWtype!) and add it in. - Sometimes A comes out negative. This is significant, since - A has more bits than a long int does. */ - if (a < 0) - v -= (UWtype) (- a); - else - v += (UWtype) a; - return v; -} -#endif - -#ifdef L_fixdfdi -DWtype -__fixdfdi (DFtype a) -{ - if (a < 0) - return - __fixunsdfDI (-a); - return __fixunsdfDI (a); -} -#endif - -#ifdef L_fixunssfdi -#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) -#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) - -DWtype -__fixunssfDI (SFtype original_a) -{ - /* Convert the SFtype to a DFtype, because that is surely not going - to lose any bits. Some day someone else can write a faster version - that avoids converting to DFtype, and verify it really works right. */ - DFtype a = original_a; - DFtype b; - UDWtype v; - - if (a < 0) - return 0; - - /* Compute high word of result, as a flonum. */ - b = (a / HIGH_WORD_COEFF); - /* Convert that to fixed (but not to DWtype!), - and shift it into the high word. */ - v = (UWtype) b; - v <<= WORD_SIZE; - /* Remove high part from the DFtype, leaving the low part as flonum. */ - a -= (DFtype) v; - /* Convert that to fixed (but not to DWtype!) and add it in. - Sometimes A comes out negative. This is significant, since - A has more bits than a long int does. */ - if (a < 0) - v -= (UWtype) (- a); - else - v += (UWtype) a; - return v; -} -#endif - -#ifdef L_fixsfdi -DWtype -__fixsfdi (SFtype a) -{ - if (a < 0) - return - __fixunssfDI (-a); - return __fixunssfDI (a); -} -#endif - -#if defined(L_floatdixf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96) -#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) -#define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2)) -#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) - -XFtype -__floatdixf (DWtype u) -{ - XFtype d; - - d = (Wtype) (u >> WORD_SIZE); - d *= HIGH_HALFWORD_COEFF; - d *= HIGH_HALFWORD_COEFF; - d += (UWtype) (u & (HIGH_WORD_COEFF - 1)); - - return d; -} -#endif - -#if defined(L_floatditf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128) -#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) -#define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2)) -#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) - -TFtype -__floatditf (DWtype u) -{ - TFtype d; - - d = (Wtype) (u >> WORD_SIZE); - d *= HIGH_HALFWORD_COEFF; - d *= HIGH_HALFWORD_COEFF; - d += (UWtype) (u & (HIGH_WORD_COEFF - 1)); - - return d; -} -#endif - -#ifdef L_floatdidf -#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) -#define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2)) -#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) - -DFtype -__floatdidf (DWtype u) -{ - DFtype d; - - d = (Wtype) (u >> WORD_SIZE); - d *= HIGH_HALFWORD_COEFF; - d *= HIGH_HALFWORD_COEFF; - d += (UWtype) (u & (HIGH_WORD_COEFF - 1)); - - return d; -} -#endif - -#ifdef L_floatdisf -#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) -#define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2)) -#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) -#define DI_SIZE (sizeof (DWtype) * BITS_PER_UNIT) - -/* Define codes for all the float formats that we know of. Note - that this is copied from real.h. */ - -#define UNKNOWN_FLOAT_FORMAT 0 -#define IEEE_FLOAT_FORMAT 1 -#define VAX_FLOAT_FORMAT 2 -#define IBM_FLOAT_FORMAT 3 - -/* Default to IEEE float if not specified. Nearly all machines use it. */ -#ifndef HOST_FLOAT_FORMAT -#define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT -#endif - -#if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT -#define DF_SIZE 53 -#define SF_SIZE 24 -#endif - -#if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT -#define DF_SIZE 56 -#define SF_SIZE 24 -#endif - -#if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT -#define DF_SIZE 56 -#define SF_SIZE 24 -#endif - -SFtype -__floatdisf (DWtype u) -{ - /* Do the calculation in DFmode - so that we don't lose any of the precision of the high word - while multiplying it. */ - DFtype f; - - /* Protect against double-rounding error. - Represent any low-order bits, that might be truncated in DFmode, - by a bit that won't be lost. The bit can go in anywhere below the - rounding position of the SFmode. A fixed mask and bit position - handles all usual configurations. It doesn't handle the case - of 128-bit DImode, however. */ - if (DF_SIZE < DI_SIZE - && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE)) - { -#define REP_BIT ((UDWtype) 1 << (DI_SIZE - DF_SIZE)) - if (! (- ((DWtype) 1 << DF_SIZE) < u - && u < ((DWtype) 1 << DF_SIZE))) - { - if ((UDWtype) u & (REP_BIT - 1)) - u |= REP_BIT; - } - } - f = (Wtype) (u >> WORD_SIZE); - f *= HIGH_HALFWORD_COEFF; - f *= HIGH_HALFWORD_COEFF; - f += (UWtype) (u & (HIGH_WORD_COEFF - 1)); - - return (SFtype) f; -} -#endif - -#if defined(L_fixunsxfsi) && LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96 -/* Reenable the normal types, in case limits.h needs them. */ -#undef char -#undef short -#undef int -#undef long -#undef unsigned -#undef float -#undef double -#undef MIN -#undef MAX -#include - -UWtype -__fixunsxfSI (XFtype a) -{ - if (a >= - (DFtype) Wtype_MIN) - return (Wtype) (a + Wtype_MIN) - Wtype_MIN; - return (Wtype) a; -} -#endif - -#ifdef L_fixunsdfsi -/* Reenable the normal types, in case limits.h needs them. */ -#undef char -#undef short -#undef int -#undef long -#undef unsigned -#undef float -#undef double -#undef MIN -#undef MAX -#include - -UWtype -__fixunsdfSI (DFtype a) -{ - if (a >= - (DFtype) Wtype_MIN) - return (Wtype) (a + Wtype_MIN) - Wtype_MIN; - return (Wtype) a; -} -#endif - -#ifdef L_fixunssfsi -/* Reenable the normal types, in case limits.h needs them. */ -#undef char -#undef short -#undef int -#undef long -#undef unsigned -#undef float -#undef double -#undef MIN -#undef MAX -#include - -UWtype -__fixunssfSI (SFtype a) -{ - if (a >= - (SFtype) Wtype_MIN) - return (Wtype) (a + Wtype_MIN) - Wtype_MIN; - return (Wtype) a; -} -#endif - -/* From here on down, the routines use normal data types. */ - -#define SItype bogus_type -#define USItype bogus_type -#define DItype bogus_type -#define UDItype bogus_type -#define SFtype bogus_type -#define DFtype bogus_type -#undef Wtype -#undef UWtype -#undef HWtype -#undef UHWtype -#undef DWtype -#undef UDWtype - -#undef char -#undef short -#undef int -#undef long -#undef unsigned -#undef float -#undef double - -#ifdef L__gcc_bcmp - -/* Like bcmp except the sign is meaningful. - Result is negative if S1 is less than S2, - positive if S1 is greater, 0 if S1 and S2 are equal. */ - -int -__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size) -{ - while (size > 0) - { - unsigned char c1 = *s1++, c2 = *s2++; - if (c1 != c2) - return c1 - c2; - size--; - } - return 0; -} - -#endif - -/* __eprintf used to be used by GCC's private version of . - We no longer provide that header, but this routine remains in libgcc.a - for binary backward compatibility. Note that it is not included in - the shared version of libgcc. */ -#ifdef L_eprintf -#ifndef inhibit_libc - -#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ -#include - -void -__eprintf (const char *string, const char *expression, - unsigned int line, const char *filename) -{ - fprintf (stderr, string, expression, line, filename); - fflush (stderr); - abort (); -} - -#endif -#endif - -#ifdef L_bb - -#if LONG_TYPE_SIZE == GCOV_TYPE_SIZE -typedef long gcov_type; -#else -typedef long long gcov_type; -#endif - - -/* Structure emitted by -a */ -struct bb -{ - long zero_word; - const char *filename; - gcov_type *counts; - long ncounts; - struct bb *next; - const unsigned long *addresses; - - /* Older GCC's did not emit these fields. */ - long nwords; - const char **functions; - const long *line_nums; - const char **filenames; - char *flags; -}; - -#ifdef BLOCK_PROFILER_CODE -BLOCK_PROFILER_CODE -#else -#ifndef inhibit_libc - -/* Simple minded basic block profiling output dumper for - systems that don't provide tcov support. At present, - it requires atexit and stdio. */ - -#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ -#include - -#include "gbl-ctors.h" -#include "gcov-io.h" -#include -#ifdef TARGET_HAS_F_SETLKW -#include -#include -#endif - -static struct bb *bb_head; - -void -__bb_exit_func (void) -{ - FILE *da_file; - int i; - struct bb *ptr; - - if (bb_head == 0) - return; - - i = strlen (bb_head->filename) - 3; - - - for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next) - { - int firstchar; - - /* Make sure the output file exists - - but don't clobber exiting data. */ - if ((da_file = fopen (ptr->filename, "a")) != 0) - fclose (da_file); - - /* Need to re-open in order to be able to write from the start. */ - da_file = fopen (ptr->filename, "r+b"); - /* Some old systems might not allow the 'b' mode modifier. - Therefore, try to open without it. This can lead to a race - condition so that when you delete and re-create the file, the - file might be opened in text mode, but then, you shouldn't - delete the file in the first place. */ - if (da_file == 0) - da_file = fopen (ptr->filename, "r+"); - if (da_file == 0) - { - fprintf (stderr, "arc profiling: Can't open output file %s.\n", - ptr->filename); - continue; - } - - /* After a fork, another process might try to read and/or write - the same file simultanously. So if we can, lock the file to - avoid race conditions. */ -#if defined (TARGET_HAS_F_SETLKW) - { - struct flock s_flock; - - s_flock.l_type = F_WRLCK; - s_flock.l_whence = SEEK_SET; - s_flock.l_start = 0; - s_flock.l_len = 1; - s_flock.l_pid = getpid (); - - while (fcntl (fileno (da_file), F_SETLKW, &s_flock) - && errno == EINTR); - } -#endif - - /* If the file is not empty, and the number of counts in it is the - same, then merge them in. */ - firstchar = fgetc (da_file); - if (firstchar == EOF) - { - if (ferror (da_file)) - { - fprintf (stderr, "arc profiling: Can't read output file "); - perror (ptr->filename); - } - } - else - { - long n_counts = 0; - - if (ungetc (firstchar, da_file) == EOF) - rewind (da_file); - if (__read_long (&n_counts, da_file, 8) != 0) - { - fprintf (stderr, "arc profiling: Can't read output file %s.\n", - ptr->filename); - continue; - } - - if (n_counts == ptr->ncounts) - { - int i; - - for (i = 0; i < n_counts; i++) - { - gcov_type v = 0; - - if (__read_gcov_type (&v, da_file, 8) != 0) - { - fprintf (stderr, - "arc profiling: Can't read output file %s.\n", - ptr->filename); - break; - } - ptr->counts[i] += v; - } - } - - } - - rewind (da_file); - - /* ??? Should first write a header to the file. Preferably, a 4 byte - magic number, 4 bytes containing the time the program was - compiled, 4 bytes containing the last modification time of the - source file, and 4 bytes indicating the compiler options used. - - That way we can easily verify that the proper source/executable/ - data file combination is being used from gcov. */ - - if (__write_gcov_type (ptr->ncounts, da_file, 8) != 0) - { - - fprintf (stderr, "arc profiling: Error writing output file %s.\n", - ptr->filename); - } - else - { - int j; - gcov_type *count_ptr = ptr->counts; - int ret = 0; - for (j = ptr->ncounts; j > 0; j--) - { - if (__write_gcov_type (*count_ptr, da_file, 8) != 0) - { - ret = 1; - break; - } - count_ptr++; - } - if (ret) - fprintf (stderr, "arc profiling: Error writing output file %s.\n", - ptr->filename); - } - - if (fclose (da_file) == EOF) - fprintf (stderr, "arc profiling: Error closing output file %s.\n", - ptr->filename); - } - - return; -} - -void -__bb_init_func (struct bb *blocks) -{ - /* User is supposed to check whether the first word is non-0, - but just in case.... */ - - if (blocks->zero_word) - return; - - /* Initialize destructor. */ - if (!bb_head) - atexit (__bb_exit_func); - - /* Set up linked list. */ - blocks->zero_word = 1; - blocks->next = bb_head; - bb_head = blocks; -} - -/* Called before fork or exec - write out profile information gathered so - far and reset it to zero. This avoids duplication or loss of the - profile information gathered so far. */ -void -__bb_fork_func (void) -{ - struct bb *ptr; - - __bb_exit_func (); - for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next) - { - long i; - for (i = ptr->ncounts - 1; i >= 0; i--) - ptr->counts[i] = 0; - } -} - -#endif /* not inhibit_libc */ -#endif /* not BLOCK_PROFILER_CODE */ -#endif /* L_bb */ - -#ifdef L_clear_cache -/* Clear part of an instruction cache. */ - -#define INSN_CACHE_PLANE_SIZE (INSN_CACHE_SIZE / INSN_CACHE_DEPTH) - -void -__clear_cache (char *beg __attribute__((__unused__)), - char *end __attribute__((__unused__))) -{ -#ifdef CLEAR_INSN_CACHE - CLEAR_INSN_CACHE (beg, end); -#else -#ifdef INSN_CACHE_SIZE - static char array[INSN_CACHE_SIZE + INSN_CACHE_PLANE_SIZE + INSN_CACHE_LINE_WIDTH]; - static int initialized; - int offset; - void *start_addr - void *end_addr; - typedef (*function_ptr) (void); - -#if (INSN_CACHE_SIZE / INSN_CACHE_LINE_WIDTH) < 16 - /* It's cheaper to clear the whole cache. - Put in a series of jump instructions so that calling the beginning - of the cache will clear the whole thing. */ - - if (! initialized) - { - int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1) - & -INSN_CACHE_LINE_WIDTH); - int end_ptr = ptr + INSN_CACHE_SIZE; - - while (ptr < end_ptr) - { - *(INSTRUCTION_TYPE *)ptr - = JUMP_AHEAD_INSTRUCTION + INSN_CACHE_LINE_WIDTH; - ptr += INSN_CACHE_LINE_WIDTH; - } - *(INSTRUCTION_TYPE *) (ptr - INSN_CACHE_LINE_WIDTH) = RETURN_INSTRUCTION; - - initialized = 1; - } - - /* Call the beginning of the sequence. */ - (((function_ptr) (((int) array + INSN_CACHE_LINE_WIDTH - 1) - & -INSN_CACHE_LINE_WIDTH)) - ()); - -#else /* Cache is large. */ - - if (! initialized) - { - int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1) - & -INSN_CACHE_LINE_WIDTH); - - while (ptr < (int) array + sizeof array) - { - *(INSTRUCTION_TYPE *)ptr = RETURN_INSTRUCTION; - ptr += INSN_CACHE_LINE_WIDTH; - } - - initialized = 1; - } - - /* Find the location in array that occupies the same cache line as BEG. */ - - offset = ((int) beg & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1); - start_addr = (((int) (array + INSN_CACHE_PLANE_SIZE - 1) - & -INSN_CACHE_PLANE_SIZE) - + offset); - - /* Compute the cache alignment of the place to stop clearing. */ -#if 0 /* This is not needed for gcc's purposes. */ - /* If the block to clear is bigger than a cache plane, - we clear the entire cache, and OFFSET is already correct. */ - if (end < beg + INSN_CACHE_PLANE_SIZE) -#endif - offset = (((int) (end + INSN_CACHE_LINE_WIDTH - 1) - & -INSN_CACHE_LINE_WIDTH) - & (INSN_CACHE_PLANE_SIZE - 1)); - -#if INSN_CACHE_DEPTH > 1 - end_addr = (start_addr & -INSN_CACHE_PLANE_SIZE) + offset; - if (end_addr <= start_addr) - end_addr += INSN_CACHE_PLANE_SIZE; - - for (plane = 0; plane < INSN_CACHE_DEPTH; plane++) - { - int addr = start_addr + plane * INSN_CACHE_PLANE_SIZE; - int stop = end_addr + plane * INSN_CACHE_PLANE_SIZE; - - while (addr != stop) - { - /* Call the return instruction at ADDR. */ - ((function_ptr) addr) (); - - addr += INSN_CACHE_LINE_WIDTH; - } - } -#else /* just one plane */ - do - { - /* Call the return instruction at START_ADDR. */ - ((function_ptr) start_addr) (); - - start_addr += INSN_CACHE_LINE_WIDTH; - } - while ((start_addr % INSN_CACHE_SIZE) != offset); -#endif /* just one plane */ -#endif /* Cache is large */ -#endif /* Cache exists */ -#endif /* CLEAR_INSN_CACHE */ -} - -#endif /* L_clear_cache */ - -#ifdef L_trampoline - -/* Jump to a trampoline, loading the static chain address. */ - -#if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN) - -long -getpagesize (void) -{ -#ifdef _ALPHA_ - return 8192; -#else - return 4096; -#endif -} - -#ifdef __i386__ -extern int VirtualProtect (char *, int, int, int *) __attribute__((NTAPI)); -#endif - -int -mprotect (char *addr, int len, int prot) -{ - int np, op; - - if (prot == 7) - np = 0x40; - else if (prot == 5) - np = 0x20; - else if (prot == 4) - np = 0x10; - else if (prot == 3) - np = 0x04; - else if (prot == 1) - np = 0x02; - else if (prot == 0) - np = 0x01; - - if (VirtualProtect (addr, len, np, &op)) - return 0; - else - return -1; -} - -#endif /* WINNT && ! __CYGWIN__ && ! _UWIN */ - -#ifdef TRANSFER_FROM_TRAMPOLINE -TRANSFER_FROM_TRAMPOLINE -#endif - -#if defined (NeXT) && defined (__MACH__) - -/* Make stack executable so we can call trampolines on stack. - This is called from INITIALIZE_TRAMPOLINE in next.h. */ -#ifdef NeXTStep21 - #include -#else - #include -#endif - -void -__enable_execute_stack (char *addr) -{ - kern_return_t r; - char *eaddr = addr + TRAMPOLINE_SIZE; - vm_address_t a = (vm_address_t) addr; - - /* turn on execute access on stack */ - r = vm_protect (task_self (), a, TRAMPOLINE_SIZE, FALSE, VM_PROT_ALL); - if (r != KERN_SUCCESS) - { - mach_error("vm_protect VM_PROT_ALL", r); - exit(1); - } - - /* We inline the i-cache invalidation for speed */ - -#ifdef CLEAR_INSN_CACHE - CLEAR_INSN_CACHE (addr, eaddr); -#else - __clear_cache ((int) addr, (int) eaddr); -#endif -} - -#endif /* defined (NeXT) && defined (__MACH__) */ - -#ifdef __convex__ - -/* Make stack executable so we can call trampolines on stack. - This is called from INITIALIZE_TRAMPOLINE in convex.h. */ - -#include -#include -#include - -void -__enable_execute_stack (void) -{ - int fp; - static unsigned lowest = USRSTACK; - unsigned current = (unsigned) &fp & -NBPG; - - if (lowest > current) - { - unsigned len = lowest - current; - mremap (current, &len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE); - lowest = current; - } - - /* Clear instruction cache in case an old trampoline is in it. */ - asm ("pich"); -} -#endif /* __convex__ */ - -#ifdef __sysV88__ - -/* Modified from the convex -code above. */ - -#include -#include -#include - -void -__enable_execute_stack (void) -{ - int save_errno; - static unsigned long lowest = USRSTACK; - unsigned long current = (unsigned long) &save_errno & -NBPC; - - /* Ignore errno being set. memctl sets errno to EINVAL whenever the - address is seen as 'negative'. That is the case with the stack. */ - - save_errno=errno; - if (lowest > current) - { - unsigned len=lowest-current; - memctl(current,len,MCT_TEXT); - lowest = current; - } - else - memctl(current,NBPC,MCT_TEXT); - errno=save_errno; -} - -#endif /* __sysV88__ */ - -#ifdef __sysV68__ - -#include -#include - -/* Motorola forgot to put memctl.o in the libp version of libc881.a, - so define it here, because we need it in __clear_insn_cache below */ -/* On older versions of this OS, no memctl or MCT_TEXT are defined; - hence we enable this stuff only if MCT_TEXT is #define'd. */ - -#ifdef MCT_TEXT -asm("\n\ - global memctl\n\ -memctl:\n\ - movq &75,%d0\n\ - trap &0\n\ - bcc.b noerror\n\ - jmp cerror%\n\ -noerror:\n\ - movq &0,%d0\n\ - rts"); -#endif - -/* Clear instruction cache so we can call trampolines on stack. - This is called from FINALIZE_TRAMPOLINE in mot3300.h. */ - -void -__clear_insn_cache (void) -{ -#ifdef MCT_TEXT - int save_errno; - - /* Preserve errno, because users would be surprised to have - errno changing without explicitly calling any system-call. */ - save_errno = errno; - - /* Keep it simple : memctl (MCT_TEXT) always fully clears the insn cache. - No need to use an address derived from _start or %sp, as 0 works also. */ - memctl(0, 4096, MCT_TEXT); - errno = save_errno; -#endif -} - -#endif /* __sysV68__ */ - -#ifdef __pyr__ - -#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ -#include -#include -#include -#include -#include - -/* Modified from the convex -code above. - mremap promises to clear the i-cache. */ - -void -__enable_execute_stack (void) -{ - int fp; - if (mprotect (((unsigned int)&fp/PAGSIZ)*PAGSIZ, PAGSIZ, - PROT_READ|PROT_WRITE|PROT_EXEC)) - { - perror ("mprotect in __enable_execute_stack"); - fflush (stderr); - abort (); - } -} -#endif /* __pyr__ */ - -#if defined (sony_news) && defined (SYSTYPE_BSD) - -#include -#include -#include -#include -#include - -/* cacheflush function for NEWS-OS 4.2. - This function is called from trampoline-initialize code - defined in config/mips/mips.h. */ - -void -cacheflush (char *beg, int size, int flag) -{ - if (syscall (SYS_sysnews, NEWS_CACHEFLUSH, beg, size, FLUSH_BCACHE)) - { - perror ("cache_flush"); - fflush (stderr); - abort (); - } -} - -#endif /* sony_news */ -#endif /* L_trampoline */ - -#ifndef __CYGWIN__ -#ifdef L__main - -#include "gbl-ctors.h" -/* Some systems use __main in a way incompatible with its use in gcc, in these - cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to - give the same symbol without quotes for an alternative entry point. You - must define both, or neither. */ -#ifndef NAME__MAIN -#define NAME__MAIN "__main" -#define SYMBOL__MAIN __main -#endif - -#ifdef INIT_SECTION_ASM_OP -#undef HAS_INIT_SECTION -#define HAS_INIT_SECTION -#endif - -#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF) - -/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this - code to run constructors. In that case, we need to handle EH here, too. */ - -#ifdef EH_FRAME_SECTION_NAME -#include "unwind-dw2-fde.h" -extern unsigned char __EH_FRAME_BEGIN__[]; -#endif - -/* Run all the global destructors on exit from the program. */ - -void -__do_global_dtors (void) -{ -#ifdef DO_GLOBAL_DTORS_BODY - DO_GLOBAL_DTORS_BODY; -#else - static func_ptr *p = __DTOR_LIST__ + 1; - while (*p) - { - p++; - (*(p-1)) (); - } -#endif -#if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION) - { - static int completed = 0; - if (! completed) - { - completed = 1; - __deregister_frame_info (__EH_FRAME_BEGIN__); - } - } -#endif -} -#endif - -#ifndef HAS_INIT_SECTION -/* Run all the global constructors on entry to the program. */ - -void -__do_global_ctors (void) -{ -#ifdef EH_FRAME_SECTION_NAME - { - static struct object object; - __register_frame_info (__EH_FRAME_BEGIN__, &object); - } -#endif - DO_GLOBAL_CTORS_BODY; - atexit (__do_global_dtors); -} -#endif /* no HAS_INIT_SECTION */ - -#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main) -/* Subroutine called automatically by `main'. - Compiling a global function named `main' - produces an automatic call to this function at the beginning. - - For many systems, this routine calls __do_global_ctors. - For systems which support a .init section we use the .init section - to run __do_global_ctors, so we need not do anything here. */ - -void -SYMBOL__MAIN () -{ - /* Support recursive calls to `main': run initializers just once. */ - static int initialized; - if (! initialized) - { - initialized = 1; - __do_global_ctors (); - } -} -#endif /* no HAS_INIT_SECTION or INVOKE__main */ - -#endif /* L__main */ -#endif /* __CYGWIN__ */ - -#ifdef L_ctors - -#include "gbl-ctors.h" - -/* Provide default definitions for the lists of constructors and - destructors, so that we don't get linker errors. These symbols are - intentionally bss symbols, so that gld and/or collect will provide - the right values. */ - -/* We declare the lists here with two elements each, - so that they are valid empty lists if no other definition is loaded. - - If we are using the old "set" extensions to have the gnu linker - collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__ - must be in the bss/common section. - - Long term no port should use those extensions. But many still do. */ -#if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY) -#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2) -func_ptr __CTOR_LIST__[2] = {0, 0}; -func_ptr __DTOR_LIST__[2] = {0, 0}; -#else -func_ptr __CTOR_LIST__[2]; -func_ptr __DTOR_LIST__[2]; -#endif -#endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */ -#endif /* L_ctors */ - -#ifdef L_exit - -#include "gbl-ctors.h" - -#ifdef NEED_ATEXIT - -#ifndef ON_EXIT - -# include - -static func_ptr *atexit_chain = 0; -static long atexit_chain_length = 0; -static volatile long last_atexit_chain_slot = -1; - -int -atexit (func_ptr func) -{ - if (++last_atexit_chain_slot == atexit_chain_length) - { - atexit_chain_length += 32; - if (atexit_chain) - atexit_chain = (func_ptr *) realloc (atexit_chain, atexit_chain_length - * sizeof (func_ptr)); - else - atexit_chain = (func_ptr *) malloc (atexit_chain_length - * sizeof (func_ptr)); - if (! atexit_chain) - { - atexit_chain_length = 0; - last_atexit_chain_slot = -1; - errno = ENOMEM; - return (-1); - } - } - atexit_chain[last_atexit_chain_slot] = func; - return (0); -} - -extern void _cleanup (void); -extern void _exit (int) __attribute__ ((__noreturn__)); - -void -exit (int status) -{ - if (atexit_chain) - { - for ( ; last_atexit_chain_slot-- >= 0; ) - { - (*atexit_chain[last_atexit_chain_slot + 1]) (); - atexit_chain[last_atexit_chain_slot + 1] = 0; - } - free (atexit_chain); - atexit_chain = 0; - } -#ifdef EXIT_BODY - EXIT_BODY; -#else - _cleanup (); -#endif - _exit (status); -} - -#else /* ON_EXIT */ - -/* Simple; we just need a wrapper for ON_EXIT. */ -int -atexit (func_ptr func) -{ - return ON_EXIT (func); -} - -#endif /* ON_EXIT */ -#endif /* NEED_ATEXIT */ - -#endif /* L_exit */ diff --git a/reactos/drivers/storage/ide/uniata/ros_glue/libgcc2.h b/reactos/drivers/storage/ide/uniata/ros_glue/libgcc2.h deleted file mode 100644 index 5f2c5a692bb..00000000000 --- a/reactos/drivers/storage/ide/uniata/ros_glue/libgcc2.h +++ /dev/null @@ -1,301 +0,0 @@ -/* Header file for libgcc2.c. */ -/* Copyright (C) 2000, 2001 - Free Software Foundation, Inc. - -This file is part of GCC. - -GCC is free software; you can redistribute it and/or modify it under -the terms of the GNU General Public License as published by the Free -Software Foundation; either version 2, or (at your option) any later -version. - -GCC is distributed in the hope that it will be useful, but WITHOUT ANY -WARRANTY; without even the implied warranty of MERCHANTABILITY or -FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -for more details. - -You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 59 Temple Place - Suite 330, Boston, MA -02111-1307, USA. */ - -#ifndef GCC_LIBGCC2_H -#define GCC_LIBGCC2_H - -extern int __gcc_bcmp (const unsigned char *, const unsigned char *, size_t); -extern void __clear_cache (char *, char *); -extern void __eprintf (const char *, const char *, unsigned int, const char *) - __attribute__ ((__noreturn__)); - -struct bb; -extern void __bb_exit_func (void); -extern void __bb_init_func (struct bb *); -extern void __bb_fork_func (void); -extern void __bb_trace_func (void); -extern void __bb_trace_ret (void); -extern void __bb_init_trace_func (struct bb *, unsigned long); - -struct exception_descriptor; -extern short int __get_eh_table_language (struct exception_descriptor *); -extern short int __get_eh_table_version (struct exception_descriptor *); - -/* Permit the tm.h file to select the endianness to use just for this - file. This is used when the endianness is determined when the - compiler is run. */ - -#ifndef LIBGCC2_WORDS_BIG_ENDIAN -#define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN -#endif - -#ifndef LIBGCC2_LONG_DOUBLE_TYPE_SIZE -#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE LONG_DOUBLE_TYPE_SIZE -#endif - -#ifndef MIN_UNITS_PER_WORD -#define MIN_UNITS_PER_WORD UNITS_PER_WORD -#endif - -/* In the first part of this file, we are interfacing to calls generated - by the compiler itself. These calls pass values into these routines - which have very specific modes (rather than very specific types), and - these compiler-generated calls also expect any return values to have - very specific modes (rather than very specific types). Thus, we need - to avoid using regular C language type names in this part of the file - because the sizes for those types can be configured to be anything. - Instead we use the following special type names. */ - -typedef int QItype __attribute__ ((mode (QI))); -typedef unsigned int UQItype __attribute__ ((mode (QI))); -typedef int HItype __attribute__ ((mode (HI))); -typedef unsigned int UHItype __attribute__ ((mode (HI))); -#if MIN_UNITS_PER_WORD > 1 -/* These typedefs are usually forbidden on dsp's with UNITS_PER_WORD 1 */ -typedef int SItype __attribute__ ((mode (SI))); -typedef unsigned int USItype __attribute__ ((mode (SI))); -#if LONG_LONG_TYPE_SIZE > 32 -/* These typedefs are usually forbidden on archs with UNITS_PER_WORD 2 */ -typedef int DItype __attribute__ ((mode (DI))); -typedef unsigned int UDItype __attribute__ ((mode (DI))); -#if MIN_UNITS_PER_WORD > 4 -/* These typedefs are usually forbidden on archs with UNITS_PER_WORD 4 */ -typedef int TItype __attribute__ ((mode (TI))); -typedef unsigned int UTItype __attribute__ ((mode (TI))); -#endif -#endif -#endif - -#if BITS_PER_UNIT == 8 - -typedef float SFtype __attribute__ ((mode (SF))); -typedef float DFtype __attribute__ ((mode (DF))); - -#if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96 -typedef float XFtype __attribute__ ((mode (XF))); -#endif -#if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128 -typedef float TFtype __attribute__ ((mode (TF))); -#endif - -#else /* BITS_PER_UNIT != 8 */ - -/* On dsp's there are usually qf/hf/tqf modes used instead of the above. - For now we don't support them in libgcc2.c. */ - -#undef L_fixdfdi -#undef L_fixsfdi -#undef L_fixtfdi -#undef L_fixunsdfdi -#undef L_fixunsdfsi -#undef L_fixunssfdi -#undef L_fixunssfsi -#undef L_fixunstfdi -#undef L_fixunsxfdi -#undef L_fixunsxfsi -#undef L_fixxfdi -#undef L_floatdidf -#undef L_floatdisf -#undef L_floatditf -#undef L_floatdixf - -#endif /* BITS_PER_UNIT != 8 */ - -typedef int word_type __attribute__ ((mode (__word__))); - -/* Make sure that we don't accidentally use any normal C language built-in - type names in the first part of this file. Instead we want to use *only* - the type names defined above. The following macro definitions insure - that if we *do* accidentally use some normal C language built-in type name, - we will get a syntax error. */ - -#define char bogus_type -#define short bogus_type -#define int bogus_type -#define long bogus_type -#define unsigned bogus_type -#define float bogus_type -#define double bogus_type - -#if MIN_UNITS_PER_WORD > 4 -#define W_TYPE_SIZE (8 * BITS_PER_UNIT) -#define Wtype DItype -#define UWtype UDItype -#define HWtype DItype -#define UHWtype UDItype -#define DWtype TItype -#define UDWtype UTItype -#define __NW(a,b) __ ## a ## di ## b -#define __NDW(a,b) __ ## a ## ti ## b -#elif MIN_UNITS_PER_WORD > 2 \ - || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32) -#define W_TYPE_SIZE (4 * BITS_PER_UNIT) -#define Wtype SItype -#define UWtype USItype -#define HWtype SItype -#define UHWtype USItype -#define DWtype DItype -#define UDWtype UDItype -#define __NW(a,b) __ ## a ## si ## b -#define __NDW(a,b) __ ## a ## di ## b -#elif MIN_UNITS_PER_WORD > 1 -#define W_TYPE_SIZE (2 * BITS_PER_UNIT) -#define Wtype HItype -#define UWtype UHItype -#define HWtype HItype -#define UHWtype UHItype -#define DWtype SItype -#define UDWtype USItype -#define __NW(a,b) __ ## a ## hi ## b -#define __NDW(a,b) __ ## a ## si ## b -#else -#define W_TYPE_SIZE BITS_PER_UNIT -#define Wtype QItype -#define UWtype UQItype -#define HWtype QItype -#define UHWtype UQItype -#define DWtype HItype -#define UDWtype UHItype -#define __NW(a,b) __ ## a ## qi ## b -#define __NDW(a,b) __ ## a ## hi ## b -#endif - -#define Wtype_MAX ((Wtype)(((UWtype)1 << (W_TYPE_SIZE - 1)) - 1)) -#define Wtype_MIN (- Wtype_MAX - 1) - -#define __muldi3 __NDW(mul,3) -#define __divdi3 __NDW(div,3) -#define __udivdi3 __NDW(udiv,3) -#define __moddi3 __NDW(mod,3) -#define __umoddi3 __NDW(umod,3) -#define __negdi2 __NDW(neg,2) -#define __lshrdi3 __NDW(lshr,3) -#define __ashldi3 __NDW(ashl,3) -#define __ashrdi3 __NDW(ashr,3) -#define __ffsdi2 __NDW(ffs,2) -#define __cmpdi2 __NDW(cmp,2) -#define __ucmpdi2 __NDW(ucmp,2) -#define __udivmoddi4 __NDW(udivmod,4) -#define __fixunstfDI __NDW(fixunstf,) -#define __fixtfdi __NDW(fixtf,) -#define __fixunsxfDI __NDW(fixunsxf,) -#define __fixxfdi __NDW(fixxf,) -#define __fixunsdfDI __NDW(fixunsdf,) -#define __fixdfdi __NDW(fixdf,) -#define __fixunssfDI __NDW(fixunssf,) -#define __fixsfdi __NDW(fixsf,) -#define __floatdixf __NDW(float,xf) -#define __floatditf __NDW(float,tf) -#define __floatdidf __NDW(float,df) -#define __floatdisf __NDW(float,sf) -#define __fixunsxfSI __NW(fixunsxf,) -#define __fixunstfSI __NW(fixunstf,) -#define __fixunsdfSI __NW(fixunsdf,) -#define __fixunssfSI __NW(fixunssf,) - -extern DWtype __muldi3 (DWtype, DWtype); -extern DWtype __divdi3 (DWtype, DWtype); -extern UDWtype __udivdi3 (UDWtype, UDWtype); -extern UDWtype __umoddi3 (UDWtype, UDWtype); -extern DWtype __moddi3 (DWtype, DWtype); - -/* __udivmoddi4 is static inline when building other libgcc2 portions. */ -#if (!defined (L_udivdi3) && !defined (L_divdi3) && \ - !defined (L_umoddi3) && !defined (L_moddi3)) -extern UDWtype __udivmoddi4 (UDWtype, UDWtype, UDWtype *); -#endif - -/* __negdi2 is static inline when building other libgcc2 portions. */ -#if !defined(L_divdi3) && !defined(L_moddi3) -extern DWtype __negdi2 (DWtype); -#endif - -extern DWtype __lshrdi3 (DWtype, word_type); -extern DWtype __ashldi3 (DWtype, word_type); -extern DWtype __ashrdi3 (DWtype, word_type); -extern DWtype __ffsdi2 (DWtype); - -/* __udiv_w_sdiv is static inline when building other libgcc2 portions. */ -#if (!defined(L_udivdi3) && !defined(L_divdi3) && \ - !defined(L_umoddi3) && !defined(L_moddi3)) -extern UWtype __udiv_w_sdiv (UWtype *, UWtype, UWtype, UWtype); -#endif - -extern word_type __cmpdi2 (DWtype, DWtype); -extern word_type __ucmpdi2 (DWtype, DWtype); - -extern Wtype __absvsi2 (Wtype); -extern DWtype __absvdi2 (DWtype); -extern Wtype __addvsi3 (Wtype, Wtype); -extern DWtype __addvdi3 (DWtype, DWtype); -extern Wtype __subvsi3 (Wtype, Wtype); -extern DWtype __subvdi3 (DWtype, DWtype); -extern Wtype __mulvsi3 (Wtype, Wtype); -extern DWtype __mulvdi3 (DWtype, DWtype); -extern Wtype __negvsi2 (Wtype); -extern DWtype __negvdi2 (DWtype); - -#if BITS_PER_UNIT == 8 -extern DWtype __fixdfdi (DFtype); -extern DWtype __fixsfdi (SFtype); -extern DFtype __floatdidf (DWtype); -extern SFtype __floatdisf (DWtype); -extern UWtype __fixunsdfSI (DFtype); -extern UWtype __fixunssfSI (SFtype); -extern DWtype __fixunsdfDI (DFtype); -extern DWtype __fixunssfDI (SFtype); - -#if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96 -extern DWtype __fixxfdi (XFtype); -extern DWtype __fixunsxfDI (XFtype); -extern XFtype __floatdixf (DWtype); -extern UWtype __fixunsxfSI (XFtype); -#endif - -#if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128 -extern DWtype __fixunstfDI (TFtype); -extern DWtype __fixtfdi (TFtype); -extern TFtype __floatditf (DWtype); -#endif -#endif /* BITS_PER_UNIT == 8 */ - -/* DWstructs are pairs of Wtype values in the order determined by - LIBGCC2_WORDS_BIG_ENDIAN. */ - -#if LIBGCC2_WORDS_BIG_ENDIAN - struct DWstruct {Wtype high, low;}; -#else - struct DWstruct {Wtype low, high;}; -#endif - -/* We need this union to unpack/pack DImode values, since we don't have - any arithmetic yet. Incoming DImode parameters are stored into the - `ll' field, and the unpacked result is read from the struct `s'. */ - -typedef union -{ - struct DWstruct s; - DWtype ll; -} DWunion; - -#include "longlong.h" - -#endif /* ! GCC_LIBGCC2_H */ diff --git a/reactos/drivers/storage/ide/uniata/ros_glue/longlong.h b/reactos/drivers/storage/ide/uniata/ros_glue/longlong.h deleted file mode 100644 index ffd203b8f3f..00000000000 --- a/reactos/drivers/storage/ide/uniata/ros_glue/longlong.h +++ /dev/null @@ -1,1503 +0,0 @@ -/* longlong.h -- definitions for mixed size 32/64 bit arithmetic. - Copyright (C) 1991, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000 - Free Software Foundation, Inc. - - This definition file is free software; you can redistribute it - and/or modify it under the terms of the GNU General Public - License as published by the Free Software Foundation; either - version 2, or (at your option) any later version. - - This definition file is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ - -/* You have to define the following before including this file: - - UWtype -- An unsigned type, default type for operations (typically a "word") - UHWtype -- An unsigned type, at least half the size of UWtype. - UDWtype -- An unsigned type, at least twice as large a UWtype - W_TYPE_SIZE -- size in bits of UWtype - - UQItype -- Unsigned 8 bit type. - SItype, USItype -- Signed and unsigned 32 bit types. - DItype, UDItype -- Signed and unsigned 64 bit types. - - On a 32 bit machine UWtype should typically be USItype; - on a 64 bit machine, UWtype should typically be UDItype. -*/ - -#define __BITS4 (W_TYPE_SIZE / 4) -#define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2)) -#define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1)) -#define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2)) - -#ifndef W_TYPE_SIZE -#define W_TYPE_SIZE 32 -#define UWtype USItype -#define UHWtype USItype -#define UDWtype UDItype -#endif - -/* Define auxiliary asm macros. - - 1) umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two - UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype - word product in HIGH_PROD and LOW_PROD. - - 2) __umulsidi3(a,b) multiplies two UWtype integers A and B, and returns a - UDWtype product. This is just a variant of umul_ppmm. - - 3) udiv_qrnnd(quotient, remainder, high_numerator, low_numerator, - denominator) divides a UDWtype, composed by the UWtype integers - HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient - in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less - than DENOMINATOR for correct operation. If, in addition, the most - significant bit of DENOMINATOR must be 1, then the pre-processor symbol - UDIV_NEEDS_NORMALIZATION is defined to 1. - - 4) sdiv_qrnnd(quotient, remainder, high_numerator, low_numerator, - denominator). Like udiv_qrnnd but the numbers are signed. The quotient - is rounded towards 0. - - 5) count_leading_zeros(count, x) counts the number of zero-bits from the - msb to the first non-zero bit in the UWtype X. This is the number of - steps X needs to be shifted left to set the msb. Undefined for X == 0, - unless the symbol COUNT_LEADING_ZEROS_0 is defined to some value. - - 6) count_trailing_zeros(count, x) like count_leading_zeros, but counts - from the least significant end. - - 7) add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1, - high_addend_2, low_addend_2) adds two UWtype integers, composed by - HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2 - respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow - (i.e. carry out) is not stored anywhere, and is lost. - - 8) sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, - high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers, - composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and - LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE - and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere, - and is lost. - - If any of these macros are left undefined for a particular CPU, - C macros are used. */ - -/* The CPUs come in alphabetical order below. - - Please add support for more CPUs here, or improve the current support - for the CPUs below! - (E.g. WE32100, IBM360.) */ - -#if defined (__GNUC__) && !defined (NO_ASM) - -/* We sometimes need to clobber "cc" with gcc2, but that would not be - understood by gcc1. Use cpp to avoid major code duplication. */ -#if __GNUC__ < 2 -#define __CLOBBER_CC -#define __AND_CLOBBER_CC -#else /* __GNUC__ >= 2 */ -#define __CLOBBER_CC : "cc" -#define __AND_CLOBBER_CC , "cc" -#endif /* __GNUC__ < 2 */ - -#if (defined (__a29k__) || defined (_AM29K)) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("add %1,%4,%5\n\taddc %0,%2,%3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%r" ((USItype) (ah)), \ - "rI" ((USItype) (bh)), \ - "%r" ((USItype) (al)), \ - "rI" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("sub %1,%4,%5\n\tsubc %0,%2,%3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "r" ((USItype) (ah)), \ - "rI" ((USItype) (bh)), \ - "r" ((USItype) (al)), \ - "rI" ((USItype) (bl))) -#define umul_ppmm(xh, xl, m0, m1) \ - do { \ - USItype __m0 = (m0), __m1 = (m1); \ - __asm__ ("multiplu %0,%1,%2" \ - : "=r" ((USItype) (xl)) \ - : "r" (__m0), \ - "r" (__m1)); \ - __asm__ ("multmu %0,%1,%2" \ - : "=r" ((USItype) (xh)) \ - : "r" (__m0), \ - "r" (__m1)); \ - } while (0) -#define udiv_qrnnd(q, r, n1, n0, d) \ - __asm__ ("dividu %0,%3,%4" \ - : "=r" ((USItype) (q)), \ - "=q" ((USItype) (r)) \ - : "1" ((USItype) (n1)), \ - "r" ((USItype) (n0)), \ - "r" ((USItype) (d))) -#define count_leading_zeros(count, x) \ - __asm__ ("clz %0,%1" \ - : "=r" ((USItype) (count)) \ - : "r" ((USItype) (x))) -#define COUNT_LEADING_ZEROS_0 32 -#endif /* __a29k__ */ - -#if defined (__alpha) && W_TYPE_SIZE == 64 -#define umul_ppmm(ph, pl, m0, m1) \ - do { \ - UDItype __m0 = (m0), __m1 = (m1); \ - __asm__ ("umulh %r1,%2,%0" \ - : "=r" ((UDItype) ph) \ - : "%rJ" (__m0), \ - "rI" (__m1)); \ - (pl) = __m0 * __m1; \ - } while (0) -#define UMUL_TIME 46 -#ifndef LONGLONG_STANDALONE -#define udiv_qrnnd(q, r, n1, n0, d) \ - do { UDItype __r; \ - (q) = __udiv_qrnnd (&__r, (n1), (n0), (d)); \ - (r) = __r; \ - } while (0) -extern UDItype __udiv_qrnnd PARAMS ((UDItype *, UDItype, UDItype, UDItype)); -#define UDIV_TIME 220 -#endif /* LONGLONG_STANDALONE */ -#ifdef __alpha_cix__ -#define count_leading_zeros(COUNT,X) \ - __asm__("ctlz %1,%0" : "=r"(COUNT) : "r"(X)) -#define count_trailing_zeros(COUNT,X) \ - __asm__("cttz %1,%0" : "=r"(COUNT) : "r"(X)) -#define COUNT_LEADING_ZEROS_0 64 -#else -extern const UQItype __clz_tab[]; -#define count_leading_zeros(COUNT,X) \ - do { \ - UDItype __xr = (X), __t, __a; \ - __asm__("cmpbge $31,%1,%0" : "=r"(__t) : "r"(__xr)); \ - __a = __clz_tab[__t ^ 0xff] - 1; \ - __asm__("extbl %1,%2,%0" : "=r"(__t) : "r"(__xr), "r"(__a)); \ - (COUNT) = 64 - (__clz_tab[__t] + __a*8); \ - } while (0) -#define count_trailing_zeros(COUNT,X) \ - do { \ - UDItype __xr = (X), __t, __a; \ - __asm__("cmpbge $31,%1,%0" : "=r"(__t) : "r"(__xr)); \ - __t = ~__t & -~__t; \ - __a = ((__t & 0xCC) != 0) * 2; \ - __a += ((__t & 0xF0) != 0) * 4; \ - __a += ((__t & 0xAA) != 0); \ - __asm__("extbl %1,%2,%0" : "=r"(__t) : "r"(__xr), "r"(__a)); \ - __a <<= 3; \ - __t &= -__t; \ - __a += ((__t & 0xCC) != 0) * 2; \ - __a += ((__t & 0xF0) != 0) * 4; \ - __a += ((__t & 0xAA) != 0); \ - (COUNT) = __a; \ - } while (0) -#endif /* __alpha_cix__ */ -#endif /* __alpha */ - -#if defined (__arc__) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("add.f %1, %4, %5\n\tadc %0, %2, %3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%r" ((USItype) (ah)), \ - "rIJ" ((USItype) (bh)), \ - "%r" ((USItype) (al)), \ - "rIJ" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("sub.f %1, %4, %5\n\tsbc %0, %2, %3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "r" ((USItype) (ah)), \ - "rIJ" ((USItype) (bh)), \ - "r" ((USItype) (al)), \ - "rIJ" ((USItype) (bl))) -/* Call libgcc routine. */ -#define umul_ppmm(w1, w0, u, v) \ -do { \ - DWunion __w; \ - __w.ll = __umulsidi3 (u, v); \ - w1 = __w.s.high; \ - w0 = __w.s.low; \ -} while (0) -#define __umulsidi3 __umulsidi3 -UDItype __umulsidi3 (USItype, USItype); -#endif - -#if defined (__arm__) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("adds %1, %4, %5\n\tadc %0, %2, %3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%r" ((USItype) (ah)), \ - "rI" ((USItype) (bh)), \ - "%r" ((USItype) (al)), \ - "rI" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("subs %1, %4, %5\n\tsbc %0, %2, %3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "r" ((USItype) (ah)), \ - "rI" ((USItype) (bh)), \ - "r" ((USItype) (al)), \ - "rI" ((USItype) (bl))) -#define umul_ppmm(xh, xl, a, b) \ -{register USItype __t0, __t1, __t2; \ - __asm__ ("%@ Inlined umul_ppmm\n" \ - " mov %2, %5, lsr #16\n" \ - " mov %0, %6, lsr #16\n" \ - " bic %3, %5, %2, lsl #16\n" \ - " bic %4, %6, %0, lsl #16\n" \ - " mul %1, %3, %4\n" \ - " mul %4, %2, %4\n" \ - " mul %3, %0, %3\n" \ - " mul %0, %2, %0\n" \ - " adds %3, %4, %3\n" \ - " addcs %0, %0, #65536\n" \ - " adds %1, %1, %3, lsl #16\n" \ - " adc %0, %0, %3, lsr #16" \ - : "=&r" ((USItype) (xh)), \ - "=r" ((USItype) (xl)), \ - "=&r" (__t0), "=&r" (__t1), "=r" (__t2) \ - : "r" ((USItype) (a)), \ - "r" ((USItype) (b)));} -#define UMUL_TIME 20 -#define UDIV_TIME 100 -#endif /* __arm__ */ - -#if defined (__clipper__) && W_TYPE_SIZE == 32 -#define umul_ppmm(w1, w0, u, v) \ - ({union {UDItype __ll; \ - struct {USItype __l, __h;} __i; \ - } __xx; \ - __asm__ ("mulwux %2,%0" \ - : "=r" (__xx.__ll) \ - : "%0" ((USItype) (u)), \ - "r" ((USItype) (v))); \ - (w1) = __xx.__i.__h; (w0) = __xx.__i.__l;}) -#define smul_ppmm(w1, w0, u, v) \ - ({union {DItype __ll; \ - struct {SItype __l, __h;} __i; \ - } __xx; \ - __asm__ ("mulwx %2,%0" \ - : "=r" (__xx.__ll) \ - : "%0" ((SItype) (u)), \ - "r" ((SItype) (v))); \ - (w1) = __xx.__i.__h; (w0) = __xx.__i.__l;}) -#define __umulsidi3(u, v) \ - ({UDItype __w; \ - __asm__ ("mulwux %2,%0" \ - : "=r" (__w) \ - : "%0" ((USItype) (u)), \ - "r" ((USItype) (v))); \ - __w; }) -#endif /* __clipper__ */ - -#if defined (__gmicro__) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("add.w %5,%1\n\taddx %3,%0" \ - : "=g" ((USItype) (sh)), \ - "=&g" ((USItype) (sl)) \ - : "%0" ((USItype) (ah)), \ - "g" ((USItype) (bh)), \ - "%1" ((USItype) (al)), \ - "g" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("sub.w %5,%1\n\tsubx %3,%0" \ - : "=g" ((USItype) (sh)), \ - "=&g" ((USItype) (sl)) \ - : "0" ((USItype) (ah)), \ - "g" ((USItype) (bh)), \ - "1" ((USItype) (al)), \ - "g" ((USItype) (bl))) -#define umul_ppmm(ph, pl, m0, m1) \ - __asm__ ("mulx %3,%0,%1" \ - : "=g" ((USItype) (ph)), \ - "=r" ((USItype) (pl)) \ - : "%0" ((USItype) (m0)), \ - "g" ((USItype) (m1))) -#define udiv_qrnnd(q, r, nh, nl, d) \ - __asm__ ("divx %4,%0,%1" \ - : "=g" ((USItype) (q)), \ - "=r" ((USItype) (r)) \ - : "1" ((USItype) (nh)), \ - "0" ((USItype) (nl)), \ - "g" ((USItype) (d))) -#define count_leading_zeros(count, x) \ - __asm__ ("bsch/1 %1,%0" \ - : "=g" (count) \ - : "g" ((USItype) (x)), \ - "0" ((USItype) 0)) -#endif - -#if defined (__hppa) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("add %4,%5,%1\n\taddc %2,%3,%0" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%rM" ((USItype) (ah)), \ - "rM" ((USItype) (bh)), \ - "%rM" ((USItype) (al)), \ - "rM" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("sub %4,%5,%1\n\tsubb %2,%3,%0" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "rM" ((USItype) (ah)), \ - "rM" ((USItype) (bh)), \ - "rM" ((USItype) (al)), \ - "rM" ((USItype) (bl))) -#if defined (_PA_RISC1_1) -#define umul_ppmm(w1, w0, u, v) \ - do { \ - union \ - { \ - UDItype __f; \ - struct {USItype __w1, __w0;} __w1w0; \ - } __t; \ - __asm__ ("xmpyu %1,%2,%0" \ - : "=x" (__t.__f) \ - : "x" ((USItype) (u)), \ - "x" ((USItype) (v))); \ - (w1) = __t.__w1w0.__w1; \ - (w0) = __t.__w1w0.__w0; \ - } while (0) -#define UMUL_TIME 8 -#else -#define UMUL_TIME 30 -#endif -#define UDIV_TIME 40 -#define count_leading_zeros(count, x) \ - do { \ - USItype __tmp; \ - __asm__ ( \ - "ldi 1,%0\n" \ -" extru,= %1,15,16,%%r0 ; Bits 31..16 zero?\n" \ -" extru,tr %1,15,16,%1 ; No. Shift down, skip add.\n"\ -" ldo 16(%0),%0 ; Yes. Perform add.\n" \ -" extru,= %1,23,8,%%r0 ; Bits 15..8 zero?\n" \ -" extru,tr %1,23,8,%1 ; No. Shift down, skip add.\n"\ -" ldo 8(%0),%0 ; Yes. Perform add.\n" \ -" extru,= %1,27,4,%%r0 ; Bits 7..4 zero?\n" \ -" extru,tr %1,27,4,%1 ; No. Shift down, skip add.\n"\ -" ldo 4(%0),%0 ; Yes. Perform add.\n" \ -" extru,= %1,29,2,%%r0 ; Bits 3..2 zero?\n" \ -" extru,tr %1,29,2,%1 ; No. Shift down, skip add.\n"\ -" ldo 2(%0),%0 ; Yes. Perform add.\n" \ -" extru %1,30,1,%1 ; Extract bit 1.\n" \ -" sub %0,%1,%0 ; Subtract it.\n" \ - : "=r" (count), "=r" (__tmp) : "1" (x)); \ - } while (0) -#endif - -#if (defined (__i370__) || defined (__mvs__)) && W_TYPE_SIZE == 32 -#define umul_ppmm(xh, xl, m0, m1) \ - do { \ - union {UDItype __ll; \ - struct {USItype __h, __l;} __i; \ - } __xx; \ - USItype __m0 = (m0), __m1 = (m1); \ - __asm__ ("mr %0,%3" \ - : "=r" (__xx.__i.__h), \ - "=r" (__xx.__i.__l) \ - : "%1" (__m0), \ - "r" (__m1)); \ - (xh) = __xx.__i.__h; (xl) = __xx.__i.__l; \ - (xh) += ((((SItype) __m0 >> 31) & __m1) \ - + (((SItype) __m1 >> 31) & __m0)); \ - } while (0) -#define smul_ppmm(xh, xl, m0, m1) \ - do { \ - union {DItype __ll; \ - struct {USItype __h, __l;} __i; \ - } __xx; \ - __asm__ ("mr %0,%3" \ - : "=r" (__xx.__i.__h), \ - "=r" (__xx.__i.__l) \ - : "%1" (m0), \ - "r" (m1)); \ - (xh) = __xx.__i.__h; (xl) = __xx.__i.__l; \ - } while (0) -#define sdiv_qrnnd(q, r, n1, n0, d) \ - do { \ - union {DItype __ll; \ - struct {USItype __h, __l;} __i; \ - } __xx; \ - __xx.__i.__h = n1; __xx.__i.__l = n0; \ - __asm__ ("dr %0,%2" \ - : "=r" (__xx.__ll) \ - : "0" (__xx.__ll), "r" (d)); \ - (q) = __xx.__i.__l; (r) = __xx.__i.__h; \ - } while (0) -#endif - -#if (defined (__i386__) || defined (__i486__)) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("addl %5,%1\n\tadcl %3,%0" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%0" ((USItype) (ah)), \ - "g" ((USItype) (bh)), \ - "%1" ((USItype) (al)), \ - "g" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("subl %5,%1\n\tsbbl %3,%0" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "0" ((USItype) (ah)), \ - "g" ((USItype) (bh)), \ - "1" ((USItype) (al)), \ - "g" ((USItype) (bl))) -#define umul_ppmm(w1, w0, u, v) \ - __asm__ ("mull %3" \ - : "=a" ((USItype) (w0)), \ - "=d" ((USItype) (w1)) \ - : "%0" ((USItype) (u)), \ - "rm" ((USItype) (v))) -#define udiv_qrnnd(q, r, n1, n0, dv) \ - __asm__ ("divl %4" \ - : "=a" ((USItype) (q)), \ - "=d" ((USItype) (r)) \ - : "0" ((USItype) (n0)), \ - "1" ((USItype) (n1)), \ - "rm" ((USItype) (dv))) -#define count_leading_zeros(count, x) \ - do { \ - USItype __cbtmp; \ - __asm__ ("bsrl %1,%0" \ - : "=r" (__cbtmp) : "rm" ((USItype) (x))); \ - (count) = __cbtmp ^ 31; \ - } while (0) -#define count_trailing_zeros(count, x) \ - __asm__ ("bsfl %1,%0" : "=r" (count) : "rm" ((USItype)(x))) -#define UMUL_TIME 40 -#define UDIV_TIME 40 -#endif /* 80x86 */ - -#if defined (__i860__) && W_TYPE_SIZE == 32 -#if 0 -/* Make sure these patterns really improve the code before - switching them on. */ -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - do { \ - union \ - { \ - DItype __ll; \ - struct {USItype __l, __h;} __i; \ - } __a, __b, __s; \ - __a.__i.__l = (al); \ - __a.__i.__h = (ah); \ - __b.__i.__l = (bl); \ - __b.__i.__h = (bh); \ - __asm__ ("fiadd.dd %1,%2,%0" \ - : "=f" (__s.__ll) \ - : "%f" (__a.__ll), "f" (__b.__ll)); \ - (sh) = __s.__i.__h; \ - (sl) = __s.__i.__l; \ - } while (0) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - do { \ - union \ - { \ - DItype __ll; \ - struct {USItype __l, __h;} __i; \ - } __a, __b, __s; \ - __a.__i.__l = (al); \ - __a.__i.__h = (ah); \ - __b.__i.__l = (bl); \ - __b.__i.__h = (bh); \ - __asm__ ("fisub.dd %1,%2,%0" \ - : "=f" (__s.__ll) \ - : "%f" (__a.__ll), "f" (__b.__ll)); \ - (sh) = __s.__i.__h; \ - (sl) = __s.__i.__l; \ - } while (0) -#endif -#endif /* __i860__ */ - -#if defined (__i960__) && W_TYPE_SIZE == 32 -#define umul_ppmm(w1, w0, u, v) \ - ({union {UDItype __ll; \ - struct {USItype __l, __h;} __i; \ - } __xx; \ - __asm__ ("emul %2,%1,%0" \ - : "=d" (__xx.__ll) \ - : "%dI" ((USItype) (u)), \ - "dI" ((USItype) (v))); \ - (w1) = __xx.__i.__h; (w0) = __xx.__i.__l;}) -#define __umulsidi3(u, v) \ - ({UDItype __w; \ - __asm__ ("emul %2,%1,%0" \ - : "=d" (__w) \ - : "%dI" ((USItype) (u)), \ - "dI" ((USItype) (v))); \ - __w; }) -#endif /* __i960__ */ - -#if defined (__M32R__) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - /* The cmp clears the condition bit. */ \ - __asm__ ("cmp %0,%0\n\taddx %%5,%1\n\taddx %%3,%0" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%0" ((USItype) (ah)), \ - "r" ((USItype) (bh)), \ - "%1" ((USItype) (al)), \ - "r" ((USItype) (bl)) \ - : "cbit") -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - /* The cmp clears the condition bit. */ \ - __asm__ ("cmp %0,%0\n\tsubx %5,%1\n\tsubx %3,%0" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "0" ((USItype) (ah)), \ - "r" ((USItype) (bh)), \ - "1" ((USItype) (al)), \ - "r" ((USItype) (bl)) \ - : "cbit") -#endif /* __M32R__ */ - -#if defined (__mc68000__) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("add%.l %5,%1\n\taddx%.l %3,%0" \ - : "=d" ((USItype) (sh)), \ - "=&d" ((USItype) (sl)) \ - : "%0" ((USItype) (ah)), \ - "d" ((USItype) (bh)), \ - "%1" ((USItype) (al)), \ - "g" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("sub%.l %5,%1\n\tsubx%.l %3,%0" \ - : "=d" ((USItype) (sh)), \ - "=&d" ((USItype) (sl)) \ - : "0" ((USItype) (ah)), \ - "d" ((USItype) (bh)), \ - "1" ((USItype) (al)), \ - "g" ((USItype) (bl))) - -/* The '020, '030, '040 and CPU32 have 32x32->64 and 64/32->32q-32r. */ -#if defined (__mc68020__) || defined(mc68020) \ - || defined(__mc68030__) || defined(mc68030) \ - || defined(__mc68040__) || defined(mc68040) \ - || defined(__mcpu32__) || defined(mcpu32) \ - || defined(__NeXT__) -#define umul_ppmm(w1, w0, u, v) \ - __asm__ ("mulu%.l %3,%1:%0" \ - : "=d" ((USItype) (w0)), \ - "=d" ((USItype) (w1)) \ - : "%0" ((USItype) (u)), \ - "dmi" ((USItype) (v))) -#define UMUL_TIME 45 -#define udiv_qrnnd(q, r, n1, n0, d) \ - __asm__ ("divu%.l %4,%1:%0" \ - : "=d" ((USItype) (q)), \ - "=d" ((USItype) (r)) \ - : "0" ((USItype) (n0)), \ - "1" ((USItype) (n1)), \ - "dmi" ((USItype) (d))) -#define UDIV_TIME 90 -#define sdiv_qrnnd(q, r, n1, n0, d) \ - __asm__ ("divs%.l %4,%1:%0" \ - : "=d" ((USItype) (q)), \ - "=d" ((USItype) (r)) \ - : "0" ((USItype) (n0)), \ - "1" ((USItype) (n1)), \ - "dmi" ((USItype) (d))) - -#else /* not mc68020 */ -#if !defined(__mcf5200__) -/* %/ inserts REGISTER_PREFIX, %# inserts IMMEDIATE_PREFIX. */ -#define umul_ppmm(xh, xl, a, b) \ - __asm__ ("| Inlined umul_ppmm\n" \ - " move%.l %2,%/d0\n" \ - " move%.l %3,%/d1\n" \ - " move%.l %/d0,%/d2\n" \ - " swap %/d0\n" \ - " move%.l %/d1,%/d3\n" \ - " swap %/d1\n" \ - " move%.w %/d2,%/d4\n" \ - " mulu %/d3,%/d4\n" \ - " mulu %/d1,%/d2\n" \ - " mulu %/d0,%/d3\n" \ - " mulu %/d0,%/d1\n" \ - " move%.l %/d4,%/d0\n" \ - " eor%.w %/d0,%/d0\n" \ - " swap %/d0\n" \ - " add%.l %/d0,%/d2\n" \ - " add%.l %/d3,%/d2\n" \ - " jcc 1f\n" \ - " add%.l %#65536,%/d1\n" \ - "1: swap %/d2\n" \ - " moveq %#0,%/d0\n" \ - " move%.w %/d2,%/d0\n" \ - " move%.w %/d4,%/d2\n" \ - " move%.l %/d2,%1\n" \ - " add%.l %/d1,%/d0\n" \ - " move%.l %/d0,%0" \ - : "=g" ((USItype) (xh)), \ - "=g" ((USItype) (xl)) \ - : "g" ((USItype) (a)), \ - "g" ((USItype) (b)) \ - : "d0", "d1", "d2", "d3", "d4") -#define UMUL_TIME 100 -#define UDIV_TIME 400 -#endif /* not mcf5200 */ -#endif /* not mc68020 */ - -/* The '020, '030, '040 and '060 have bitfield insns. */ -#if defined (__mc68020__) || defined(mc68020) \ - || defined(__mc68030__) || defined(mc68030) \ - || defined(__mc68040__) || defined(mc68040) \ - || defined(__mc68060__) || defined(mc68060) \ - || defined(__NeXT__) -#define count_leading_zeros(count, x) \ - __asm__ ("bfffo %1{%b2:%b2},%0" \ - : "=d" ((USItype) (count)) \ - : "od" ((USItype) (x)), "n" (0)) -#endif -#endif /* mc68000 */ - -#if defined (__m88000__) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("addu.co %1,%r4,%r5\n\taddu.ci %0,%r2,%r3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%rJ" ((USItype) (ah)), \ - "rJ" ((USItype) (bh)), \ - "%rJ" ((USItype) (al)), \ - "rJ" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("subu.co %1,%r4,%r5\n\tsubu.ci %0,%r2,%r3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "rJ" ((USItype) (ah)), \ - "rJ" ((USItype) (bh)), \ - "rJ" ((USItype) (al)), \ - "rJ" ((USItype) (bl))) -#define count_leading_zeros(count, x) \ - do { \ - USItype __cbtmp; \ - __asm__ ("ff1 %0,%1" \ - : "=r" (__cbtmp) \ - : "r" ((USItype) (x))); \ - (count) = __cbtmp ^ 31; \ - } while (0) -#define COUNT_LEADING_ZEROS_0 63 /* sic */ -#if defined (__mc88110__) -#define umul_ppmm(wh, wl, u, v) \ - do { \ - union {UDItype __ll; \ - struct {USItype __h, __l;} __i; \ - } __xx; \ - __asm__ ("mulu.d %0,%1,%2" \ - : "=r" (__xx.__ll) \ - : "r" ((USItype) (u)), \ - "r" ((USItype) (v))); \ - (wh) = __xx.__i.__h; \ - (wl) = __xx.__i.__l; \ - } while (0) -#define udiv_qrnnd(q, r, n1, n0, d) \ - ({union {UDItype __ll; \ - struct {USItype __h, __l;} __i; \ - } __xx; \ - USItype __q; \ - __xx.__i.__h = (n1); __xx.__i.__l = (n0); \ - __asm__ ("divu.d %0,%1,%2" \ - : "=r" (__q) \ - : "r" (__xx.__ll), \ - "r" ((USItype) (d))); \ - (r) = (n0) - __q * (d); (q) = __q; }) -#define UMUL_TIME 5 -#define UDIV_TIME 25 -#else -#define UMUL_TIME 17 -#define UDIV_TIME 150 -#endif /* __mc88110__ */ -#endif /* __m88000__ */ - -#if defined (__mips__) && W_TYPE_SIZE == 32 -#define umul_ppmm(w1, w0, u, v) \ - __asm__ ("multu %2,%3" \ - : "=l" ((USItype) (w0)), \ - "=h" ((USItype) (w1)) \ - : "d" ((USItype) (u)), \ - "d" ((USItype) (v))) -#define UMUL_TIME 10 -#define UDIV_TIME 100 -#endif /* __mips__ */ - -#if defined (__ns32000__) && W_TYPE_SIZE == 32 -#define umul_ppmm(w1, w0, u, v) \ - ({union {UDItype __ll; \ - struct {USItype __l, __h;} __i; \ - } __xx; \ - __asm__ ("meid %2,%0" \ - : "=g" (__xx.__ll) \ - : "%0" ((USItype) (u)), \ - "g" ((USItype) (v))); \ - (w1) = __xx.__i.__h; (w0) = __xx.__i.__l;}) -#define __umulsidi3(u, v) \ - ({UDItype __w; \ - __asm__ ("meid %2,%0" \ - : "=g" (__w) \ - : "%0" ((USItype) (u)), \ - "g" ((USItype) (v))); \ - __w; }) -#define udiv_qrnnd(q, r, n1, n0, d) \ - ({union {UDItype __ll; \ - struct {USItype __l, __h;} __i; \ - } __xx; \ - __xx.__i.__h = (n1); __xx.__i.__l = (n0); \ - __asm__ ("deid %2,%0" \ - : "=g" (__xx.__ll) \ - : "0" (__xx.__ll), \ - "g" ((USItype) (d))); \ - (r) = __xx.__i.__l; (q) = __xx.__i.__h; }) -#define count_trailing_zeros(count,x) \ - do { - __asm__ ("ffsd %2,%0" \ - : "=r" ((USItype) (count)) \ - : "0" ((USItype) 0), \ - "r" ((USItype) (x))); \ - } while (0) -#endif /* __ns32000__ */ - -#if (defined (_ARCH_PPC) || defined (_IBMR2)) -#if W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - do { \ - if (__builtin_constant_p (bh) && (bh) == 0) \ - __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%r" ((USItype) (ah)), \ - "%r" ((USItype) (al)), \ - "rI" ((USItype) (bl))); \ - else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \ - __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%r" ((USItype) (ah)), \ - "%r" ((USItype) (al)), \ - "rI" ((USItype) (bl))); \ - else \ - __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%r" ((USItype) (ah)), \ - "r" ((USItype) (bh)), \ - "%r" ((USItype) (al)), \ - "rI" ((USItype) (bl))); \ - } while (0) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - do { \ - if (__builtin_constant_p (ah) && (ah) == 0) \ - __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "r" ((USItype) (bh)), \ - "rI" ((USItype) (al)), \ - "r" ((USItype) (bl))); \ - else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0) \ - __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "r" ((USItype) (bh)), \ - "rI" ((USItype) (al)), \ - "r" ((USItype) (bl))); \ - else if (__builtin_constant_p (bh) && (bh) == 0) \ - __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "r" ((USItype) (ah)), \ - "rI" ((USItype) (al)), \ - "r" ((USItype) (bl))); \ - else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \ - __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "r" ((USItype) (ah)), \ - "rI" ((USItype) (al)), \ - "r" ((USItype) (bl))); \ - else \ - __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "r" ((USItype) (ah)), \ - "r" ((USItype) (bh)), \ - "rI" ((USItype) (al)), \ - "r" ((USItype) (bl))); \ - } while (0) -#endif /* W_TYPE_SIZE */ -#define count_leading_zeros(count, x) \ - __asm__ ("{cntlz|cntlzw} %0,%1" \ - : "=r" ((USItype) (count)) \ - : "r" ((USItype) (x))) -#define COUNT_LEADING_ZEROS_0 32 -#if defined (_ARCH_PPC) -#define umul_ppmm(ph, pl, m0, m1) \ - do { \ - USItype __m0 = (m0), __m1 = (m1); \ - __asm__ ("mulhwu %0,%1,%2" \ - : "=r" ((USItype) ph) \ - : "%r" (__m0), \ - "r" (__m1)); \ - (pl) = __m0 * __m1; \ - } while (0) -#define UMUL_TIME 15 -#define smul_ppmm(ph, pl, m0, m1) \ - do { \ - SItype __m0 = (m0), __m1 = (m1); \ - __asm__ ("mulhw %0,%1,%2" \ - : "=r" ((SItype) ph) \ - : "%r" (__m0), \ - "r" (__m1)); \ - (pl) = __m0 * __m1; \ - } while (0) -#define SMUL_TIME 14 -#define UDIV_TIME 120 -#elif defined (_ARCH_PWR) -#define umul_ppmm(xh, xl, m0, m1) \ - do { \ - USItype __m0 = (m0), __m1 = (m1); \ - __asm__ ("mul %0,%2,%3" \ - : "=r" ((USItype) (xh)), \ - "=q" ((USItype) (xl)) \ - : "r" (__m0), \ - "r" (__m1)); \ - (xh) += ((((SItype) __m0 >> 31) & __m1) \ - + (((SItype) __m1 >> 31) & __m0)); \ - } while (0) -#define UMUL_TIME 8 -#define smul_ppmm(xh, xl, m0, m1) \ - __asm__ ("mul %0,%2,%3" \ - : "=r" ((SItype) (xh)), \ - "=q" ((SItype) (xl)) \ - : "r" (m0), \ - "r" (m1)) -#define SMUL_TIME 4 -#define sdiv_qrnnd(q, r, nh, nl, d) \ - __asm__ ("div %0,%2,%4" \ - : "=r" ((SItype) (q)), "=q" ((SItype) (r)) \ - : "r" ((SItype) (nh)), "1" ((SItype) (nl)), "r" ((SItype) (d))) -#define UDIV_TIME 100 -#endif -#endif /* Power architecture variants. */ - -#if defined (__pyr__) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("addw %5,%1\n\taddwc %3,%0" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%0" ((USItype) (ah)), \ - "g" ((USItype) (bh)), \ - "%1" ((USItype) (al)), \ - "g" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("subw %5,%1\n\tsubwb %3,%0" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "0" ((USItype) (ah)), \ - "g" ((USItype) (bh)), \ - "1" ((USItype) (al)), \ - "g" ((USItype) (bl))) -/* This insn works on Pyramids with AP, XP, or MI CPUs, but not with SP. */ -#define umul_ppmm(w1, w0, u, v) \ - ({union {UDItype __ll; \ - struct {USItype __h, __l;} __i; \ - } __xx; \ - __asm__ ("movw %1,%R0\n\tuemul %2,%0" \ - : "=&r" (__xx.__ll) \ - : "g" ((USItype) (u)), \ - "g" ((USItype) (v))); \ - (w1) = __xx.__i.__h; (w0) = __xx.__i.__l;}) -#endif /* __pyr__ */ - -#if defined (__ibm032__) /* RT/ROMP */ && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("a %1,%5\n\tae %0,%3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%0" ((USItype) (ah)), \ - "r" ((USItype) (bh)), \ - "%1" ((USItype) (al)), \ - "r" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("s %1,%5\n\tse %0,%3" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "0" ((USItype) (ah)), \ - "r" ((USItype) (bh)), \ - "1" ((USItype) (al)), \ - "r" ((USItype) (bl))) -#define umul_ppmm(ph, pl, m0, m1) \ - do { \ - USItype __m0 = (m0), __m1 = (m1); \ - __asm__ ( \ - "s r2,r2\n" \ -" mts r10,%2\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" m r2,%3\n" \ -" cas %0,r2,r0\n" \ -" mfs r10,%1" \ - : "=r" ((USItype) (ph)), \ - "=r" ((USItype) (pl)) \ - : "%r" (__m0), \ - "r" (__m1) \ - : "r2"); \ - (ph) += ((((SItype) __m0 >> 31) & __m1) \ - + (((SItype) __m1 >> 31) & __m0)); \ - } while (0) -#define UMUL_TIME 20 -#define UDIV_TIME 200 -#define count_leading_zeros(count, x) \ - do { \ - if ((x) >= 0x10000) \ - __asm__ ("clz %0,%1" \ - : "=r" ((USItype) (count)) \ - : "r" ((USItype) (x) >> 16)); \ - else \ - { \ - __asm__ ("clz %0,%1" \ - : "=r" ((USItype) (count)) \ - : "r" ((USItype) (x))); \ - (count) += 16; \ - } \ - } while (0) -#endif - -#if defined (__sh2__) && W_TYPE_SIZE == 32 -#define umul_ppmm(w1, w0, u, v) \ - __asm__ ( \ - "dmulu.l %2,%3\n\tsts macl,%1\n\tsts mach,%0" \ - : "=r" ((USItype)(w1)), \ - "=r" ((USItype)(w0)) \ - : "r" ((USItype)(u)), \ - "r" ((USItype)(v)) \ - : "macl", "mach") -#define UMUL_TIME 5 -#endif - -#if defined (__SH5__) && __SHMEDIA__ && W_TYPE_SIZE == 32 -#define __umulsidi3(u,v) ((UDItype)(USItype)u*(USItype)v) -#define count_leading_zeros(count, x) \ - do \ - { \ - UDItype x_ = (USItype)(x); \ - SItype c_; \ - \ - __asm__ ("nsb %1, %0" : "=r" (c_) : "r" (x_)); \ - (count) = c_ - 31; \ - } \ - while (0) -#define COUNT_LEADING_ZEROS_0 32 -#endif - -#if defined (__sparc__) && !defined (__arch64__) && !defined (__sparcv9) \ - && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("addcc %r4,%5,%1\n\taddx %r2,%3,%0" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "%rJ" ((USItype) (ah)), \ - "rI" ((USItype) (bh)), \ - "%rJ" ((USItype) (al)), \ - "rI" ((USItype) (bl)) \ - __CLOBBER_CC) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("subcc %r4,%5,%1\n\tsubx %r2,%3,%0" \ - : "=r" ((USItype) (sh)), \ - "=&r" ((USItype) (sl)) \ - : "rJ" ((USItype) (ah)), \ - "rI" ((USItype) (bh)), \ - "rJ" ((USItype) (al)), \ - "rI" ((USItype) (bl)) \ - __CLOBBER_CC) -#if defined (__sparc_v8__) -#define umul_ppmm(w1, w0, u, v) \ - __asm__ ("umul %2,%3,%1;rd %%y,%0" \ - : "=r" ((USItype) (w1)), \ - "=r" ((USItype) (w0)) \ - : "r" ((USItype) (u)), \ - "r" ((USItype) (v))) -#define udiv_qrnnd(__q, __r, __n1, __n0, __d) \ - __asm__ ("mov %2,%%y;nop;nop;nop;udiv %3,%4,%0;umul %0,%4,%1;sub %3,%1,%1"\ - : "=&r" ((USItype) (__q)), \ - "=&r" ((USItype) (__r)) \ - : "r" ((USItype) (__n1)), \ - "r" ((USItype) (__n0)), \ - "r" ((USItype) (__d))) -#else -#if defined (__sparclite__) -/* This has hardware multiply but not divide. It also has two additional - instructions scan (ffs from high bit) and divscc. */ -#define umul_ppmm(w1, w0, u, v) \ - __asm__ ("umul %2,%3,%1;rd %%y,%0" \ - : "=r" ((USItype) (w1)), \ - "=r" ((USItype) (w0)) \ - : "r" ((USItype) (u)), \ - "r" ((USItype) (v))) -#define udiv_qrnnd(q, r, n1, n0, d) \ - __asm__ ("! Inlined udiv_qrnnd\n" \ -" wr %%g0,%2,%%y ! Not a delayed write for sparclite\n" \ -" tst %%g0\n" \ -" divscc %3,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%%g1\n" \ -" divscc %%g1,%4,%0\n" \ -" rd %%y,%1\n" \ -" bl,a 1f\n" \ -" add %1,%4,%1\n" \ -"1: ! End of inline udiv_qrnnd" \ - : "=r" ((USItype) (q)), \ - "=r" ((USItype) (r)) \ - : "r" ((USItype) (n1)), \ - "r" ((USItype) (n0)), \ - "rI" ((USItype) (d)) \ - : "g1" __AND_CLOBBER_CC) -#define UDIV_TIME 37 -#define count_leading_zeros(count, x) \ - do { \ - __asm__ ("scan %1,1,%0" \ - : "=r" ((USItype) (count)) \ - : "r" ((USItype) (x))); \ - } while (0) -/* Early sparclites return 63 for an argument of 0, but they warn that future - implementations might change this. Therefore, leave COUNT_LEADING_ZEROS_0 - undefined. */ -#else -/* SPARC without integer multiplication and divide instructions. - (i.e. at least Sun4/20,40,60,65,75,110,260,280,330,360,380,470,490) */ -#define umul_ppmm(w1, w0, u, v) \ - __asm__ ("! Inlined umul_ppmm\n" \ -" wr %%g0,%2,%%y ! SPARC has 0-3 delay insn after a wr\n"\ -" sra %3,31,%%o5 ! Don't move this insn\n" \ -" and %2,%%o5,%%o5 ! Don't move this insn\n" \ -" andcc %%g0,0,%%g1 ! Don't move this insn\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,%3,%%g1\n" \ -" mulscc %%g1,0,%%g1\n" \ -" add %%g1,%%o5,%0\n" \ -" rd %%y,%1" \ - : "=r" ((USItype) (w1)), \ - "=r" ((USItype) (w0)) \ - : "%rI" ((USItype) (u)), \ - "r" ((USItype) (v)) \ - : "g1", "o5" __AND_CLOBBER_CC) -#define UMUL_TIME 39 /* 39 instructions */ -/* It's quite necessary to add this much assembler for the sparc. - The default udiv_qrnnd (in C) is more than 10 times slower! */ -#define udiv_qrnnd(__q, __r, __n1, __n0, __d) \ - __asm__ ("! Inlined udiv_qrnnd\n" \ -" mov 32,%%g1\n" \ -" subcc %1,%2,%%g0\n" \ -"1: bcs 5f\n" \ -" addxcc %0,%0,%0 ! shift n1n0 and a q-bit in lsb\n" \ -" sub %1,%2,%1 ! this kills msb of n\n" \ -" addx %1,%1,%1 ! so this can't give carry\n" \ -" subcc %%g1,1,%%g1\n" \ -"2: bne 1b\n" \ -" subcc %1,%2,%%g0\n" \ -" bcs 3f\n" \ -" addxcc %0,%0,%0 ! shift n1n0 and a q-bit in lsb\n" \ -" b 3f\n" \ -" sub %1,%2,%1 ! this kills msb of n\n" \ -"4: sub %1,%2,%1\n" \ -"5: addxcc %1,%1,%1\n" \ -" bcc 2b\n" \ -" subcc %%g1,1,%%g1\n" \ -"! Got carry from n. Subtract next step to cancel this carry.\n" \ -" bne 4b\n" \ -" addcc %0,%0,%0 ! shift n1n0 and a 0-bit in lsb\n" \ -" sub %1,%2,%1\n" \ -"3: xnor %0,0,%0\n" \ -" ! End of inline udiv_qrnnd" \ - : "=&r" ((USItype) (__q)), \ - "=&r" ((USItype) (__r)) \ - : "r" ((USItype) (__d)), \ - "1" ((USItype) (__n1)), \ - "0" ((USItype) (__n0)) : "g1" __AND_CLOBBER_CC) -#define UDIV_TIME (3+7*32) /* 7 instructions/iteration. 32 iterations. */ -#endif /* __sparclite__ */ -#endif /* __sparc_v8__ */ -#endif /* sparc32 */ - -#if ((defined (__sparc__) && defined (__arch64__)) || defined (__sparcv9)) \ - && W_TYPE_SIZE == 64 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("addcc %r4,%5,%1\n\t" \ - "add %r2,%3,%0\n\t" \ - "bcs,a,pn %%xcc, 1f\n\t" \ - "add %0, 1, %0\n" \ - "1:" \ - : "=r" ((UDItype)(sh)), \ - "=&r" ((UDItype)(sl)) \ - : "%rJ" ((UDItype)(ah)), \ - "rI" ((UDItype)(bh)), \ - "%rJ" ((UDItype)(al)), \ - "rI" ((UDItype)(bl)) \ - __CLOBBER_CC) - -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("subcc %r4,%5,%1\n\t" \ - "sub %r2,%3,%0\n\t" \ - "bcs,a,pn %%xcc, 1f\n\t" \ - "sub %0, 1, %0\n\t" \ - "1:" \ - : "=r" ((UDItype)(sh)), \ - "=&r" ((UDItype)(sl)) \ - : "rJ" ((UDItype)(ah)), \ - "rI" ((UDItype)(bh)), \ - "rJ" ((UDItype)(al)), \ - "rI" ((UDItype)(bl)) \ - __CLOBBER_CC) - -#define umul_ppmm(wh, wl, u, v) \ - do { \ - UDItype tmp1, tmp2, tmp3, tmp4; \ - __asm__ __volatile__ ( \ - "srl %7,0,%3\n\t" \ - "mulx %3,%6,%1\n\t" \ - "srlx %6,32,%2\n\t" \ - "mulx %2,%3,%4\n\t" \ - "sllx %4,32,%5\n\t" \ - "srl %6,0,%3\n\t" \ - "sub %1,%5,%5\n\t" \ - "srlx %5,32,%5\n\t" \ - "addcc %4,%5,%4\n\t" \ - "srlx %7,32,%5\n\t" \ - "mulx %3,%5,%3\n\t" \ - "mulx %2,%5,%5\n\t" \ - "sethi %%hi(0x80000000),%2\n\t" \ - "addcc %4,%3,%4\n\t" \ - "srlx %4,32,%4\n\t" \ - "add %2,%2,%2\n\t" \ - "movcc %%xcc,%%g0,%2\n\t" \ - "addcc %5,%4,%5\n\t" \ - "sllx %3,32,%3\n\t" \ - "add %1,%3,%1\n\t" \ - "add %5,%2,%0" \ - : "=r" ((UDItype)(wh)), \ - "=&r" ((UDItype)(wl)), \ - "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3), "=&r" (tmp4) \ - : "r" ((UDItype)(u)), \ - "r" ((UDItype)(v)) \ - __CLOBBER_CC); \ - } while (0) -#define UMUL_TIME 96 -#define UDIV_TIME 230 -#endif /* sparc64 */ - -#if defined (__vax__) && W_TYPE_SIZE == 32 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("addl2 %5,%1\n\tadwc %3,%0" \ - : "=g" ((USItype) (sh)), \ - "=&g" ((USItype) (sl)) \ - : "%0" ((USItype) (ah)), \ - "g" ((USItype) (bh)), \ - "%1" ((USItype) (al)), \ - "g" ((USItype) (bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("subl2 %5,%1\n\tsbwc %3,%0" \ - : "=g" ((USItype) (sh)), \ - "=&g" ((USItype) (sl)) \ - : "0" ((USItype) (ah)), \ - "g" ((USItype) (bh)), \ - "1" ((USItype) (al)), \ - "g" ((USItype) (bl))) -#define umul_ppmm(xh, xl, m0, m1) \ - do { \ - union { \ - UDItype __ll; \ - struct {USItype __l, __h;} __i; \ - } __xx; \ - USItype __m0 = (m0), __m1 = (m1); \ - __asm__ ("emul %1,%2,$0,%0" \ - : "=r" (__xx.__ll) \ - : "g" (__m0), \ - "g" (__m1)); \ - (xh) = __xx.__i.__h; \ - (xl) = __xx.__i.__l; \ - (xh) += ((((SItype) __m0 >> 31) & __m1) \ - + (((SItype) __m1 >> 31) & __m0)); \ - } while (0) -#define sdiv_qrnnd(q, r, n1, n0, d) \ - do { \ - union {DItype __ll; \ - struct {SItype __l, __h;} __i; \ - } __xx; \ - __xx.__i.__h = n1; __xx.__i.__l = n0; \ - __asm__ ("ediv %3,%2,%0,%1" \ - : "=g" (q), "=g" (r) \ - : "g" (__xx.__ll), "g" (d)); \ - } while (0) -#endif /* __vax__ */ - -#if defined (__z8000__) && W_TYPE_SIZE == 16 -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("add %H1,%H5\n\tadc %H0,%H3" \ - : "=r" ((unsigned int)(sh)), \ - "=&r" ((unsigned int)(sl)) \ - : "%0" ((unsigned int)(ah)), \ - "r" ((unsigned int)(bh)), \ - "%1" ((unsigned int)(al)), \ - "rQR" ((unsigned int)(bl))) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("sub %H1,%H5\n\tsbc %H0,%H3" \ - : "=r" ((unsigned int)(sh)), \ - "=&r" ((unsigned int)(sl)) \ - : "0" ((unsigned int)(ah)), \ - "r" ((unsigned int)(bh)), \ - "1" ((unsigned int)(al)), \ - "rQR" ((unsigned int)(bl))) -#define umul_ppmm(xh, xl, m0, m1) \ - do { \ - union {long int __ll; \ - struct {unsigned int __h, __l;} __i; \ - } __xx; \ - unsigned int __m0 = (m0), __m1 = (m1); \ - __asm__ ("mult %S0,%H3" \ - : "=r" (__xx.__i.__h), \ - "=r" (__xx.__i.__l) \ - : "%1" (__m0), \ - "rQR" (__m1)); \ - (xh) = __xx.__i.__h; (xl) = __xx.__i.__l; \ - (xh) += ((((signed int) __m0 >> 15) & __m1) \ - + (((signed int) __m1 >> 15) & __m0)); \ - } while (0) -#endif /* __z8000__ */ - -#endif /* __GNUC__ */ - -/* If this machine has no inline assembler, use C macros. */ - -#if !defined (add_ssaaaa) -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - do { \ - UWtype __x; \ - __x = (al) + (bl); \ - (sh) = (ah) + (bh) + (__x < (al)); \ - (sl) = __x; \ - } while (0) -#endif - -#if !defined (sub_ddmmss) -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - do { \ - UWtype __x; \ - __x = (al) - (bl); \ - (sh) = (ah) - (bh) - (__x > (al)); \ - (sl) = __x; \ - } while (0) -#endif - -#if !defined (umul_ppmm) -#define umul_ppmm(w1, w0, u, v) \ - do { \ - UWtype __x0, __x1, __x2, __x3; \ - UHWtype __ul, __vl, __uh, __vh; \ - \ - __ul = __ll_lowpart (u); \ - __uh = __ll_highpart (u); \ - __vl = __ll_lowpart (v); \ - __vh = __ll_highpart (v); \ - \ - __x0 = (UWtype) __ul * __vl; \ - __x1 = (UWtype) __ul * __vh; \ - __x2 = (UWtype) __uh * __vl; \ - __x3 = (UWtype) __uh * __vh; \ - \ - __x1 += __ll_highpart (__x0);/* this can't give carry */ \ - __x1 += __x2; /* but this indeed can */ \ - if (__x1 < __x2) /* did we get it? */ \ - __x3 += __ll_B; /* yes, add it in the proper pos. */ \ - \ - (w1) = __x3 + __ll_highpart (__x1); \ - (w0) = __ll_lowpart (__x1) * __ll_B + __ll_lowpart (__x0); \ - } while (0) -#endif - -#if !defined (__umulsidi3) -#define __umulsidi3(u, v) \ - ({DWunion __w; \ - umul_ppmm (__w.s.high, __w.s.low, u, v); \ - __w.ll; }) -#endif - -/* Define this unconditionally, so it can be used for debugging. */ -#define __udiv_qrnnd_c(q, r, n1, n0, d) \ - do { \ - UWtype __d1, __d0, __q1, __q0; \ - UWtype __r1, __r0, __m; \ - __d1 = __ll_highpart (d); \ - __d0 = __ll_lowpart (d); \ - \ - __r1 = (n1) % __d1; \ - __q1 = (n1) / __d1; \ - __m = (UWtype) __q1 * __d0; \ - __r1 = __r1 * __ll_B | __ll_highpart (n0); \ - if (__r1 < __m) \ - { \ - __q1--, __r1 += (d); \ - if (__r1 >= (d)) /* i.e. we didn't get carry when adding to __r1 */\ - if (__r1 < __m) \ - __q1--, __r1 += (d); \ - } \ - __r1 -= __m; \ - \ - __r0 = __r1 % __d1; \ - __q0 = __r1 / __d1; \ - __m = (UWtype) __q0 * __d0; \ - __r0 = __r0 * __ll_B | __ll_lowpart (n0); \ - if (__r0 < __m) \ - { \ - __q0--, __r0 += (d); \ - if (__r0 >= (d)) \ - if (__r0 < __m) \ - __q0--, __r0 += (d); \ - } \ - __r0 -= __m; \ - \ - (q) = (UWtype) __q1 * __ll_B | __q0; \ - (r) = __r0; \ - } while (0) - -/* If the processor has no udiv_qrnnd but sdiv_qrnnd, go through - __udiv_w_sdiv (defined in libgcc or elsewhere). */ -#if !defined (udiv_qrnnd) && defined (sdiv_qrnnd) -#define udiv_qrnnd(q, r, nh, nl, d) \ - do { \ - USItype __r; \ - (q) = __udiv_w_sdiv (&__r, nh, nl, d); \ - (r) = __r; \ - } while (0) -#endif - -/* If udiv_qrnnd was not defined for this processor, use __udiv_qrnnd_c. */ -#if !defined (udiv_qrnnd) -#define UDIV_NEEDS_NORMALIZATION 1 -#define udiv_qrnnd __udiv_qrnnd_c -#endif - -#if !defined (count_leading_zeros) -extern const UQItype __clz_tab[]; -#define count_leading_zeros(count, x) \ - do { \ - UWtype __xr = (x); \ - UWtype __a; \ - \ - if (W_TYPE_SIZE <= 32) \ - { \ - __a = __xr < ((UWtype)1<<2*__BITS4) \ - ? (__xr < ((UWtype)1<<__BITS4) ? 0 : __BITS4) \ - : (__xr < ((UWtype)1<<3*__BITS4) ? 2*__BITS4 : 3*__BITS4); \ - } \ - else \ - { \ - for (__a = W_TYPE_SIZE - 8; __a > 0; __a -= 8) \ - if (((__xr >> __a) & 0xff) != 0) \ - break; \ - } \ - \ - (count) = W_TYPE_SIZE - (__clz_tab[__xr >> __a] + __a); \ - } while (0) -#define COUNT_LEADING_ZEROS_0 W_TYPE_SIZE -#endif - -#if !defined (count_trailing_zeros) -/* Define count_trailing_zeros using count_leading_zeros. The latter might be - defined in asm, but if it is not, the C version above is good enough. */ -#define count_trailing_zeros(count, x) \ - do { \ - UWtype __ctz_x = (x); \ - UWtype __ctz_c; \ - count_leading_zeros (__ctz_c, __ctz_x & -__ctz_x); \ - (count) = W_TYPE_SIZE - 1 - __ctz_c; \ - } while (0) -#endif - -#ifndef UDIV_NEEDS_NORMALIZATION -#define UDIV_NEEDS_NORMALIZATION 0 -#endif diff --git a/reactos/drivers/storage/ide/uniata/ros_glue/powerpc.h b/reactos/drivers/storage/ide/uniata/ros_glue/powerpc.h deleted file mode 100644 index f24df4f02bf..00000000000 --- a/reactos/drivers/storage/ide/uniata/ros_glue/powerpc.h +++ /dev/null @@ -1,3208 +0,0 @@ -/* Definitions of target machine for GNU compiler for IA-32. - Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, - 2001, 2002 Free Software Foundation, Inc. - -This file is part of GNU CC. - -GNU CC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU CC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU CC; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ - -/* The purpose of this file is to define the characteristics of the i386, - independent of assembler syntax or operating system. - - Three other files build on this one to describe a specific assembler syntax: - bsd386.h, att386.h, and sun386.h. - - The actual tm.h file for a particular system should include - this file, and then the file for the appropriate assembler syntax. - - Many macros that specify assembler syntax are omitted entirely from - this file because they really belong in the files for particular - assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR, - ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many - that start with ASM_ or end in ASM_OP. */ - -/* Stubs for half-pic support if not OSF/1 reference platform. */ - -#ifndef HALF_PIC_P -#define HALF_PIC_P() 0 -#define HALF_PIC_NUMBER_PTRS 0 -#define HALF_PIC_NUMBER_REFS 0 -#define HALF_PIC_ENCODE(DECL) -#define HALF_PIC_DECLARE(NAME) -#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it") -#define HALF_PIC_ADDRESS_P(X) 0 -#define HALF_PIC_PTR(X) (X) -#define HALF_PIC_FINISH(STREAM) -#endif - -/* Define the specific costs for a given cpu */ - -struct processor_costs { - const int add; /* cost of an add instruction */ - const int lea; /* cost of a lea instruction */ - const int shift_var; /* variable shift costs */ - const int shift_const; /* constant shift costs */ - const int mult_init; /* cost of starting a multiply */ - const int mult_bit; /* cost of multiply per each bit set */ - const int divide; /* cost of a divide/mod */ - int movsx; /* The cost of movsx operation. */ - int movzx; /* The cost of movzx operation. */ - const int large_insn; /* insns larger than this cost more */ - const int move_ratio; /* The threshold of number of scalar - memory-to-memory move insns. */ - const int movzbl_load; /* cost of loading using movzbl */ - const int int_load[3]; /* cost of loading integer registers - in QImode, HImode and SImode relative - to reg-reg move (2). */ - const int int_store[3]; /* cost of storing integer register - in QImode, HImode and SImode */ - const int fp_move; /* cost of reg,reg fld/fst */ - const int fp_load[3]; /* cost of loading FP register - in SFmode, DFmode and XFmode */ - const int fp_store[3]; /* cost of storing FP register - in SFmode, DFmode and XFmode */ - const int mmx_move; /* cost of moving MMX register. */ - const int mmx_load[2]; /* cost of loading MMX register - in SImode and DImode */ - const int mmx_store[2]; /* cost of storing MMX register - in SImode and DImode */ - const int sse_move; /* cost of moving SSE register. */ - const int sse_load[3]; /* cost of loading SSE register - in SImode, DImode and TImode*/ - const int sse_store[3]; /* cost of storing SSE register - in SImode, DImode and TImode*/ - const int mmxsse_to_integer; /* cost of moving mmxsse register to - integer and vice versa. */ - const int prefetch_block; /* bytes moved to cache for prefetch. */ - const int simultaneous_prefetches; /* number of parallel prefetch - operations. */ -}; - -extern const struct processor_costs *ix86_cost; - -/* Run-time compilation parameters selecting different hardware subsets. */ - -extern int target_flags; - -/* Macros used in the machine description to test the flags. */ - -/* configure can arrange to make this 2, to force a 486. */ - -#ifndef TARGET_CPU_DEFAULT -#define TARGET_CPU_DEFAULT 0 -#endif - -/* Masks for the -m switches */ -#define MASK_80387 0x00000001 /* Hardware floating point */ -#define MASK_RTD 0x00000002 /* Use ret that pops args */ -#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */ -#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */ -#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */ -#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */ -#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */ -#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */ -#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */ -#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */ -#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */ -#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */ -#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */ -#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000 -#define MASK_MMX 0x00004000 /* Support MMX regs/builtins */ -#define MASK_MMX_SET 0x00008000 -#define MASK_SSE 0x00010000 /* Support SSE regs/builtins */ -#define MASK_SSE_SET 0x00020000 -#define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */ -#define MASK_SSE2_SET 0x00080000 -#define MASK_3DNOW 0x00100000 /* Support 3Dnow builtins */ -#define MASK_3DNOW_SET 0x00200000 -#define MASK_3DNOW_A 0x00400000 /* Support Athlon 3Dnow builtins */ -#define MASK_3DNOW_A_SET 0x00800000 -#define MASK_128BIT_LONG_DOUBLE 0x01000000 /* long double size is 128bit */ -#define MASK_64BIT 0x02000000 /* Produce 64bit code */ -/* ... overlap with subtarget options starts by 0x04000000. */ -#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */ - -/* Use the floating point instructions */ -#define TARGET_80387 (target_flags & MASK_80387) - -/* Compile using ret insn that pops args. - This will not work unless you use prototypes at least - for all functions that can take varying numbers of args. */ -#define TARGET_RTD (target_flags & MASK_RTD) - -/* Align doubles to a two word boundary. This breaks compatibility with - the published ABI's for structures containing doubles, but produces - faster code on the pentium. */ -#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE) - -/* Use push instructions to save outgoing args. */ -#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS)) - -/* Accumulate stack adjustments to prologue/epilogue. */ -#define TARGET_ACCUMULATE_OUTGOING_ARGS \ - (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS) - -/* Put uninitialized locals into bss, not data. - Meaningful only on svr3. */ -#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB) - -/* Use IEEE floating point comparisons. These handle correctly the cases - where the result of a comparison is unordered. Normally SIGFPE is - generated in such cases, in which case this isn't needed. */ -#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP) - -/* Functions that return a floating point value may return that value - in the 387 FPU or in 386 integer registers. If set, this flag causes - the 387 to be used, which is compatible with most calling conventions. */ -#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS) - -/* Long double is 128bit instead of 96bit, even when only 80bits are used. - This mode wastes cache, but avoid misaligned data accesses and simplifies - address calculations. */ -#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE) - -/* Disable generation of FP sin, cos and sqrt operations for 387. - This is because FreeBSD lacks these in the math-emulator-code */ -#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387) - -/* Don't create frame pointers for leaf functions */ -#define TARGET_OMIT_LEAF_FRAME_POINTER \ - (target_flags & MASK_OMIT_LEAF_FRAME_POINTER) - -/* Debug GO_IF_LEGITIMATE_ADDRESS */ -#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0) - -/* Debug FUNCTION_ARG macros */ -#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0) - -#if 0 -/* 64bit Sledgehammer mode */ -#ifdef TARGET_BI_ARCH -#define TARGET_64BIT (target_flags & MASK_64BIT) -#else -#ifdef TARGET_64BIT_DEFAULT -#define TARGET_64BIT 1 -#else -#define TARGET_64BIT 0 -#endif -#endif - -#define TARGET_386 (ix86_cpu == PROCESSOR_I386) -#define TARGET_486 (ix86_cpu == PROCESSOR_I486) -#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM) -#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO) -#define TARGET_K6 (ix86_cpu == PROCESSOR_K6) -#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON) -#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4) - -#define CPUMASK (1 << ix86_cpu) -extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and; -extern const int x86_use_bit_test, x86_cmove, x86_deep_branch; -extern const int x86_branch_hints, x86_unroll_strlen; -extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx; -extern const int x86_use_loop, x86_use_fiop, x86_use_mov0; -extern const int x86_use_cltd, x86_read_modify_write; -extern const int x86_read_modify, x86_split_long_moves; -extern const int x86_promote_QImode, x86_single_stringop; -extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs; -extern const int x86_promote_hi_regs, x86_integer_DFmode_moves; -extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8; -extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall; -extern const int x86_accumulate_outgoing_args, x86_prologue_using_move; -extern const int x86_epilogue_using_move, x86_decompose_lea; -extern const int x86_arch_always_fancy_math_387; -extern int x86_prefetch_sse; - -#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK) -#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK) -#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK) -#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK) -#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK) -/* For sane SSE instruction set generation we need fcomi instruction. It is - safe to enable all CMOVE instructions. */ -#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE) -#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK) -#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK) -#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK) -#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT) -#define TARGET_MOVX (x86_movx & CPUMASK) -#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK) -#define TARGET_USE_LOOP (x86_use_loop & CPUMASK) -#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK) -#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK) -#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK) -#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK) -#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK) -#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK) -#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK) -#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK) -#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK) -#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK) -#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK) -#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK) -#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK) -#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK) -#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK) -#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK) -#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK) -#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK) -#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK) -#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK) -#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK) -#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK) -#define TARGET_PREFETCH_SSE (x86_prefetch_sse) - -#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE) - -#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS)) -#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS) - -#define ASSEMBLER_DIALECT (ix86_asm_dialect) - -#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0) -#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0) -#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0) -#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \ - && (ix86_fpmath & FPMATH_387)) -#define TARGET_MMX ((target_flags & MASK_MMX) != 0) -#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0) -#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0) -#endif - -#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE)) - -/* WARNING: Do not mark empty strings for translation, as calling - gettext on an empty string does NOT return an empty - string. */ - -#if 0 -#define TARGET_SWITCHES \ -{ { "80387", MASK_80387, N_("Use hardware fp") }, \ - { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \ - { "hard-float", MASK_80387, N_("Use hardware fp") }, \ - { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \ - { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \ - { "386", 0, "" /*Deprecated.*/}, \ - { "486", 0, "" /*Deprecated.*/}, \ - { "pentium", 0, "" /*Deprecated.*/}, \ - { "pentiumpro", 0, "" /*Deprecated.*/}, \ - { "intel-syntax", 0, "" /*Deprecated.*/}, \ - { "no-intel-syntax", 0, "" /*Deprecated.*/}, \ - { "rtd", MASK_RTD, \ - N_("Alternate calling convention") }, \ - { "no-rtd", -MASK_RTD, \ - N_("Use normal calling convention") }, \ - { "align-double", MASK_ALIGN_DOUBLE, \ - N_("Align some doubles on dword boundary") }, \ - { "no-align-double", -MASK_ALIGN_DOUBLE, \ - N_("Align doubles on word boundary") }, \ - { "svr3-shlib", MASK_SVR3_SHLIB, \ - N_("Uninitialized locals in .bss") }, \ - { "no-svr3-shlib", -MASK_SVR3_SHLIB, \ - N_("Uninitialized locals in .data") }, \ - { "ieee-fp", MASK_IEEE_FP, \ - N_("Use IEEE math for fp comparisons") }, \ - { "no-ieee-fp", -MASK_IEEE_FP, \ - N_("Do not use IEEE math for fp comparisons") }, \ - { "fp-ret-in-387", MASK_FLOAT_RETURNS, \ - N_("Return values of functions in FPU registers") }, \ - { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \ - N_("Do not return values of functions in FPU registers")}, \ - { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \ - N_("Do not generate sin, cos, sqrt for FPU") }, \ - { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \ - N_("Generate sin, cos, sqrt for FPU")}, \ - { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \ - N_("Omit the frame pointer in leaf functions") }, \ - { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \ - { "stack-arg-probe", MASK_STACK_PROBE, \ - N_("Enable stack probing") }, \ - { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \ - { "windows", 0, 0 /* undocumented */ }, \ - { "dll", 0, 0 /* undocumented */ }, \ - { "align-stringops", -MASK_NO_ALIGN_STROPS, \ - N_("Align destination of the string operations") }, \ - { "no-align-stringops", MASK_NO_ALIGN_STROPS, \ - N_("Do not align destination of the string operations") }, \ - { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \ - N_("Inline all known string operations") }, \ - { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \ - N_("Do not inline all known string operations") }, \ - { "push-args", -MASK_NO_PUSH_ARGS, \ - N_("Use push instructions to save outgoing arguments") }, \ - { "no-push-args", MASK_NO_PUSH_ARGS, \ - N_("Do not use push instructions to save outgoing arguments") }, \ - { "accumulate-outgoing-args", (MASK_ACCUMULATE_OUTGOING_ARGS \ - | MASK_ACCUMULATE_OUTGOING_ARGS_SET), \ - N_("Use push instructions to save outgoing arguments") }, \ - { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET, \ - N_("Do not use push instructions to save outgoing arguments") }, \ - { "mmx", MASK_MMX | MASK_MMX_SET, \ - N_("Support MMX built-in functions") }, \ - { "no-mmx", -MASK_MMX, \ - N_("Do not support MMX built-in functions") }, \ - { "no-mmx", MASK_MMX_SET, "" }, \ - { "3dnow", MASK_3DNOW | MASK_3DNOW_SET, \ - N_("Support 3DNow! built-in functions") }, \ - { "no-3dnow", -MASK_3DNOW, "" }, \ - { "no-3dnow", MASK_3DNOW_SET, \ - N_("Do not support 3DNow! built-in functions") }, \ - { "sse", MASK_SSE | MASK_SSE_SET, \ - N_("Support MMX and SSE built-in functions and code generation") }, \ - { "no-sse", -MASK_SSE, "" }, \ - { "no-sse", MASK_SSE_SET, \ - N_("Do not support MMX and SSE built-in functions and code generation") },\ - { "sse2", MASK_SSE2 | MASK_SSE2_SET, \ - N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \ - { "no-sse2", -MASK_SSE2, "" }, \ - { "no-sse2", MASK_SSE2_SET, \ - N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \ - { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \ - N_("sizeof(long double) is 16") }, \ - { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \ - N_("sizeof(long double) is 12") }, \ - { "64", MASK_64BIT, \ - N_("Generate 64bit x86-64 code") }, \ - { "32", -MASK_64BIT, \ - N_("Generate 32bit i386 code") }, \ - { "red-zone", -MASK_NO_RED_ZONE, \ - N_("Use red-zone in the x86-64 code") }, \ - { "no-red-zone", MASK_NO_RED_ZONE, \ - N_("Do not use red-zone in the x86-64 code") }, \ - SUBTARGET_SWITCHES \ - { "", TARGET_DEFAULT, 0 }} - -#ifdef TARGET_64BIT_DEFAULT -#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT) -#else -#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT -#endif - -/* Which processor to schedule for. The cpu attribute defines a list that - mirrors this list, so changes to i386.md must be made at the same time. */ - -enum processor_type -{ - PROCESSOR_I386, /* 80386 */ - PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */ - PROCESSOR_PENTIUM, - PROCESSOR_PENTIUMPRO, - PROCESSOR_K6, - PROCESSOR_ATHLON, - PROCESSOR_PENTIUM4, - PROCESSOR_max -}; -enum fpmath_unit -{ - FPMATH_387 = 1, - FPMATH_SSE = 2 -}; - -extern enum processor_type ix86_cpu; -extern enum fpmath_unit ix86_fpmath; - -extern int ix86_arch; - -/* This macro is similar to `TARGET_SWITCHES' but defines names of - command options that have values. Its definition is an - initializer with a subgrouping for each command option. - - Each subgrouping contains a string constant, that defines the - fixed part of the option name, and the address of a variable. The - variable, type `char *', is set to the variable part of the given - option if the fixed part matches. The actual option name is made - by appending `-m' to the specified name. */ -#define TARGET_OPTIONS \ -{ { "cpu=", &ix86_cpu_string, \ - N_("Schedule code for given CPU")}, \ - { "fpmath=", &ix86_fpmath_string, \ - N_("Generate floating point mathematics using given instruction set")},\ - { "arch=", &ix86_arch_string, \ - N_("Generate code for given CPU")}, \ - { "regparm=", &ix86_regparm_string, \ - N_("Number of registers used to pass integer arguments") }, \ - { "align-loops=", &ix86_align_loops_string, \ - N_("Loop code aligned to this power of 2") }, \ - { "align-jumps=", &ix86_align_jumps_string, \ - N_("Jump targets are aligned to this power of 2") }, \ - { "align-functions=", &ix86_align_funcs_string, \ - N_("Function starts are aligned to this power of 2") }, \ - { "preferred-stack-boundary=", \ - &ix86_preferred_stack_boundary_string, \ - N_("Attempt to keep stack aligned to this power of 2") }, \ - { "branch-cost=", &ix86_branch_cost_string, \ - N_("Branches are this expensive (1-5, arbitrary units)") }, \ - { "cmodel=", &ix86_cmodel_string, \ - N_("Use given x86-64 code model") }, \ - { "debug-arg", &ix86_debug_arg_string, \ - "" /* Undocumented. */ }, \ - { "debug-addr", &ix86_debug_addr_string, \ - "" /* Undocumented. */ }, \ - { "asm=", &ix86_asm_string, \ - N_("Use given assembler dialect") }, \ - SUBTARGET_OPTIONS \ -} -#endif - -/* Sometimes certain combinations of command options do not make - sense on a particular target machine. You can define a macro - `OVERRIDE_OPTIONS' to take account of this. This macro, if - defined, is executed once just after all the command options have - been parsed. - - Don't use this macro to turn on various extra optimizations for - `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ - -#define OVERRIDE_OPTIONS override_options () - -/* These are meant to be redefined in the host dependent files */ -#define SUBTARGET_SWITCHES -#define SUBTARGET_OPTIONS - -/* Define this to change the optimizations performed by default. */ -#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \ - optimization_options ((LEVEL), (SIZE)) - -/* Specs for the compiler proper */ - -#if 0 -#ifndef CC1_CPU_SPEC -#define CC1_CPU_SPEC "\ -%{!mcpu*: \ -%{m386:-mcpu=i386 \ -%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \ -%{m486:-mcpu=i486 \ -%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \ -%{mpentium:-mcpu=pentium \ -%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \ -%{mpentiumpro:-mcpu=pentiumpro \ -%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \ -%{mintel-syntax:-masm=intel \ -%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \ -%{mno-intel-syntax:-masm=att \ -%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}" -#endif - -#define TARGET_CPU_DEFAULT_i386 0 -#define TARGET_CPU_DEFAULT_i486 1 -#define TARGET_CPU_DEFAULT_pentium 2 -#define TARGET_CPU_DEFAULT_pentium_mmx 3 -#define TARGET_CPU_DEFAULT_pentiumpro 4 -#define TARGET_CPU_DEFAULT_pentium2 5 -#define TARGET_CPU_DEFAULT_pentium3 6 -#define TARGET_CPU_DEFAULT_pentium4 7 -#define TARGET_CPU_DEFAULT_k6 8 -#define TARGET_CPU_DEFAULT_k6_2 9 -#define TARGET_CPU_DEFAULT_k6_3 10 -#define TARGET_CPU_DEFAULT_athlon 11 -#define TARGET_CPU_DEFAULT_athlon_sse 12 - -#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\ - "pentiumpro", "pentium2", "pentium3", \ - "pentium4", "k6", "k6-2", "k6-3",\ - "athlon", "athlon-4"} -#ifndef CPP_CPU_DEFAULT_SPEC -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\ --D__tune_pentium2__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\ --D__tune_pentium2__ -D__tune_pentium3__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3 -#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon -#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__" -#endif -#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse -#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__" -#endif -#ifndef CPP_CPU_DEFAULT_SPEC -#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__" -#endif -#endif /* CPP_CPU_DEFAULT_SPEC */ - -#ifdef TARGET_BI_ARCH -#define NO_BUILTIN_SIZE_TYPE -#define NO_BUILTIN_PTRDIFF_TYPE -#endif - -#ifdef NO_BUILTIN_SIZE_TYPE -#define CPP_CPU32_SIZE_TYPE_SPEC \ - " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int" -#define CPP_CPU64_SIZE_TYPE_SPEC \ - " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int" -#else -#define CPP_CPU32_SIZE_TYPE_SPEC "" -#define CPP_CPU64_SIZE_TYPE_SPEC "" -#endif - -#define CPP_CPU32_SPEC \ - "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \ --D__i386__ %(cpp_cpu32sizet)" - -#define CPP_CPU64_SPEC \ - "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)" - -#define CPP_CPUCOMMON_SPEC "\ -%{march=i386:%{!mcpu*:-D__tune_i386__ }}\ -%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\ -%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \ - %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\ -%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \ - -D__pentium__mmx__ \ - %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\ -%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \ - -D__pentiumpro -D__pentiumpro__ \ - %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\ -%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\ -%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \ - %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\ -%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \ - %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\ -%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \ - %{!mcpu*:-D__tune_athlon__ }}\ -%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \ - -D__athlon_sse__ \ - %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\ -%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\ -%{m386|mcpu=i386:-D__tune_i386__ }\ -%{m486|mcpu=i486:-D__tune_i486__ }\ -%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\ -%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \ --D__tune_pentiumpro__ }\ -%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\ -%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\ --D__tune_athlon__ }\ -%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\ --D__tune_athlon_sse__ }\ -%{mcpu=pentium4:-D__tune_pentium4__ }\ -%{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\ --D__SSE__ }\ -%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\ -|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\ -|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\ -%{march=k6-2|march=k6-3\ -|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\ -|march=athlon-mp: -D__3dNOW__ }\ -%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\ -|march=athlon-mp: -D__3dNOW_A__ }\ -%{march=pentium4: -D__SSE2__ }\ -%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}" - -#ifndef CPP_CPU_SPEC -#ifdef TARGET_BI_ARCH -#ifdef TARGET_64BIT_DEFAULT -#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)" -#else -#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)" -#endif -#else -#ifdef TARGET_64BIT_DEFAULT -#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)" -#else -#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)" -#endif -#endif -#endif - -#ifndef CC1_SPEC -#define CC1_SPEC "%(cc1_cpu) " -#endif - -/* This macro defines names of additional specifications to put in the - specs that can be used in various specifications like CC1_SPEC. Its - definition is an initializer with a subgrouping for each command option. - - Each subgrouping contains a string constant, that defines the - specification name, and a string constant that used by the GNU CC driver - program. - - Do not define this macro if it does not need to do anything. */ - -#ifndef SUBTARGET_EXTRA_SPECS -#define SUBTARGET_EXTRA_SPECS -#endif - -#define EXTRA_SPECS \ - { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \ - { "cpp_cpu", CPP_CPU_SPEC }, \ - { "cpp_cpu32", CPP_CPU32_SPEC }, \ - { "cpp_cpu64", CPP_CPU64_SPEC }, \ - { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC }, \ - { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC }, \ - { "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \ - { "cc1_cpu", CC1_CPU_SPEC }, \ - SUBTARGET_EXTRA_SPECS -#endif - -/* target machine storage layout */ - -/* Define for XFmode or TFmode extended real floating point support. - This will automatically cause REAL_ARITHMETIC to be defined. - - The XFmode is specified by i386 ABI, while TFmode may be faster - due to alignment and simplifications in the address calculations. - */ -#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96) -#define MAX_LONG_DOUBLE_TYPE_SIZE 64 -#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64 -/* Tell real.c that this is the 80-bit Intel extended float format - packaged in a 128-bit or 96bit entity. */ -#define INTEL_EXTENDED_IEEE_FORMAT 1 - - -#define SHORT_TYPE_SIZE 16 -#define INT_TYPE_SIZE 32 -#define FLOAT_TYPE_SIZE 32 -#define LONG_TYPE_SIZE BITS_PER_WORD -#define MAX_WCHAR_TYPE_SIZE 32 -#define DOUBLE_TYPE_SIZE 64 -#define LONG_LONG_TYPE_SIZE 64 - -#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT) -#define MAX_BITS_PER_WORD 64 -#define MAX_LONG_TYPE_SIZE 64 -#else -#define MAX_BITS_PER_WORD 32 -#define MAX_LONG_TYPE_SIZE 32 -#endif - -/* Define if you don't want extended real, but do want to use the - software floating point emulator for REAL_ARITHMETIC and - decimal <-> binary conversion. */ -/* #define REAL_ARITHMETIC */ - -/* Define this if most significant byte of a word is the lowest numbered. */ -/* That is true on the 80386. */ - -#define BITS_BIG_ENDIAN 0 - -/* Define this if most significant byte of a word is the lowest numbered. */ -/* That is not true on the 80386. */ -#define BYTES_BIG_ENDIAN 0 - -/* Define this if most significant word of a multiword number is the lowest - numbered. */ -/* Not true for 80386 */ -#define WORDS_BIG_ENDIAN 0 - -/* number of bits in an addressable storage unit */ -#define BITS_PER_UNIT 8 - -/* Width in bits of a "word", which is the contents of a machine register. - Note that this is not necessarily the width of data type `int'; - if using 16-bit ints on a 80386, this would still be 32. - But on a machine with 16-bit registers, this would be 16. */ -#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32) - -/* Width of a word, in units (bytes). */ -#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) -#define MIN_UNITS_PER_WORD 4 - -/* Width in bits of a pointer. - See also the macro `Pmode' defined below. */ -#define POINTER_SIZE BITS_PER_WORD - -/* Allocation boundary (in *bits*) for storing arguments in argument list. */ -#define PARM_BOUNDARY BITS_PER_WORD - -/* Boundary (in *bits*) on which stack pointer should be aligned. */ -#define STACK_BOUNDARY BITS_PER_WORD - -/* Boundary (in *bits*) on which the stack pointer preferrs to be - aligned; the compiler cannot rely on having this alignment. */ -#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary - -/* As of July 2001, many runtimes to not align the stack properly when - entering main. This causes expand_main_function to forcably align - the stack, which results in aligned frames for functions called from - main, though it does nothing for the alignment of main itself. */ -#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \ - (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT) - -/* Allocation boundary for the code of a function. */ -#define FUNCTION_BOUNDARY 16 - -/* Alignment of field after `int : 0' in a structure. */ - -#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD - -/* Minimum size in bits of the largest boundary to which any - and all fundamental data types supported by the hardware - might need to be aligned. No data type wants to be aligned - rounder than this. - - Pentium+ preferrs DFmode values to be aligned to 64 bit boundary - and Pentium Pro XFmode values at 128 bit boundaries. */ - -#define BIGGEST_ALIGNMENT 128 - -/* Decide whether a variable of mode MODE must be 128 bit aligned. */ -#define ALIGN_MODE_128(MODE) \ - ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \ - || (MODE) == V4SFmode || (MODE) == V4SImode) - -/* The published ABIs say that doubles should be aligned on word - boundaries, so lower the aligment for structure fields unless - -malign-double is set. */ -/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be - constant. Use the smaller value in that context. */ -#ifndef IN_TARGET_LIBS -#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32)) -#else -#define BIGGEST_FIELD_ALIGNMENT 32 -#endif - -/* If defined, a C expression to compute the alignment given to a - constant that is being placed in memory. EXP is the constant - and ALIGN is the alignment that the object would ordinarily have. - The value of this macro is used instead of that alignment to align - the object. - - If this macro is not defined, then ALIGN is used. - - The typical use of this macro is to increase alignment for string - constants to be word aligned so that `strcpy' calls that copy - constants can be done inline. */ - -#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN)) - -/* If defined, a C expression to compute the alignment for a static - variable. TYPE is the data type, and ALIGN is the alignment that - the object would ordinarily have. The value of this macro is used - instead of that alignment to align the object. - - If this macro is not defined, then ALIGN is used. - - One use of this macro is to increase alignment of medium-size - data to make it all fit in fewer cache lines. Another is to - cause character arrays to be word-aligned so that `strcpy' calls - that copy constants to character arrays can be done inline. */ - -#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN)) - -/* If defined, a C expression to compute the alignment for a local - variable. TYPE is the data type, and ALIGN is the alignment that - the object would ordinarily have. The value of this macro is used - instead of that alignment to align the object. - - If this macro is not defined, then ALIGN is used. - - One use of this macro is to increase alignment of medium-size - data to make it all fit in fewer cache lines. */ - -#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN)) - -/* If defined, a C expression that gives the alignment boundary, in - bits, of an argument with the specified mode and type. If it is - not defined, `PARM_BOUNDARY' is used for all arguments. */ - -#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ - ix86_function_arg_boundary ((MODE), (TYPE)) - -/* Set this non-zero if move instructions will actually fail to work - when given unaligned data. */ -#define STRICT_ALIGNMENT 0 - -/* If bit field type is int, don't let it cross an int, - and give entire struct the alignment of an int. */ -/* Required on the 386 since it doesn't have bitfield insns. */ -#define PCC_BITFIELD_TYPE_MATTERS 1 - -/* Standard register usage. */ - -/* This processor has special stack-like registers. See reg-stack.c - for details. */ - -#define STACK_REGS -#define IS_STACK_MODE(MODE) \ - ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \ - || (MODE) == TFmode) - -/* Number of actual hardware registers. - The hardware registers are assigned numbers for the compiler - from 0 to just below FIRST_PSEUDO_REGISTER. - All registers that the compiler knows about must be given numbers, - even those that are not normally considered general registers. - - In the 80386 we give the 8 general purpose registers the numbers 0-7. - We number the floating point registers 8-15. - Note that registers 0-7 can be accessed as a short or int, - while only 0-3 may be used with byte `mov' instructions. - - Reg 16 does not correspond to any hardware register, but instead - appears in the RTL as an argument pointer prior to reload, and is - eliminated during reloading in favor of either the stack or frame - pointer. */ - -#define FIRST_PSEUDO_REGISTER 53 - -/* Number of hardware registers that go into the DWARF-2 unwind info. - If not defined, equals FIRST_PSEUDO_REGISTER. */ - -#define DWARF_FRAME_REGISTERS 17 - -/* 1 for registers that have pervasive standard uses - and are not available for the register allocator. - On the 80386, the stack pointer is such, as is the arg pointer. - - The value is an mask - bit 1 is set for fixed registers - for 32bit target, while 2 is set for fixed registers for 64bit. - Proper value is computed in the CONDITIONAL_REGISTER_USAGE. - */ -#define FIXED_REGISTERS \ -/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ -{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \ -/*arg,flags,fpsr,dir,frame*/ \ - 3, 3, 3, 3, 3, \ -/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ - 0, 0, 0, 0, 0, 0, 0, 0, \ -/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \ - 0, 0, 0, 0, 0, 0, 0, 0, \ -/* r8, r9, r10, r11, r12, r13, r14, r15*/ \ - 1, 1, 1, 1, 1, 1, 1, 1, \ -/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ - 1, 1, 1, 1, 1, 1, 1, 1} - - -/* 1 for registers not available across function calls. - These must include the FIXED_REGISTERS and also any - registers that can be used without being saved. - The latter must include the registers where values are returned - and the register where structure-value addresses are passed. - Aside from that, you can include as many other registers as you like. - - The value is an mask - bit 1 is set for call used - for 32bit target, while 2 is set for call used for 64bit. - Proper value is computed in the CONDITIONAL_REGISTER_USAGE. -*/ -#define CALL_USED_REGISTERS \ -/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ -{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \ -/*arg,flags,fpsr,dir,frame*/ \ - 3, 3, 3, 3, 3, \ -/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ - 3, 3, 3, 3, 3, 3, 3, 3, \ -/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \ - 3, 3, 3, 3, 3, 3, 3, 3, \ -/* r8, r9, r10, r11, r12, r13, r14, r15*/ \ - 3, 3, 3, 3, 1, 1, 1, 1, \ -/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ - 3, 3, 3, 3, 3, 3, 3, 3} \ - -/* Order in which to allocate registers. Each register must be - listed once, even those in FIXED_REGISTERS. List frame pointer - late and fixed registers last. Note that, in general, we prefer - registers listed in CALL_USED_REGISTERS, keeping the others - available for storage of persistent values. - - The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order, - so this is just empty initializer for array. */ - -#define REG_ALLOC_ORDER \ -{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\ - 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \ - 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \ - 48, 49, 50, 51, 52 } - -/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order - to be rearranged based on a particular function. When using sse math, - we want to allocase SSE before x87 registers and vice vera. */ - -#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc () - - -/* Macro to conditionally modify fixed_regs/call_used_regs. */ -#define CONDITIONAL_REGISTER_USAGE \ -do { \ - int i; \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - { \ - fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \ - call_used_regs[i] = (call_used_regs[i] \ - & (TARGET_64BIT ? 2 : 1)) != 0; \ - } \ - if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \ - { \ - fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ - call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ - } \ - if (! TARGET_MMX) \ - { \ - int i; \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \ - fixed_regs[i] = call_used_regs[i] = 1; \ - } \ - if (! TARGET_SSE) \ - { \ - int i; \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \ - fixed_regs[i] = call_used_regs[i] = 1; \ - } \ - if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \ - { \ - int i; \ - HARD_REG_SET x; \ - COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - if (TEST_HARD_REG_BIT (x, i)) \ - fixed_regs[i] = call_used_regs[i] = 1; \ - } \ - } while (0) - -/* Return number of consecutive hard regs needed starting at reg REGNO - to hold something of mode MODE. - This is ordinarily the length in words of a value of mode MODE - but can be less for certain modes in special long registers. - - Actually there are no two word move instructions for consecutive - registers. And only registers 0-3 may have mov byte instructions - applied to them. - */ - -#define HARD_REGNO_NREGS(REGNO, MODE) \ - (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \ - ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ - : ((MODE) == TFmode \ - ? (TARGET_64BIT ? 2 : 3) \ - : (MODE) == TCmode \ - ? (TARGET_64BIT ? 4 : 6) \ - : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))) - -#define VALID_SSE_REG_MODE(MODE) \ - ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \ - || (MODE) == SFmode \ - || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE)))) - -#define VALID_MMX_REG_MODE_3DNOW(MODE) \ - ((MODE) == V2SFmode || (MODE) == SFmode) - -#define VALID_MMX_REG_MODE(MODE) \ - ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \ - || (MODE) == V2SImode || (MODE) == SImode) - -#define VECTOR_MODE_SUPPORTED_P(MODE) \ - (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \ - : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \ - : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0) - -#define VALID_FP_MODE_P(MODE) \ - ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \ - || (!TARGET_64BIT && (MODE) == XFmode) \ - || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \ - || (!TARGET_64BIT && (MODE) == XCmode)) - -#define VALID_INT_MODE_P(MODE) \ - ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \ - || (MODE) == DImode \ - || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \ - || (MODE) == CDImode \ - || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode))) - -/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */ - -#define HARD_REGNO_MODE_OK(REGNO, MODE) \ - ix86_hard_regno_mode_ok ((REGNO), (MODE)) - -/* Value is 1 if it is a good idea to tie two pseudo registers - when one has mode MODE1 and one has mode MODE2. - If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, - for any hard reg, then this must be 0 for correct output. */ - -#define MODES_TIEABLE_P(MODE1, MODE2) \ - ((MODE1) == (MODE2) \ - || (((MODE1) == HImode || (MODE1) == SImode \ - || ((MODE1) == QImode \ - && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \ - || ((MODE1) == DImode && TARGET_64BIT)) \ - && ((MODE2) == HImode || (MODE2) == SImode \ - || ((MODE1) == QImode \ - && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \ - || ((MODE2) == DImode && TARGET_64BIT)))) - - -/* Specify the modes required to caller save a given hard regno. - We do this on i386 to prevent flags from being saved at all. - - Kill any attempts to combine saving of modes. */ - -#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ - (CC_REGNO_P (REGNO) ? VOIDmode \ - : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \ - : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \ - : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \ - : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \ - : (MODE)) -/* Specify the registers used for certain standard purposes. - The values of these macros are register numbers. */ - -/* on the 386 the pc register is %eip, and is not usable as a general - register. The ordinary mov instructions won't work */ -/* #define PC_REGNUM */ - -/* Register to use for pushing function arguments. */ -#define STACK_POINTER_REGNUM 7 - -/* Base register for access to local variables of the function. */ -#define HARD_FRAME_POINTER_REGNUM 6 - -/* Base register for access to local variables of the function. */ -#define FRAME_POINTER_REGNUM 20 - -/* First floating point reg */ -#define FIRST_FLOAT_REG 8 - -/* First & last stack-like regs */ -#define FIRST_STACK_REG FIRST_FLOAT_REG -#define LAST_STACK_REG (FIRST_FLOAT_REG + 7) - -#define FLAGS_REG 17 -#define FPSR_REG 18 -#define DIRFLAG_REG 19 - -#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1) -#define LAST_SSE_REG (FIRST_SSE_REG + 7) - -#define FIRST_MMX_REG (LAST_SSE_REG + 1) -#define LAST_MMX_REG (FIRST_MMX_REG + 7) - -#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) -#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7) - -#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) -#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7) - -/* Value should be nonzero if functions must have frame pointers. - Zero means the frame pointer need not be set up (and parms - may be accessed via the stack pointer) in functions that seem suitable. - This is computed in `reload', in reload1.c. */ -#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required () - -/* Override this in other tm.h files to cope with various OS losage - requiring a frame pointer. */ -#ifndef SUBTARGET_FRAME_POINTER_REQUIRED -#define SUBTARGET_FRAME_POINTER_REQUIRED 0 -#endif - -/* Make sure we can access arbitrary call frames. */ -#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses () - -/* Base register for access to arguments of the function. */ -#define ARG_POINTER_REGNUM 16 - -/* Register in which static-chain is passed to a function. - We do use ECX as static chain register for 32 bit ABI. On the - 64bit ABI, ECX is an argument register, so we use R10 instead. */ -#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2) - -/* Register to hold the addressing base for position independent - code access to data items. We don't use PIC pointer for 64bit - mode. Define the regnum to dummy value to prevent gcc from - pessimizing code dealing with EBX. */ -#define PIC_OFFSET_TABLE_REGNUM \ - (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3) - -/* Register in which address to store a structure value - arrives in the function. On the 386, the prologue - copies this from the stack to register %eax. */ -#define STRUCT_VALUE_INCOMING 0 - -/* Place in which caller passes the structure value address. - 0 means push the value on the stack like an argument. */ -#define STRUCT_VALUE 0 - -/* A C expression which can inhibit the returning of certain function - values in registers, based on the type of value. A nonzero value - says to return the function value in memory, just as large - structures are always returned. Here TYPE will be a C expression - of type `tree', representing the data type of the value. - - Note that values of mode `BLKmode' must be explicitly handled by - this macro. Also, the option `-fpcc-struct-return' takes effect - regardless of this macro. On most systems, it is possible to - leave the macro undefined; this causes a default definition to be - used, whose value is the constant 1 for `BLKmode' values, and 0 - otherwise. - - Do not use this macro to indicate that structures and unions - should always be returned in memory. You should instead use - `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */ - -#define RETURN_IN_MEMORY(TYPE) \ - ix86_return_in_memory (TYPE) - - -/* Define the classes of registers for register constraints in the - machine description. Also define ranges of constants. - - One of the classes must always be named ALL_REGS and include all hard regs. - If there is more than one class, another class must be named NO_REGS - and contain no registers. - - The name GENERAL_REGS must be the name of a class (or an alias for - another name such as ALL_REGS). This is the class of registers - that is allowed by "g" or "r" in a register constraint. - Also, registers outside this class are allocated only when - instructions express preferences for them. - - The classes must be numbered in nondecreasing order; that is, - a larger-numbered class must never be contained completely - in a smaller-numbered class. - - For any two classes, it is very desirable that there be another - class that represents their union. - - It might seem that class BREG is unnecessary, since no useful 386 - opcode needs reg %ebx. But some systems pass args to the OS in ebx, - and the "b" register constraint is useful in asms for syscalls. - - The flags and fpsr registers are in no class. */ - -enum reg_class -{ - NO_REGS, - AREG, DREG, CREG, BREG, SIREG, DIREG, - AD_REGS, /* %eax/%edx for DImode */ - Q_REGS, /* %eax %ebx %ecx %edx */ - NON_Q_REGS, /* %esi %edi %ebp %esp */ - INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */ - LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */ - GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/ - FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */ - FLOAT_REGS, - SSE_REGS, - MMX_REGS, - FP_TOP_SSE_REGS, - FP_SECOND_SSE_REGS, - FLOAT_SSE_REGS, - FLOAT_INT_REGS, - INT_SSE_REGS, - FLOAT_INT_SSE_REGS, - ALL_REGS, LIM_REG_CLASSES -}; - -#define N_REG_CLASSES ((int) LIM_REG_CLASSES) - -#define INTEGER_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), GENERAL_REGS) -#define FLOAT_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), FLOAT_REGS) -#define SSE_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), SSE_REGS) -#define MMX_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), MMX_REGS) -#define MAYBE_INTEGER_CLASS_P(CLASS) \ - reg_classes_intersect_p ((CLASS), GENERAL_REGS) -#define MAYBE_FLOAT_CLASS_P(CLASS) \ - reg_classes_intersect_p ((CLASS), FLOAT_REGS) -#define MAYBE_SSE_CLASS_P(CLASS) \ - reg_classes_intersect_p (SSE_REGS, (CLASS)) -#define MAYBE_MMX_CLASS_P(CLASS) \ - reg_classes_intersect_p (MMX_REGS, (CLASS)) - -#define Q_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), Q_REGS) - -/* Give names of register classes as strings for dump file. */ - -#define REG_CLASS_NAMES \ -{ "NO_REGS", \ - "AREG", "DREG", "CREG", "BREG", \ - "SIREG", "DIREG", \ - "AD_REGS", \ - "Q_REGS", "NON_Q_REGS", \ - "INDEX_REGS", \ - "LEGACY_REGS", \ - "GENERAL_REGS", \ - "FP_TOP_REG", "FP_SECOND_REG", \ - "FLOAT_REGS", \ - "SSE_REGS", \ - "MMX_REGS", \ - "FP_TOP_SSE_REGS", \ - "FP_SECOND_SSE_REGS", \ - "FLOAT_SSE_REGS", \ - "FLOAT_INT_REGS", \ - "INT_SSE_REGS", \ - "FLOAT_INT_SSE_REGS", \ - "ALL_REGS" } - -/* Define which registers fit in which classes. - This is an initializer for a vector of HARD_REG_SET - of length N_REG_CLASSES. */ - -#define REG_CLASS_CONTENTS \ -{ { 0x00, 0x0 }, \ - { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \ - { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \ - { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \ - { 0x03, 0x0 }, /* AD_REGS */ \ - { 0x0f, 0x0 }, /* Q_REGS */ \ - { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \ - { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \ - { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \ - { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \ - { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\ - { 0xff00, 0x0 }, /* FLOAT_REGS */ \ -{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \ -{ 0xe0000000, 0x1f }, /* MMX_REGS */ \ -{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \ -{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \ -{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \ - { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \ -{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \ -{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \ -{ 0xffffffff,0x1fffff } \ -} - -/* The same information, inverted: - Return the class number of the smallest class containing - reg number REGNO. This could be a conditional expression - or could index an array. */ - -#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) - -/* When defined, the compiler allows registers explicitly used in the - rtl to be used as spill registers but prevents the compiler from - extending the lifetime of these registers. */ - -#define SMALL_REGISTER_CLASSES 1 - -#define QI_REG_P(X) \ - (REG_P (X) && REGNO (X) < 4) - -#define GENERAL_REGNO_P(N) \ - ((N) < 8 || REX_INT_REGNO_P (N)) - -#define GENERAL_REG_P(X) \ - (REG_P (X) && GENERAL_REGNO_P (REGNO (X))) - -#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X)) - -#define NON_QI_REG_P(X) \ - (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER) - -#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG) -#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X))) - -#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X))) -#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG) -#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X))) -#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N)) - -#define SSE_REGNO_P(N) \ - (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \ - || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)) - -#define SSE_REGNO(N) \ - ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8) -#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N))) - -#define SSE_FLOAT_MODE_P(MODE) \ - ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode)) - -#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG) -#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP))) - -#define STACK_REG_P(XOP) \ - (REG_P (XOP) && \ - REGNO (XOP) >= FIRST_STACK_REG && \ - REGNO (XOP) <= LAST_STACK_REG) - -#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP)) - -#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG) - -#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X))) -#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG) - -/* Indicate whether hard register numbered REG_NO should be converted - to SSA form. */ -#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \ - ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM) - -/* The class value for index registers, and the one for base regs. */ - -#define INDEX_REG_CLASS INDEX_REGS -#define BASE_REG_CLASS GENERAL_REGS - -/* Get reg_class from a letter such as appears in the machine description. */ - -#define REG_CLASS_FROM_LETTER(C) \ - ((C) == 'r' ? GENERAL_REGS : \ - (C) == 'R' ? LEGACY_REGS : \ - (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \ - (C) == 'Q' ? Q_REGS : \ - (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ - ? FLOAT_REGS \ - : NO_REGS) : \ - (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ - ? FP_TOP_REG \ - : NO_REGS) : \ - (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ - ? FP_SECOND_REG \ - : NO_REGS) : \ - (C) == 'a' ? AREG : \ - (C) == 'b' ? BREG : \ - (C) == 'c' ? CREG : \ - (C) == 'd' ? DREG : \ - (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \ - (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \ - (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \ - (C) == 'A' ? AD_REGS : \ - (C) == 'D' ? DIREG : \ - (C) == 'S' ? SIREG : NO_REGS) - -/* The letters I, J, K, L and M in a register constraint string - can be used to stand for particular ranges of immediate operands. - This macro defines what the ranges are. - C is the letter, and VALUE is a constant value. - Return 1 if VALUE is in the range specified by C. - - I is for non-DImode shifts. - J is for DImode shifts. - K is for signed imm8 operands. - L is for andsi as zero-extending move. - M is for shifts that can be executed by the "lea" opcode. - N is for immedaite operands for out/in instructions (0-255) - */ - -#define CONST_OK_FOR_LETTER_P(VALUE, C) \ - ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \ - : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \ - : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \ - : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \ - : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \ - : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \ - : 0) - -/* Similar, but for floating constants, and defining letters G and H. - Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if - TARGET_387 isn't set, because the stack register converter may need to - load 0.0 into the function value register. */ - -#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ - ((C) == 'G' ? standard_80387_constant_p (VALUE) \ - : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0)) - -/* A C expression that defines the optional machine-dependent - constraint letters that can be used to segregate specific types of - operands, usually memory references, for the target machine. Any - letter that is not elsewhere defined and not matched by - `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not - be defined. - - If it is required for a particular target machine, it should - return 1 if VALUE corresponds to the operand type represented by - the constraint letter C. If C is not defined as an extra - constraint, the value returned should be 0 regardless of VALUE. */ - -#define EXTRA_CONSTRAINT(VALUE, C) \ - ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \ - : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \ - : 0) - -/* Place additional restrictions on the register class to use when it - is necessary to be able to hold a value of mode MODE in a reload - register for which class CLASS would ordinarily be used. */ - -#define LIMIT_RELOAD_CLASS(MODE, CLASS) \ - ((MODE) == QImode && !TARGET_64BIT \ - && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \ - || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \ - ? Q_REGS : (CLASS)) - -/* Given an rtx X being reloaded into a reg required to be - in class CLASS, return the class of reg to actually use. - In general this is just CLASS; but on some machines - in some cases it is preferable to use a more restrictive class. - On the 80386 series, we prevent floating constants from being - reloaded into floating registers (since no move-insn can do that) - and we ensure that QImodes aren't reloaded into the esi or edi reg. */ - -/* Put float CONST_DOUBLE in the constant pool instead of fp regs. - QImode must go into class Q_REGS. - Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and - movdf to do mem-to-mem moves through integer regs. */ - -#define PREFERRED_RELOAD_CLASS(X, CLASS) \ - ix86_preferred_reload_class ((X), (CLASS)) - -/* If we are copying between general and FP registers, we need a memory - location. The same is true for SSE and MMX registers. */ -#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ - ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1) - -/* QImode spills from non-QI registers need a scratch. This does not - happen often -- the only example so far requires an uninitialized - pseudo. */ - -#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \ - (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \ - || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \ - ? Q_REGS : NO_REGS) - -/* Return the maximum number of consecutive registers - needed to represent mode MODE in a register of class CLASS. */ -/* On the 80386, this is the size of MODE in words, - except in the FP regs, where a single reg is always enough. - The TFmodes are really just 80bit values, so we use only 3 registers - to hold them, instead of 4, as the size would suggest. - */ -#define CLASS_MAX_NREGS(CLASS, MODE) \ - (!MAYBE_INTEGER_CLASS_P (CLASS) \ - ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ - : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \ - + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) - -/* A C expression whose value is nonzero if pseudos that have been - assigned to registers of class CLASS would likely be spilled - because registers of CLASS are needed for spill registers. - - The default value of this macro returns 1 if CLASS has exactly one - register and zero otherwise. On most machines, this default - should be used. Only define this macro to some other expression - if pseudo allocated by `local-alloc.c' end up in memory because - their hard registers were needed for spill registers. If this - macro returns nonzero for those classes, those pseudos will only - be allocated by `global.c', which knows how to reallocate the - pseudo to another register. If there would not be another - register available for reallocation, you should not change the - definition of this macro since the only effect of such a - definition would be to slow down register allocation. */ - -#define CLASS_LIKELY_SPILLED_P(CLASS) \ - (((CLASS) == AREG) \ - || ((CLASS) == DREG) \ - || ((CLASS) == CREG) \ - || ((CLASS) == BREG) \ - || ((CLASS) == AD_REGS) \ - || ((CLASS) == SIREG) \ - || ((CLASS) == DIREG)) - -/* A C statement that adds to CLOBBERS any hard regs the port wishes - to automatically clobber for all asms. - - We do this in the new i386 backend to maintain source compatibility - with the old cc0-based compiler. */ - -#define MD_ASM_CLOBBERS(CLOBBERS) \ - do { \ - (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \ - (CLOBBERS)); \ - (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \ - (CLOBBERS)); \ - (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \ - (CLOBBERS)); \ - } while (0) - -/* Stack layout; function entry, exit and calling. */ - -/* Define this if pushing a word on the stack - makes the stack pointer a smaller address. */ -#define STACK_GROWS_DOWNWARD - -/* Define this if the nominal address of the stack frame - is at the high-address end of the local variables; - that is, each additional local variable allocated - goes at a more negative offset in the frame. */ -#define FRAME_GROWS_DOWNWARD - -/* Offset within stack frame to start allocating local variables at. - If FRAME_GROWS_DOWNWARD, this is the offset to the END of the - first local allocated. Otherwise, it is the offset to the BEGINNING - of the first local allocated. */ -#define STARTING_FRAME_OFFSET 0 - -/* If we generate an insn to push BYTES bytes, - this says how many the stack pointer really advances by. - On 386 pushw decrements by exactly 2 no matter what the position was. - On the 386 there is no pushb; we use pushw instead, and this - has the effect of rounding up to 2. - - For 64bit ABI we round up to 8 bytes. - */ - -#define PUSH_ROUNDING(BYTES) \ - (TARGET_64BIT \ - ? (((BYTES) + 7) & (-8)) \ - : (((BYTES) + 1) & (-2))) - -/* If defined, the maximum amount of space required for outgoing arguments will - be computed and placed into the variable - `current_function_outgoing_args_size'. No space will be pushed onto the - stack for each call; instead, the function prologue should increase the stack - frame size by this amount. */ - -#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS - -/* If defined, a C expression whose value is nonzero when we want to use PUSH - instructions to pass outgoing arguments. */ - -#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS) - -/* Offset of first parameter from the argument pointer register value. */ -#define FIRST_PARM_OFFSET(FNDECL) 0 - -/* Define this macro if functions should assume that stack space has been - allocated for arguments even when their values are passed in registers. - - The value of this macro is the size, in bytes, of the area reserved for - arguments passed in registers for the function represented by FNDECL. - - This space can be allocated by the caller, or be a part of the - machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says - which. */ -#define REG_PARM_STACK_SPACE(FNDECL) 0 - -/* Define as a C expression that evaluates to nonzero if we do not know how - to pass TYPE solely in registers. The file expr.h defines a - definition that is usually appropriate, refer to expr.h for additional - documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be - computed in the stack and then loaded into a register. */ -#define MUST_PASS_IN_STACK(MODE, TYPE) \ - ((TYPE) != 0 \ - && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \ - || TREE_ADDRESSABLE (TYPE) \ - || ((MODE) == TImode) \ - || ((MODE) == BLKmode \ - && ! ((TYPE) != 0 \ - && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \ - && 0 == (int_size_in_bytes (TYPE) \ - % (PARM_BOUNDARY / BITS_PER_UNIT))) \ - && (FUNCTION_ARG_PADDING (MODE, TYPE) \ - == (BYTES_BIG_ENDIAN ? upward : downward))))) - -/* Value is the number of bytes of arguments automatically - popped when returning from a subroutine call. - FUNDECL is the declaration node of the function (as a tree), - FUNTYPE is the data type of the function (as a tree), - or for a library call it is an identifier node for the subroutine name. - SIZE is the number of bytes of arguments passed on the stack. - - On the 80386, the RTD insn may be used to pop them if the number - of args is fixed, but if the number is variable then the caller - must pop them all. RTD can't be used for library calls now - because the library is compiled with the Unix compiler. - Use of RTD is a selectable option, since it is incompatible with - standard Unix calling sequences. If the option is not selected, - the caller must always pop the args. - - The attribute NTAPI is equivalent to RTD on a per module basis. */ - -#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \ - ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE)) - -/* Define how to find the value returned by a function. - VALTYPE is the data type of the value (as a tree). - If the precise function being called is known, FUNC is its FUNCTION_DECL; - otherwise, FUNC is 0. */ -#define FUNCTION_VALUE(VALTYPE, FUNC) \ - ix86_function_value (VALTYPE) - -#define FUNCTION_VALUE_REGNO_P(N) \ - ix86_function_value_regno_p (N) - -/* Define how to find the value returned by a library function - assuming the value has mode MODE. */ - -#define LIBCALL_VALUE(MODE) \ - ix86_libcall_value (MODE) - -/* Define the size of the result block used for communication between - untyped_call and untyped_return. The block contains a DImode value - followed by the block used by fnsave and frstor. */ - -#define APPLY_RESULT_SIZE (8+108) - -/* 1 if N is a possible register number for function argument passing. */ -#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N) - -/* Define a data type for recording info about an argument list - during the scan of that argument list. This data type should - hold all necessary information about the function itself - and about the args processed so far, enough to enable macros - such as FUNCTION_ARG to determine where the next arg should go. */ - -typedef struct ix86_args { - int words; /* # words passed so far */ - int nregs; /* # registers available for passing */ - int regno; /* next available register number */ - int sse_words; /* # sse words passed so far */ - int sse_nregs; /* # sse registers available for passing */ - int sse_regno; /* next available sse register number */ - int maybe_vaarg; /* true for calls to possibly vardic fncts. */ -} CUMULATIVE_ARGS; - -/* Initialize a variable CUM of type CUMULATIVE_ARGS - for a call to a function whose data type is FNTYPE. - For a library call, FNTYPE is 0. */ - -#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \ - init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME)) - -/* Update the data in CUM to advance over an argument - of mode MODE and data type TYPE. - (TYPE is null for libcalls where that information may not be available.) */ - -#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ - function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED)) - -/* Define where to put the arguments to a function. - Value is zero to push the argument on the stack, - or a hard register in which to store the argument. - - MODE is the argument's machine mode. - TYPE is the data type of the argument (as a tree). - This is null for libcalls where that information may - not be available. - CUM is a variable of type CUMULATIVE_ARGS which gives info about - the preceding args and about the function being called. - NAMED is nonzero if this argument is a named parameter - (otherwise it is an extra parameter matching an ellipsis). */ - -#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ - function_arg (&(CUM), (MODE), (TYPE), (NAMED)) - -/* For an arg passed partly in registers and partly in memory, - this is the number of registers used. - For args passed entirely in registers or entirely in memory, zero. */ - -#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0 - -/* If PIC, we cannot make sibling calls to global functions - because the PLT requires %ebx live. - If we are returning floats on the register stack, we cannot make - sibling calls to functions that return floats. (The stack adjust - instruction will wind up after the sibcall jump, and not be executed.) */ -#define FUNCTION_OK_FOR_SIBCALL(DECL) \ - ((DECL) \ - && (! flag_pic || ! TREE_PUBLIC (DECL)) \ - && (! TARGET_FLOAT_RETURNS_IN_80387 \ - || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \ - || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl)))))) - -/* Perform any needed actions needed for a function that is receiving a - variable number of arguments. - - CUM is as above. - - MODE and TYPE are the mode and type of the current parameter. - - PRETEND_SIZE is a variable that should be set to the amount of stack - that must be pushed by the prolog to pretend that our caller pushed - it. - - Normally, this macro will push all remaining incoming registers on the - stack and set PRETEND_SIZE to the length of the registers pushed. */ - -#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \ - ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \ - (NO_RTL)) - -/* Define the `__builtin_va_list' type for the ABI. */ -#define BUILD_VA_LIST_TYPE(VALIST) \ - ((VALIST) = ix86_build_va_list ()) - -/* Implement `va_start' for varargs and stdarg. */ -#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \ - ix86_va_start ((STDARG), (VALIST), (NEXTARG)) - -/* Implement `va_arg'. */ -#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \ - ix86_va_arg ((VALIST), (TYPE)) - -/* This macro is invoked at the end of compilation. It is used here to - output code for -fpic that will load the return address into %ebx. */ - -#undef ASM_FILE_END -#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE) - -/* Output assembler code to FILE to increment profiler label # LABELNO - for profiling a function entry. */ - -#define FUNCTION_PROFILER(FILE, LABELNO) \ -do { \ - if (flag_pic) \ - { \ - fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \ - LPREFIX, (LABELNO)); \ - fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \ - } \ - else \ - { \ - fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \ - fprintf ((FILE), "\tcall\t_mcount\n"); \ - } \ -} while (0) - -/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, - the stack pointer does not matter. The value is tested only in - functions that have frame pointers. - No definition is equivalent to always zero. */ -/* Note on the 386 it might be more efficient not to define this since - we have to restore it ourselves from the frame pointer, in order to - use pop */ - -#define EXIT_IGNORE_STACK 1 - -/* Output assembler code for a block containing the constant parts - of a trampoline, leaving space for the variable parts. */ - -/* On the 386, the trampoline contains two instructions: - mov #STATIC,ecx - jmp FUNCTION - The trampoline is generated entirely at runtime. The operand of JMP - is the address of FUNCTION relative to the instruction following the - JMP (which is 5 bytes long). */ - -/* Length in units of the trampoline for entering a nested function. */ - -#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10) - -/* Emit RTL insns to initialize the variable parts of a trampoline. - FNADDR is an RTX for the address of the function's pure code. - CXT is an RTX for the static chain value for the function. */ - -#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ - x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT)) - -/* Definitions for register eliminations. - - This is an array of structures. Each structure initializes one pair - of eliminable registers. The "from" register number is given first, - followed by "to". Eliminations of the same "from" register are listed - in order of preference. - - There are two registers that can always be eliminated on the i386. - The frame pointer and the arg pointer can be replaced by either the - hard frame pointer or to the stack pointer, depending upon the - circumstances. The hard frame pointer is not used before reload and - so it is not eligible for elimination. */ - -#define ELIMINABLE_REGS \ -{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ - { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ - -/* Given FROM and TO register numbers, say whether this elimination is - allowed. Frame pointer elimination is automatically handled. - - All other eliminations are valid. */ - -#define CAN_ELIMINATE(FROM, TO) \ - ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1) - -/* Define the offset between two registers, one to be eliminated, and the other - its replacement, at the start of a routine. */ - -#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ - ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO))) - -/* Addressing modes, and classification of registers for them. */ - -/* #define HAVE_POST_INCREMENT 0 */ -/* #define HAVE_POST_DECREMENT 0 */ - -/* #define HAVE_PRE_DECREMENT 0 */ -/* #define HAVE_PRE_INCREMENT 0 */ - -/* Macros to check register numbers against specific register classes. */ - -/* These assume that REGNO is a hard or pseudo reg number. - They give nonzero only if REGNO is a hard reg of the suitable class - or a pseudo reg currently allocated to a suitable hard reg. - Since they use reg_renumber, they are safe only once reg_renumber - has been allocated, which happens in local-alloc.c. */ - -#define REGNO_OK_FOR_INDEX_P(REGNO) \ - ((REGNO) < STACK_POINTER_REGNUM \ - || (REGNO >= FIRST_REX_INT_REG \ - && (REGNO) <= LAST_REX_INT_REG) \ - || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \ - && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \ - || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM) - -#define REGNO_OK_FOR_BASE_P(REGNO) \ - ((REGNO) <= STACK_POINTER_REGNUM \ - || (REGNO) == ARG_POINTER_REGNUM \ - || (REGNO) == FRAME_POINTER_REGNUM \ - || (REGNO >= FIRST_REX_INT_REG \ - && (REGNO) <= LAST_REX_INT_REG) \ - || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \ - && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \ - || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM) - -#define REGNO_OK_FOR_SIREG_P(REGNO) \ - ((REGNO) == 4 || reg_renumber[(REGNO)] == 4) -#define REGNO_OK_FOR_DIREG_P(REGNO) \ - ((REGNO) == 5 || reg_renumber[(REGNO)] == 5) - -/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx - and check its validity for a certain class. - We have two alternate definitions for each of them. - The usual definition accepts all pseudo regs; the other rejects - them unless they have been allocated suitable hard regs. - The symbol REG_OK_STRICT causes the latter definition to be used. - - Most source files want to accept pseudo regs in the hope that - they will get allocated to the class that the insn wants them to be in. - Source files for reload pass need to be strict. - After reload, it makes no difference, since pseudo regs have - been eliminated by then. */ - - -/* Non strict versions, pseudos are ok */ -#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \ - (REGNO (X) < STACK_POINTER_REGNUM \ - || (REGNO (X) >= FIRST_REX_INT_REG \ - && REGNO (X) <= LAST_REX_INT_REG) \ - || REGNO (X) >= FIRST_PSEUDO_REGISTER) - -#define REG_OK_FOR_BASE_NONSTRICT_P(X) \ - (REGNO (X) <= STACK_POINTER_REGNUM \ - || REGNO (X) == ARG_POINTER_REGNUM \ - || REGNO (X) == FRAME_POINTER_REGNUM \ - || (REGNO (X) >= FIRST_REX_INT_REG \ - && REGNO (X) <= LAST_REX_INT_REG) \ - || REGNO (X) >= FIRST_PSEUDO_REGISTER) - -/* Strict versions, hard registers only */ -#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) -#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) - -#ifndef REG_OK_STRICT -#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X) -#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X) - -#else -#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X) -#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X) -#endif - -/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression - that is a valid memory address for an instruction. - The MODE argument is the machine mode for the MEM expression - that wants to use this address. - - The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, - except for CONSTANT_ADDRESS_P which is usually machine-independent. - - See legitimize_pic_address in i386.c for details as to what - constitutes a legitimate address when -fpic is used. */ - -#define MAX_REGS_PER_ADDRESS 2 - -#define CONSTANT_ADDRESS_P(X) \ - (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ - || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ - || GET_CODE (X) == CONST_DOUBLE) - -/* Nonzero if the constant value X is a legitimate general operand. - It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ - -#define LEGITIMATE_CONSTANT_P(X) 1 - -#ifdef REG_OK_STRICT -#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -do { \ - if (legitimate_address_p ((MODE), (X), 1)) \ - goto ADDR; \ -} while (0) - -#else -#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -do { \ - if (legitimate_address_p ((MODE), (X), 0)) \ - goto ADDR; \ -} while (0) - -#endif - -/* If defined, a C expression to determine the base term of address X. - This macro is used in only one place: `find_base_term' in alias.c. - - It is always safe for this macro to not be defined. It exists so - that alias analysis can understand machine-dependent addresses. - - The typical use of this macro is to handle addresses containing - a label_ref or symbol_ref within an UNSPEC. */ - -#define FIND_BASE_TERM(X) ix86_find_base_term (X) - -/* Try machine-dependent ways of modifying an illegitimate address - to be legitimate. If we find one, return the new, valid address. - This macro is used in only one place: `memory_address' in explow.c. - - OLDX is the address as it was before break_out_memory_refs was called. - In some cases it is useful to look at this to decide what needs to be done. - - MODE and WIN are passed so that this macro can use - GO_IF_LEGITIMATE_ADDRESS. - - It is always safe for this macro to do nothing. It exists to recognize - opportunities to optimize the output. - - For the 80386, we handle X+REG by loading X into a register R and - using R+REG. R will go in a general reg and indexing will be used. - However, if REG is a broken-out memory address or multiplication, - nothing needs to be done because REG can certainly go in a general reg. - - When -fpic is used, special handling is needed for symbolic references. - See comments by legitimize_pic_address in i386.c for details. */ - -#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ -do { \ - (X) = legitimize_address ((X), (OLDX), (MODE)); \ - if (memory_address_p ((MODE), (X))) \ - goto WIN; \ -} while (0) - -#define REWRITE_ADDRESS(X) rewrite_address (X) - -/* Nonzero if the constant value X is a legitimate general operand - when generating PIC code. It is given that flag_pic is on and - that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ - -#define LEGITIMATE_PIC_OPERAND_P(X) \ - (! SYMBOLIC_CONST (X) \ - || legitimate_pic_address_disp_p (X)) - -#define SYMBOLIC_CONST(X) \ - (GET_CODE (X) == SYMBOL_REF \ - || GET_CODE (X) == LABEL_REF \ - || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) - -/* Go to LABEL if ADDR (a legitimate address expression) - has an effect that depends on the machine mode it is used for. - On the 80386, only postdecrement and postincrement address depend thus - (the amount of decrement or increment being the length of the operand). */ -#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ -do { \ - if (GET_CODE (ADDR) == POST_INC \ - || GET_CODE (ADDR) == POST_DEC) \ - goto LABEL; \ -} while (0) - -/* Codes for all the SSE/MMX builtins. */ -enum ix86_builtins -{ - IX86_BUILTIN_ADDPS, - IX86_BUILTIN_ADDSS, - IX86_BUILTIN_DIVPS, - IX86_BUILTIN_DIVSS, - IX86_BUILTIN_MULPS, - IX86_BUILTIN_MULSS, - IX86_BUILTIN_SUBPS, - IX86_BUILTIN_SUBSS, - - IX86_BUILTIN_CMPEQPS, - IX86_BUILTIN_CMPLTPS, - IX86_BUILTIN_CMPLEPS, - IX86_BUILTIN_CMPGTPS, - IX86_BUILTIN_CMPGEPS, - IX86_BUILTIN_CMPNEQPS, - IX86_BUILTIN_CMPNLTPS, - IX86_BUILTIN_CMPNLEPS, - IX86_BUILTIN_CMPNGTPS, - IX86_BUILTIN_CMPNGEPS, - IX86_BUILTIN_CMPORDPS, - IX86_BUILTIN_CMPUNORDPS, - IX86_BUILTIN_CMPNEPS, - IX86_BUILTIN_CMPEQSS, - IX86_BUILTIN_CMPLTSS, - IX86_BUILTIN_CMPLESS, - IX86_BUILTIN_CMPGTSS, - IX86_BUILTIN_CMPGESS, - IX86_BUILTIN_CMPNEQSS, - IX86_BUILTIN_CMPNLTSS, - IX86_BUILTIN_CMPNLESS, - IX86_BUILTIN_CMPNGTSS, - IX86_BUILTIN_CMPNGESS, - IX86_BUILTIN_CMPORDSS, - IX86_BUILTIN_CMPUNORDSS, - IX86_BUILTIN_CMPNESS, - - IX86_BUILTIN_COMIEQSS, - IX86_BUILTIN_COMILTSS, - IX86_BUILTIN_COMILESS, - IX86_BUILTIN_COMIGTSS, - IX86_BUILTIN_COMIGESS, - IX86_BUILTIN_COMINEQSS, - IX86_BUILTIN_UCOMIEQSS, - IX86_BUILTIN_UCOMILTSS, - IX86_BUILTIN_UCOMILESS, - IX86_BUILTIN_UCOMIGTSS, - IX86_BUILTIN_UCOMIGESS, - IX86_BUILTIN_UCOMINEQSS, - - IX86_BUILTIN_CVTPI2PS, - IX86_BUILTIN_CVTPS2PI, - IX86_BUILTIN_CVTSI2SS, - IX86_BUILTIN_CVTSS2SI, - IX86_BUILTIN_CVTTPS2PI, - IX86_BUILTIN_CVTTSS2SI, - - IX86_BUILTIN_MAXPS, - IX86_BUILTIN_MAXSS, - IX86_BUILTIN_MINPS, - IX86_BUILTIN_MINSS, - - IX86_BUILTIN_LOADAPS, - IX86_BUILTIN_LOADUPS, - IX86_BUILTIN_STOREAPS, - IX86_BUILTIN_STOREUPS, - IX86_BUILTIN_LOADSS, - IX86_BUILTIN_STORESS, - IX86_BUILTIN_MOVSS, - - IX86_BUILTIN_MOVHLPS, - IX86_BUILTIN_MOVLHPS, - IX86_BUILTIN_LOADHPS, - IX86_BUILTIN_LOADLPS, - IX86_BUILTIN_STOREHPS, - IX86_BUILTIN_STORELPS, - - IX86_BUILTIN_MASKMOVQ, - IX86_BUILTIN_MOVMSKPS, - IX86_BUILTIN_PMOVMSKB, - - IX86_BUILTIN_MOVNTPS, - IX86_BUILTIN_MOVNTQ, - - IX86_BUILTIN_PACKSSWB, - IX86_BUILTIN_PACKSSDW, - IX86_BUILTIN_PACKUSWB, - - IX86_BUILTIN_PADDB, - IX86_BUILTIN_PADDW, - IX86_BUILTIN_PADDD, - IX86_BUILTIN_PADDSB, - IX86_BUILTIN_PADDSW, - IX86_BUILTIN_PADDUSB, - IX86_BUILTIN_PADDUSW, - IX86_BUILTIN_PSUBB, - IX86_BUILTIN_PSUBW, - IX86_BUILTIN_PSUBD, - IX86_BUILTIN_PSUBSB, - IX86_BUILTIN_PSUBSW, - IX86_BUILTIN_PSUBUSB, - IX86_BUILTIN_PSUBUSW, - - IX86_BUILTIN_PAND, - IX86_BUILTIN_PANDN, - IX86_BUILTIN_POR, - IX86_BUILTIN_PXOR, - - IX86_BUILTIN_PAVGB, - IX86_BUILTIN_PAVGW, - - IX86_BUILTIN_PCMPEQB, - IX86_BUILTIN_PCMPEQW, - IX86_BUILTIN_PCMPEQD, - IX86_BUILTIN_PCMPGTB, - IX86_BUILTIN_PCMPGTW, - IX86_BUILTIN_PCMPGTD, - - IX86_BUILTIN_PEXTRW, - IX86_BUILTIN_PINSRW, - - IX86_BUILTIN_PMADDWD, - - IX86_BUILTIN_PMAXSW, - IX86_BUILTIN_PMAXUB, - IX86_BUILTIN_PMINSW, - IX86_BUILTIN_PMINUB, - - IX86_BUILTIN_PMULHUW, - IX86_BUILTIN_PMULHW, - IX86_BUILTIN_PMULLW, - - IX86_BUILTIN_PSADBW, - IX86_BUILTIN_PSHUFW, - - IX86_BUILTIN_PSLLW, - IX86_BUILTIN_PSLLD, - IX86_BUILTIN_PSLLQ, - IX86_BUILTIN_PSRAW, - IX86_BUILTIN_PSRAD, - IX86_BUILTIN_PSRLW, - IX86_BUILTIN_PSRLD, - IX86_BUILTIN_PSRLQ, - IX86_BUILTIN_PSLLWI, - IX86_BUILTIN_PSLLDI, - IX86_BUILTIN_PSLLQI, - IX86_BUILTIN_PSRAWI, - IX86_BUILTIN_PSRADI, - IX86_BUILTIN_PSRLWI, - IX86_BUILTIN_PSRLDI, - IX86_BUILTIN_PSRLQI, - - IX86_BUILTIN_PUNPCKHBW, - IX86_BUILTIN_PUNPCKHWD, - IX86_BUILTIN_PUNPCKHDQ, - IX86_BUILTIN_PUNPCKLBW, - IX86_BUILTIN_PUNPCKLWD, - IX86_BUILTIN_PUNPCKLDQ, - - IX86_BUILTIN_SHUFPS, - - IX86_BUILTIN_RCPPS, - IX86_BUILTIN_RCPSS, - IX86_BUILTIN_RSQRTPS, - IX86_BUILTIN_RSQRTSS, - IX86_BUILTIN_SQRTPS, - IX86_BUILTIN_SQRTSS, - - IX86_BUILTIN_UNPCKHPS, - IX86_BUILTIN_UNPCKLPS, - - IX86_BUILTIN_ANDPS, - IX86_BUILTIN_ANDNPS, - IX86_BUILTIN_ORPS, - IX86_BUILTIN_XORPS, - - IX86_BUILTIN_EMMS, - IX86_BUILTIN_LDMXCSR, - IX86_BUILTIN_STMXCSR, - IX86_BUILTIN_SFENCE, - - /* 3DNow! Original */ - IX86_BUILTIN_FEMMS, - IX86_BUILTIN_PAVGUSB, - IX86_BUILTIN_PF2ID, - IX86_BUILTIN_PFACC, - IX86_BUILTIN_PFADD, - IX86_BUILTIN_PFCMPEQ, - IX86_BUILTIN_PFCMPGE, - IX86_BUILTIN_PFCMPGT, - IX86_BUILTIN_PFMAX, - IX86_BUILTIN_PFMIN, - IX86_BUILTIN_PFMUL, - IX86_BUILTIN_PFRCP, - IX86_BUILTIN_PFRCPIT1, - IX86_BUILTIN_PFRCPIT2, - IX86_BUILTIN_PFRSQIT1, - IX86_BUILTIN_PFRSQRT, - IX86_BUILTIN_PFSUB, - IX86_BUILTIN_PFSUBR, - IX86_BUILTIN_PI2FD, - IX86_BUILTIN_PMULHRW, - - /* 3DNow! Athlon Extensions */ - IX86_BUILTIN_PF2IW, - IX86_BUILTIN_PFNACC, - IX86_BUILTIN_PFPNACC, - IX86_BUILTIN_PI2FW, - IX86_BUILTIN_PSWAPDSI, - IX86_BUILTIN_PSWAPDSF, - - IX86_BUILTIN_SSE_ZERO, - IX86_BUILTIN_MMX_ZERO, - - IX86_BUILTIN_MAX -}; - -/* Define this macro if references to a symbol must be treated - differently depending on something about the variable or - function named by the symbol (such as what section it is in). - - On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol - so that we may access it directly in the GOT. */ - -#define ENCODE_SECTION_INFO(DECL) \ -do { \ - if (flag_pic) \ - { \ - rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \ - ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \ - \ - if (GET_CODE (rtl) == MEM) \ - { \ - if (TARGET_DEBUG_ADDR \ - && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \ - { \ - fprintf (stderr, "Encode %s, public = %d\n", \ - IDENTIFIER_POINTER (DECL_NAME (DECL)), \ - TREE_PUBLIC (DECL)); \ - } \ - \ - SYMBOL_REF_FLAG (XEXP (rtl, 0)) \ - = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \ - || ! TREE_PUBLIC (DECL)); \ - } \ - } \ -} while (0) - -/* The `FINALIZE_PIC' macro serves as a hook to emit these special - codes once the function is being compiled into assembly code, but - not before. (It is not done before, because in the case of - compiling an inline function, it would lead to multiple PIC - prologues being included in functions which used inline functions - and were compiled to assembly language.) */ - -#define FINALIZE_PIC \ - (current_function_uses_pic_offset_table |= current_function_profile) - - -/* Max number of args passed in registers. If this is more than 3, we will - have problems with ebx (register #4), since it is a caller save register and - is also used as the pic register in ELF. So for now, don't allow more than - 3 registers to be passed in registers. */ - -#define REGPARM_MAX (TARGET_64BIT ? 6 : 3) - -#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0) - - -/* Specify the machine mode that this machine uses - for the index in the tablejump instruction. */ -#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode) - -/* Define as C expression which evaluates to nonzero if the tablejump - instruction expects the table to contain offsets from the address of the - table. - Do not define this if the table should contain absolute addresses. */ -/* #define CASE_VECTOR_PC_RELATIVE 1 */ - -/* Define this as 1 if `char' should by default be signed; else as 0. */ -#define DEFAULT_SIGNED_CHAR 1 - -/* Number of bytes moved into a data cache for a single prefetch operation. */ -#define PREFETCH_BLOCK ix86_cost->prefetch_block - -/* Number of prefetch operations that can be done in parallel. */ -#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches - -/* Max number of bytes we can move from memory to memory - in one reasonably fast instruction. */ -#define MOVE_MAX 16 - -/* MOVE_MAX_PIECES is the number of bytes at a time which we can - move efficiently, as opposed to MOVE_MAX which is the maximum - number of bytes we can move with a single instruction. */ -#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4) - -/* If a memory-to-memory move would take MOVE_RATIO or more simple - move-instruction pairs, we will do a movstr or libcall instead. - Increasing the value will always make code faster, but eventually - incurs high cost in increased code size. - - If you don't define this, a reasonable default is used. */ - -#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio) - -/* Define if shifts truncate the shift count - which implies one can omit a sign-extension or zero-extension - of a shift count. */ -/* On i386, shifts do truncate the count. But bit opcodes don't. */ - -/* #define SHIFT_COUNT_TRUNCATED */ - -/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits - is done just by pretending it is already truncated. */ -#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 - -/* We assume that the store-condition-codes instructions store 0 for false - and some other value for true. This is the value stored for true. */ - -#define STORE_FLAG_VALUE 1 - -/* When a prototype says `char' or `short', really pass an `int'. - (The 386 can't easily push less than an int.) */ - -#define PROMOTE_PROTOTYPES (!TARGET_64BIT) - -/* A macro to update M and UNSIGNEDP when an object whose type is - TYPE and which has the specified mode and signedness is to be - stored in a register. This macro is only called when TYPE is a - scalar type. - - On i386 it is sometimes useful to promote HImode and QImode - quantities to SImode. The choice depends on target type. */ - -#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ -do { \ - if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \ - || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \ - (MODE) = SImode; \ -} while (0) - -/* Specify the machine mode that pointers have. - After generation of rtl, the compiler makes no further distinction - between pointers and any other objects of this machine mode. */ -#define Pmode (TARGET_64BIT ? DImode : SImode) - -/* A function address in a call instruction - is a byte address (for indexing purposes) - so give the MEM rtx a byte's mode. */ -#define FUNCTION_MODE QImode - -/* A part of a C `switch' statement that describes the relative costs - of constant RTL expressions. It must contain `case' labels for - expression codes `const_int', `const', `symbol_ref', `label_ref' - and `const_double'. Each case must ultimately reach a `return' - statement to return the relative cost of the use of that kind of - constant value in an expression. The cost may depend on the - precise value of the constant, which is available for examination - in X, and the rtx code of the expression in which it is contained, - found in OUTER_CODE. - - CODE is the expression code--redundant, since it can be obtained - with `GET_CODE (X)'. */ - -#define CONST_COSTS(RTX, CODE, OUTER_CODE) \ - case CONST_INT: \ - case CONST: \ - case LABEL_REF: \ - case SYMBOL_REF: \ - if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \ - return 3; \ - if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \ - return 2; \ - return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \ - \ - case CONST_DOUBLE: \ - { \ - int code; \ - if (GET_MODE (RTX) == VOIDmode) \ - return 0; \ - \ - code = standard_80387_constant_p (RTX); \ - return code == 1 ? 1 : \ - code == 2 ? 2 : \ - 3; \ - } - -/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */ -#define TOPLEVEL_COSTS_N_INSNS(N) \ - do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0) - -/* Like `CONST_COSTS' but applies to nonconstant RTL expressions. - This can be used, for example, to indicate how costly a multiply - instruction is. In writing this macro, you can use the construct - `COSTS_N_INSNS (N)' to specify a cost equal to N fast - instructions. OUTER_CODE is the code of the expression in which X - is contained. - - This macro is optional; do not define it if the default cost - assumptions are adequate for the target machine. */ - -#define RTX_COSTS(X, CODE, OUTER_CODE) \ - case ZERO_EXTEND: \ - /* The zero extensions is often completely free on x86_64, so make \ - it as cheap as possible. */ \ - if (TARGET_64BIT && GET_MODE (X) == DImode \ - && GET_MODE (XEXP (X, 0)) == SImode) \ - { \ - total = 1; goto egress_rtx_costs; \ - } \ - else \ - TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \ - ix86_cost->add : ix86_cost->movzx); \ - break; \ - case SIGN_EXTEND: \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \ - break; \ - case ASHIFT: \ - if (GET_CODE (XEXP (X, 1)) == CONST_INT \ - && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \ - { \ - HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \ - if (value == 1) \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \ - if ((value == 2 || value == 3) \ - && !TARGET_DECOMPOSE_LEA \ - && ix86_cost->lea <= ix86_cost->shift_const) \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \ - } \ - /* fall through */ \ - \ - case ROTATE: \ - case ASHIFTRT: \ - case LSHIFTRT: \ - case ROTATERT: \ - if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \ - { \ - if (GET_CODE (XEXP (X, 1)) == CONST_INT) \ - { \ - if (INTVAL (XEXP (X, 1)) > 32) \ - TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \ - else \ - TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \ - } \ - else \ - { \ - if (GET_CODE (XEXP (X, 1)) == AND) \ - TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \ - else \ - TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \ - } \ - } \ - else \ - { \ - if (GET_CODE (XEXP (X, 1)) == CONST_INT) \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \ - else \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \ - } \ - break; \ - \ - case MULT: \ - if (GET_CODE (XEXP (X, 1)) == CONST_INT) \ - { \ - unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \ - int nbits = 0; \ - \ - while (value != 0) \ - { \ - nbits++; \ - value >>= 1; \ - } \ - \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \ - + nbits * ix86_cost->mult_bit); \ - } \ - else /* This is arbitrary */ \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \ - + 7 * ix86_cost->mult_bit); \ - \ - case DIV: \ - case UDIV: \ - case MOD: \ - case UMOD: \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \ - \ - case PLUS: \ - if (!TARGET_DECOMPOSE_LEA \ - && INTEGRAL_MODE_P (GET_MODE (X)) \ - && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \ - { \ - if (GET_CODE (XEXP (X, 0)) == PLUS \ - && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \ - && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \ - && CONSTANT_P (XEXP (X, 1))) \ - { \ - HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\ - if (val == 2 || val == 4 || val == 8) \ - { \ - return (COSTS_N_INSNS (ix86_cost->lea) \ - + rtx_cost (XEXP (XEXP (X, 0), 1), \ - (OUTER_CODE)) \ - + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \ - (OUTER_CODE)) \ - + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \ - } \ - } \ - else if (GET_CODE (XEXP (X, 0)) == MULT \ - && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \ - { \ - HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \ - if (val == 2 || val == 4 || val == 8) \ - { \ - return (COSTS_N_INSNS (ix86_cost->lea) \ - + rtx_cost (XEXP (XEXP (X, 0), 0), \ - (OUTER_CODE)) \ - + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \ - } \ - } \ - else if (GET_CODE (XEXP (X, 0)) == PLUS) \ - { \ - return (COSTS_N_INSNS (ix86_cost->lea) \ - + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \ - + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \ - + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \ - } \ - } \ - \ - /* fall through */ \ - case AND: \ - case IOR: \ - case XOR: \ - case MINUS: \ - if (!TARGET_64BIT && GET_MODE (X) == DImode) \ - return (COSTS_N_INSNS (ix86_cost->add) * 2 \ - + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \ - << (GET_MODE (XEXP (X, 0)) != DImode)) \ - + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \ - << (GET_MODE (XEXP (X, 1)) != DImode))); \ - \ - /* fall through */ \ - case NEG: \ - case NOT: \ - if (!TARGET_64BIT && GET_MODE (X) == DImode) \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \ - TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \ - \ - egress_rtx_costs: \ - break; - - -/* An expression giving the cost of an addressing mode that contains - ADDRESS. If not defined, the cost is computed from the ADDRESS - expression and the `CONST_COSTS' values. - - For most CISC machines, the default cost is a good approximation - of the true cost of the addressing mode. However, on RISC - machines, all instructions normally have the same length and - execution time. Hence all addresses will have equal costs. - - In cases where more than one form of an address is known, the form - with the lowest cost will be used. If multiple forms have the - same, lowest, cost, the one that is the most complex will be used. - - For example, suppose an address that is equal to the sum of a - register and a constant is used twice in the same basic block. - When this macro is not defined, the address will be computed in a - register and memory references will be indirect through that - register. On machines where the cost of the addressing mode - containing the sum is no higher than that of a simple indirect - reference, this will produce an additional instruction and - possibly require an additional register. Proper specification of - this macro eliminates this overhead for such machines. - - Similar use of this macro is made in strength reduction of loops. - - ADDRESS need not be valid as an address. In such a case, the cost - is not relevant and can be any value; invalid addresses need not be - assigned a different cost. - - On machines where an address involving more than one register is as - cheap as an address computation involving only one register, - defining `ADDRESS_COST' to reflect this can cause two registers to - be live over a region of code where only one would have been if - `ADDRESS_COST' were not defined in that manner. This effect should - be considered in the definition of this macro. Equivalent costs - should probably only be given to addresses with different numbers - of registers on machines with lots of registers. - - This macro will normally either not be defined or be defined as a - constant. - - For i386, it is better to use a complex address than let gcc copy - the address into a reg and make a new pseudo. But not if the address - requires to two regs - that would mean more pseudos with longer - lifetimes. */ - -#define ADDRESS_COST(RTX) \ - ix86_address_cost (RTX) - -/* A C expression for the cost of moving data from a register in class FROM to - one in class TO. The classes are expressed using the enumeration values - such as `GENERAL_REGS'. A value of 2 is the default; other values are - interpreted relative to that. - - It is not required that the cost always equal 2 when FROM is the same as TO; - on some machines it is expensive to move between registers if they are not - general registers. */ - -#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \ - ix86_register_move_cost ((MODE), (CLASS1), (CLASS2)) - -/* A C expression for the cost of moving data of mode M between a - register and memory. A value of 2 is the default; this cost is - relative to those in `REGISTER_MOVE_COST'. - - If moving between registers and memory is more expensive than - between two registers, you should define this macro to express the - relative cost. */ - -#define MEMORY_MOVE_COST(MODE, CLASS, IN) \ - ix86_memory_move_cost ((MODE), (CLASS), (IN)) - -/* A C expression for the cost of a branch instruction. A value of 1 - is the default; other values are interpreted relative to that. */ - -#define BRANCH_COST ix86_branch_cost - -/* Define this macro as a C expression which is nonzero if accessing - less than a word of memory (i.e. a `char' or a `short') is no - faster than accessing a word of memory, i.e., if such access - require more than one instruction or if there is no difference in - cost between byte and (aligned) word loads. - - When this macro is not defined, the compiler will access a field by - finding the smallest containing object; when it is defined, a - fullword load will be used if alignment permits. Unless bytes - accesses are faster than word accesses, using word accesses is - preferable since it may eliminate subsequent memory access if - subsequent accesses occur to other fields in the same word of the - structure, but to different bytes. */ - -#define SLOW_BYTE_ACCESS 0 - -/* Nonzero if access to memory by shorts is slow and undesirable. */ -#define SLOW_SHORT_ACCESS 0 - -/* Define this macro to be the value 1 if unaligned accesses have a - cost many times greater than aligned accesses, for example if they - are emulated in a trap handler. - - When this macro is non-zero, the compiler will act as if - `STRICT_ALIGNMENT' were non-zero when generating code for block - moves. This can cause significantly more instructions to be - produced. Therefore, do not set this macro non-zero if unaligned - accesses only add a cycle or two to the time for a memory access. - - If the value of this macro is always zero, it need not be defined. */ - -/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */ - -/* Define this macro to inhibit strength reduction of memory - addresses. (On some machines, such strength reduction seems to do - harm rather than good.) */ - -/* #define DONT_REDUCE_ADDR */ - -/* Define this macro if it is as good or better to call a constant - function address than to call an address kept in a register. - - Desirable on the 386 because a CALL with a constant address is - faster than one with a register address. */ - -#define NO_FUNCTION_CSE - -/* Define this macro if it is as good or better for a function to call - itself with an explicit address than to call an address kept in a - register. */ - -#define NO_RECURSIVE_FUNCTION_CSE - -/* Add any extra modes needed to represent the condition code. - - For the i386, we need separate modes when floating-point - equality comparisons are being done. - - Add CCNO to indicate comparisons against zero that requires - Overflow flag to be unset. Sign bit test is used instead and - thus can be used to form "a&b>0" type of tests. - - Add CCGC to indicate comparisons agains zero that allows - unspecified garbage in the Carry flag. This mode is used - by inc/dec instructions. - - Add CCGOC to indicate comparisons agains zero that allows - unspecified garbage in the Carry and Overflow flag. This - mode is used to simulate comparisons of (a-b) and (a+b) - against zero using sub/cmp/add operations. - - Add CCZ to indicate that only the Zero flag is valid. */ - -#define EXTRA_CC_MODES \ - CC (CCGCmode, "CCGC") \ - CC (CCGOCmode, "CCGOC") \ - CC (CCNOmode, "CCNO") \ - CC (CCZmode, "CCZ") \ - CC (CCFPmode, "CCFP") \ - CC (CCFPUmode, "CCFPU") - -/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, - return the mode to be used for the comparison. - - For floating-point equality comparisons, CCFPEQmode should be used. - VOIDmode should be used in all other cases. - - For integer comparisons against zero, reduce to CCNOmode or CCZmode if - possible, to allow for more combinations. */ - -#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y)) - -/* Return non-zero if MODE implies a floating point inequality can be - reversed. */ - -#define REVERSIBLE_CC_MODE(MODE) 1 - -/* A C expression whose value is reversed condition code of the CODE for - comparison done in CC_MODE mode. */ -#define REVERSE_CONDITION(CODE, MODE) \ - ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \ - : reverse_condition_maybe_unordered (CODE)) - - -/* Control the assembler format that we output, to the extent - this does not vary between assemblers. */ - -/* How to refer to registers in assembler output. - This sequence is indexed by compiler's hard-register-number (see above). */ - -/* In order to refer to the first 8 regs as 32 bit regs prefix an "e" - For non floating point regs, the following are the HImode names. - - For float regs, the stack top is sometimes referred to as "%st(0)" - instead of just "%st". PRINT_REG handles this with the "y" code. */ - -#undef HI_REGISTER_NAMES -#define HI_REGISTER_NAMES \ -{"ax","dx","cx","bx","si","di","bp","sp", \ - "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \ - "flags","fpsr", "dirflag", "frame", \ - "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \ - "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \ - "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ - "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"} - -#define REGISTER_NAMES HI_REGISTER_NAMES - -/* Table of additional register names to use in user input. */ - -#define ADDITIONAL_REGISTER_NAMES \ -{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \ - { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \ - { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \ - { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \ - { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \ - { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \ - { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \ - { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} } - -/* Note we are omitting these since currently I don't know how -to get gcc to use these, since they want the same but different -number as al, and ax. -*/ - -#define QI_REGISTER_NAMES \ -{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",} - -/* These parallel the array above, and can be used to access bits 8:15 - of regs 0 through 3. */ - -#define QI_HIGH_REGISTER_NAMES \ -{"ah", "dh", "ch", "bh", } - -/* How to renumber registers for dbx and gdb. */ - -#define DBX_REGISTER_NUMBER(N) \ - (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)]) - -extern int const dbx_register_map[FIRST_PSEUDO_REGISTER]; -extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER]; -extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER]; - -/* Before the prologue, RA is at 0(%esp). */ -#define INCOMING_RETURN_ADDR_RTX \ - gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM)) - -/* After the prologue, RA is at -4(AP) in the current frame. */ -#define RETURN_ADDR_RTX(COUNT, FRAME) \ - ((COUNT) == 0 \ - ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \ - : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD))) - -/* PC is dbx register 8; let's use that column for RA. */ -#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8) - -/* Before the prologue, the top of the frame is at 4(%esp). */ -#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD - -/* Describe how we implement __builtin_eh_return. */ -#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM) -#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2) - - -/* Select a format to encode pointers in exception handling data. CODE - is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is - true if the symbol may be affected by dynamic relocations. - - ??? All x86 object file formats are capable of representing this. - After all, the relocation needed is the same as for the call insn. - Whether or not a particular assembler allows us to enter such, I - guess we'll have to see. */ -#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ - (flag_pic \ - ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\ - : DW_EH_PE_absptr) - -/* This is how to output the definition of a user-level label named NAME, - such as the label on a static function or variable NAME. */ - -#define ASM_OUTPUT_LABEL(FILE, NAME) \ - (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE))) - -/* Store in OUTPUT a string (made with alloca) containing - an assembler-name for a local static variable named NAME. - LABELNO is an integer which is different for each call. */ - -#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ -( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ - sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) - -/* This is how to output an insn to push a register on the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \ - asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]) - -/* This is how to output an insn to pop a register from the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_POP(FILE, REGNO) \ - asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]) - -/* This is how to output an element of a case-vector that is absolute. */ - -#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ - ix86_output_addr_vec_elt ((FILE), (VALUE)) - -/* This is how to output an element of a case-vector that is relative. */ - -#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ - ix86_output_addr_diff_elt ((FILE), (VALUE), (REL)) - -/* Under some conditions we need jump tables in the text section, because - the assembler cannot handle label differences between sections. */ - -#define JUMP_TABLES_IN_TEXT_SECTION \ - (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA) - -/* A C statement that outputs an address constant appropriate to - for DWARF debugging. */ - -#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \ - i386_dwarf_output_addr_const ((FILE), (X)) - -/* Either simplify a location expression, or return the original. */ - -#define ASM_SIMPLIFY_DWARF_ADDR(X) \ - i386_simplify_dwarf_addr (X) - -/* Switch to init or fini section via SECTION_OP, emit a call to FUNC, - and switch back. For x86 we do this only to save a few bytes that - would otherwise be unused in the text section. */ -#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ - asm (SECTION_OP "\n\t" \ - "call " USER_LABEL_PREFIX #FUNC "\n" \ - TEXT_SECTION_ASM_OP); - -/* Print operand X (an rtx) in assembler syntax to file FILE. - CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. - Effect of various CODE letters is described in i386.c near - print_operand function. */ - -#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ - ((CODE) == '*' || (CODE) == '+') - -/* Print the name of a register based on its machine mode and number. - If CODE is 'w', pretend the mode is HImode. - If CODE is 'b', pretend the mode is QImode. - If CODE is 'k', pretend the mode is SImode. - If CODE is 'q', pretend the mode is DImode. - If CODE is 'h', pretend the reg is the `high' byte register. - If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */ - -#define PRINT_REG(X, CODE, FILE) \ - print_reg ((X), (CODE), (FILE)) - -#define PRINT_OPERAND(FILE, X, CODE) \ - print_operand ((FILE), (X), (CODE)) - -#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ - print_operand_address ((FILE), (ADDR)) - -/* Print the name of a register for based on its machine mode and number. - This macro is used to print debugging output. - This macro is different from PRINT_REG in that it may be used in - programs that are not linked with aux-output.o. */ - -#define DEBUG_PRINT_REG(X, CODE, FILE) \ - do { static const char * const hi_name[] = HI_REGISTER_NAMES; \ - static const char * const qi_name[] = QI_REGISTER_NAMES; \ - fprintf ((FILE), "%d ", REGNO (X)); \ - if (REGNO (X) == FLAGS_REG) \ - { fputs ("flags", (FILE)); break; } \ - if (REGNO (X) == DIRFLAG_REG) \ - { fputs ("dirflag", (FILE)); break; } \ - if (REGNO (X) == FPSR_REG) \ - { fputs ("fpsr", (FILE)); break; } \ - if (REGNO (X) == ARG_POINTER_REGNUM) \ - { fputs ("argp", (FILE)); break; } \ - if (REGNO (X) == FRAME_POINTER_REGNUM) \ - { fputs ("frame", (FILE)); break; } \ - if (STACK_TOP_P (X)) \ - { fputs ("st(0)", (FILE)); break; } \ - if (FP_REG_P (X)) \ - { fputs (hi_name[REGNO(X)], (FILE)); break; } \ - if (REX_INT_REG_P (X)) \ - { \ - switch (GET_MODE_SIZE (GET_MODE (X))) \ - { \ - default: \ - case 8: \ - fprintf ((FILE), "r%i", REGNO (X) \ - - FIRST_REX_INT_REG + 8); \ - break; \ - case 4: \ - fprintf ((FILE), "r%id", REGNO (X) \ - - FIRST_REX_INT_REG + 8); \ - break; \ - case 2: \ - fprintf ((FILE), "r%iw", REGNO (X) \ - - FIRST_REX_INT_REG + 8); \ - break; \ - case 1: \ - fprintf ((FILE), "r%ib", REGNO (X) \ - - FIRST_REX_INT_REG + 8); \ - break; \ - } \ - break; \ - } \ - switch (GET_MODE_SIZE (GET_MODE (X))) \ - { \ - case 8: \ - fputs ("r", (FILE)); \ - fputs (hi_name[REGNO (X)], (FILE)); \ - break; \ - default: \ - fputs ("e", (FILE)); \ - case 2: \ - fputs (hi_name[REGNO (X)], (FILE)); \ - break; \ - case 1: \ - fputs (qi_name[REGNO (X)], (FILE)); \ - break; \ - } \ - } while (0) - -/* a letter which is not needed by the normal asm syntax, which - we can use for operand syntax in the extended asm */ - -#define ASM_OPERAND_LETTER '#' -#define RET return "" -#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx)) - -/* Define the codes that are matched by predicates in i386.c. */ - -#define PREDICATE_CODES \ - {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \ - SYMBOL_REF, LABEL_REF, CONST}}, \ - {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \ - SYMBOL_REF, LABEL_REF}}, \ - {"shiftdi_operand", {SUBREG, REG, MEM}}, \ - {"const_int_1_operand", {CONST_INT}}, \ - {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \ - {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \ - LABEL_REF, SUBREG, REG, MEM}}, \ - {"pic_symbolic_operand", {CONST}}, \ - {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \ - {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \ - {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \ - {"const1_operand", {CONST_INT}}, \ - {"const248_operand", {CONST_INT}}, \ - {"incdec_operand", {CONST_INT}}, \ - {"mmx_reg_operand", {REG}}, \ - {"reg_no_sp_operand", {SUBREG, REG}}, \ - {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \ - SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \ - {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \ - {"q_regs_operand", {SUBREG, REG}}, \ - {"non_q_regs_operand", {SUBREG, REG}}, \ - {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \ - ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \ - GE, UNGE, LTGT, UNEQ}}, \ - {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \ - ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \ - }}, \ - {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \ - GTU, UNORDERED, ORDERED, UNLE, UNLT, \ - UNGE, UNGT, LTGT, UNEQ }}, \ - {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \ - {"ext_register_operand", {SUBREG, REG}}, \ - {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \ - {"mult_operator", {MULT}}, \ - {"div_operator", {DIV}}, \ - {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \ - UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \ - UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \ - LSHIFTRT, ROTATERT}}, \ - {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \ - {"memory_displacement_operand", {MEM}}, \ - {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \ - LABEL_REF, SUBREG, REG, MEM, AND}}, \ - {"long_memory_operand", {MEM}}, - -/* A list of predicates that do special things with modes, and so - should not elicit warnings for VOIDmode match_operand. */ - -#define SPECIAL_MODE_PREDICATES \ - "ext_register_operand", - -/* CM_32 is used by 32bit ABI - CM_SMALL is small model assuming that all code and data fits in the first - 31bits of address space. - CM_KERNEL is model assuming that all code and data fits in the negative - 31bits of address space. - CM_MEDIUM is model assuming that code fits in the first 31bits of address - space. Size of data is unlimited. - CM_LARGE is model making no assumptions about size of particular sections. - - CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt - tables first in 31bits of address space. - */ -enum cmodel { - CM_32, - CM_SMALL, - CM_KERNEL, - CM_MEDIUM, - CM_LARGE, - CM_SMALL_PIC -}; - -/* Size of the RED_ZONE area. */ -#define RED_ZONE_SIZE 128 -/* Reserved area of the red zone for temporaries. */ -#define RED_ZONE_RESERVE 8 -extern const char *ix86_debug_arg_string, *ix86_debug_addr_string; - -enum asm_dialect { - ASM_ATT, - ASM_INTEL -}; -extern const char *ix86_asm_string; -extern enum asm_dialect ix86_asm_dialect; -/* Value of -mcmodel specified by user. */ -extern const char *ix86_cmodel_string; -extern enum cmodel ix86_cmodel; - -/* Variables in i386.c */ -extern const char *ix86_cpu_string; /* for -mcpu= */ -extern const char *ix86_arch_string; /* for -march= */ -extern const char *ix86_fpmath_string; /* for -mfpmath= */ -extern const char *ix86_regparm_string; /* # registers to use to pass args */ -extern const char *ix86_align_loops_string; /* power of two alignment for loops */ -extern const char *ix86_align_jumps_string; /* power of two alignment for non-loop jumps */ -extern const char *ix86_align_funcs_string; /* power of two alignment for functions */ -extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */ -extern const char *ix86_branch_cost_string; /* values 1-5: see jump.c */ -extern int ix86_regparm; /* ix86_regparm_string as a number */ -extern int ix86_preferred_stack_boundary; /* preferred stack boundary alignment in bits */ -extern int ix86_branch_cost; /* values 1-5: see jump.c */ -extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */ -// Commented out the following two lines due to lack of definition for "rtx" - Brian -//extern rtx ix86_compare_op0; /* operand 0 for comparisons */ -//extern rtx ix86_compare_op1; /* operand 1 for comparisons */ - -/* To properly truncate FP values into integers, we need to set i387 control - word. We can't emit proper mode switching code before reload, as spills - generated by reload may truncate values incorrectly, but we still can avoid - redundant computation of new control word by the mode switching pass. - The fldcw instructions are still emitted redundantly, but this is probably - not going to be noticeable problem, as most CPUs do have fast path for - the sequence. - - The machinery is to emit simple truncation instructions and split them - before reload to instructions having USEs of two memory locations that - are filled by this code to old and new control word. - - Post-reload pass may be later used to eliminate the redundant fildcw if - needed. */ - -enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY}; - -/* Define this macro if the port needs extra instructions inserted - for mode switching in an optimizing compilation. */ - -#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1 - -/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as - initializer for an array of integers. Each initializer element N - refers to an entity that needs mode switching, and specifies the - number of different modes that might need to be set for this - entity. The position of the initializer in the initializer - - starting counting at zero - determines the integer that is used to - refer to the mode-switched entity in question. */ - -#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY } - -/* ENTITY is an integer specifying a mode-switched entity. If - `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to - return an integer value not larger than the corresponding element - in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY - must be switched into prior to the execution of INSN. */ - -#define MODE_NEEDED(ENTITY, I) \ - (GET_CODE (I) == CALL_INSN \ - || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \ - || GET_CODE (PATTERN (I)) == ASM_INPUT))\ - ? FP_CW_UNINITIALIZED \ - : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \ - ? FP_CW_ANY \ - : FP_CW_STORED) - -/* This macro specifies the order in which modes for ENTITY are - processed. 0 is the highest priority. */ - -#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N) - -/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE - is the set of hard registers live at the point where the insn(s) - are to be inserted. */ - -#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \ - ((MODE) == FP_CW_STORED \ - ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \ - assign_386_stack_local (HImode, 2)), 0\ - : 0) - -/* Avoid renaming of stack registers, as doing so in combination with - scheduling just increases amount of live registers at time and in - the turn amount of fxch instructions needed. - - ??? Maybe Pentium chips benefits from renaming, someone can try... */ - -#define HARD_REGNO_RENAME_OK(SRC, TARGET) \ - ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG) - - -/* -Local variables: -version-control: t -End: -*/ diff --git a/reactos/drivers/storage/ide/uniata/stdafx.cpp b/reactos/drivers/storage/ide/uniata/stdafx.cpp deleted file mode 100644 index fd4f341c7b2..00000000000 --- a/reactos/drivers/storage/ide/uniata/stdafx.cpp +++ /dev/null @@ -1 +0,0 @@ -#include "stdafx.h" diff --git a/reactos/drivers/storage/ide/uniata/uniata.rbuild b/reactos/drivers/storage/ide/uniata/uniata.rbuild index 4541bdf7dc4..07b4f0adcee 100644 --- a/reactos/drivers/storage/ide/uniata/uniata.rbuild +++ b/reactos/drivers/storage/ide/uniata/uniata.rbuild @@ -16,12 +16,12 @@ id_probe.cpp id_queue.cpp id_sata.cpp - stdafx.cpp idedma.rc ros_glue.cpp ros_glue_asm.s - libgcc2.c + + -lgcc