mirror of
https://github.com/reactos/reactos.git
synced 2025-01-13 01:22:03 +00:00
[CRT]
Import x87 asm version of pow() from glibc. Replaces our broken implementation, fixing a bunch of winetests (oleaut32 vartest) svn path=/trunk/; revision=46283
This commit is contained in:
parent
26a974f2a0
commit
b751e1e10b
1 changed files with 362 additions and 115 deletions
|
@ -1,121 +1,368 @@
|
|||
/*
|
||||
* COPYRIGHT: See COPYING in the top level directory
|
||||
* PROJECT: ReactOS kernel
|
||||
* PURPOSE: Run-Time Library
|
||||
* FILE: lib/rtl/i386/pow.S
|
||||
* PROGRAMER: Alex Ionescu (alex@relsoft.net)
|
||||
*
|
||||
* Copyright (C) 2002 Michael Ringgaard.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the project nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
/* ix87 specific implementation of pow function.
|
||||
Copyright (C) 1996, 1997, 1998, 1999, 2001, 2004, 2005, 2007
|
||||
Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
|
||||
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES// LOSS OF USE, DATA, OR PROFITS// OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
.globl _pow
|
||||
|
||||
/* DATA ********************************************************************/
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
fzero:
|
||||
.long 0 // Floating point zero
|
||||
.long 0 // Floating point zero
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
.intel_syntax noprefix
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||||
02111-1307 USA. */
|
||||
|
||||
/* FUNCTIONS ***************************************************************/
|
||||
/* Reacros modifications */
|
||||
#define ALIGNARG(log2) log2
|
||||
#define ASM_TYPE_DIRECTIVE(name,typearg)
|
||||
#define ASM_SIZE_DIRECTIVE(name)
|
||||
#define cfi_adjust_cfa_offset(x)
|
||||
#define ENTRY(x)
|
||||
#define END(x)
|
||||
.global _pow
|
||||
|
||||
.text
|
||||
|
||||
.align ALIGNARG(4)
|
||||
ASM_TYPE_DIRECTIVE(infinity,@object)
|
||||
inf_zero:
|
||||
infinity:
|
||||
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
|
||||
ASM_SIZE_DIRECTIVE(infinity)
|
||||
ASM_TYPE_DIRECTIVE(zero,@object)
|
||||
zero: .double 0.0
|
||||
ASM_SIZE_DIRECTIVE(zero)
|
||||
ASM_TYPE_DIRECTIVE(minf_mzero,@object)
|
||||
minf_mzero:
|
||||
minfinity:
|
||||
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
|
||||
mzero:
|
||||
.byte 0, 0, 0, 0, 0, 0, 0, 0x80
|
||||
ASM_SIZE_DIRECTIVE(minf_mzero)
|
||||
ASM_TYPE_DIRECTIVE(one,@object)
|
||||
one: .double 1.0
|
||||
ASM_SIZE_DIRECTIVE(one)
|
||||
ASM_TYPE_DIRECTIVE(limit,@object)
|
||||
limit: .double 0.29
|
||||
ASM_SIZE_DIRECTIVE(limit)
|
||||
ASM_TYPE_DIRECTIVE(p63,@object)
|
||||
p63: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
|
||||
ASM_SIZE_DIRECTIVE(p63)
|
||||
|
||||
#ifdef PIC
|
||||
#define MO(op) op##@GOTOFF(%ecx)
|
||||
#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
|
||||
#else
|
||||
#define MO(op) op
|
||||
#define MOX(op,x,f) op(,x,f)
|
||||
#endif
|
||||
|
||||
.text
|
||||
_pow:
|
||||
push ebp
|
||||
mov ebp,esp
|
||||
sub esp,12 // Allocate temporary space
|
||||
push edi // Save register edi
|
||||
push eax // Save register eax
|
||||
mov dword ptr [ebp-12],0 // Set negation flag to zero
|
||||
fld qword ptr [ebp+16] // Load real from stack
|
||||
fld qword ptr [ebp+8] // Load real from stack
|
||||
mov edi,offset flat:fzero // Point to real zero
|
||||
fcom qword ptr [edi] // Compare x with zero
|
||||
fstsw ax // Get the FPU status word
|
||||
mov al,ah // Move condition flags to AL
|
||||
lahf // Load Flags into AH
|
||||
and al, 0b01000101 // Isolate C0, C2 and C3
|
||||
and ah, 0b10111010 // Turn off CF, PF and ZF
|
||||
or ah,al // Set new CF, PF and ZF
|
||||
sahf // Store AH into Flags
|
||||
jb __fpow1 // Re-direct if x < 0
|
||||
ja __fpow2 // Re-direct if x > 0
|
||||
fxch // Swap st, st(1)
|
||||
fcom qword ptr [edi] // Compare y with zero
|
||||
fxch // Restore x as top of stack
|
||||
fstsw ax // Get the FPU status word
|
||||
mov al,ah // Move condition flags to AL
|
||||
lahf // Load Flags into AH
|
||||
and al, 0b01000101 // Isolate C0, C2 and C3
|
||||
and ah, 0b10111010 // Turn off CF, PF and ZF
|
||||
or ah,al // Set new CF, PF and ZF
|
||||
sahf // Store AH into Flags
|
||||
jmp __fpow2 // Re-direct
|
||||
__fpow1: fxch // Put y on top of stack
|
||||
fld st // Duplicate y as st(1)
|
||||
frndint // Round to integer
|
||||
fxch // Put y on top of stack
|
||||
fcomp // y = int(y) ?
|
||||
fstsw ax // Get the FPU status word
|
||||
mov al,ah // Move condition flags to AL
|
||||
lahf // Load Flags into AH
|
||||
and al, 0b01000101 // Isolate C0, C2 and C3
|
||||
and ah, 0b10111010 // Turn off CF, PF and ZF
|
||||
or ah,al // Set new CF, PF and ZF
|
||||
sahf // Store AH into Flags
|
||||
jne __fpow4 // Proceed if y = int(y)
|
||||
fist dword ptr [ebp-12] // Store y as integer
|
||||
and dword ptr [ebp-12],1 // Set bit if y is odd
|
||||
fxch // Put x on top of stack
|
||||
fabs // x = |x|
|
||||
__fpow2: fldln2 // Load log base e of 2
|
||||
fxch st(1) // Exchange st, st(1)
|
||||
fyl2x // Compute the natural log(x)
|
||||
fmulp // Compute y * ln(x)
|
||||
fldl2e // Load log base 2(e)
|
||||
fmulp st(1),st // Multiply x * log base 2(e)
|
||||
fst st(1) // Push result
|
||||
frndint // Round to integer
|
||||
fsub st(1),st // Subtract
|
||||
fxch // Exchange st, st(1)
|
||||
f2xm1 // Compute 2 to the (x - 1)
|
||||
fld1 // Load real number 1
|
||||
faddp // 2 to the x
|
||||
fscale // Scale by power of 2
|
||||
fstp st(1) // Set new stack top and pop
|
||||
test dword ptr [ebp-12],1 // Negation required ?
|
||||
jz __fpow3 // No, re-direct
|
||||
fchs // Negate the result
|
||||
__fpow3: fstp qword ptr [ebp-8] // Save (double)pow(x, y)
|
||||
fld qword ptr [ebp-8] // Load (double)pow(x, y)
|
||||
__fpow4: pop eax // Restore register eax
|
||||
pop edi // Restore register edi
|
||||
mov esp,ebp // Deallocate temporary space
|
||||
pop ebp
|
||||
ret
|
||||
ENTRY(__ieee754_pow)
|
||||
fldl 12(%esp) // y
|
||||
fxam
|
||||
|
||||
#ifdef PIC
|
||||
LOAD_PIC_REG (cx)
|
||||
#endif
|
||||
|
||||
fnstsw
|
||||
movb %ah, %dl
|
||||
andb $0x45, %ah
|
||||
cmpb $0x40, %ah // is y == 0 ?
|
||||
je 11f
|
||||
|
||||
cmpb $0x05, %ah // is y == ±inf ?
|
||||
je 12f
|
||||
|
||||
cmpb $0x01, %ah // is y == NaN ?
|
||||
je 30f
|
||||
|
||||
fldl 4(%esp) // x : y
|
||||
|
||||
subl $8,%esp
|
||||
cfi_adjust_cfa_offset (8)
|
||||
|
||||
fxam
|
||||
fnstsw
|
||||
movb %ah, %dh
|
||||
andb $0x45, %ah
|
||||
cmpb $0x40, %ah
|
||||
je 20f // x is ±0
|
||||
|
||||
cmpb $0x05, %ah
|
||||
je 15f // x is ±inf
|
||||
|
||||
fxch // y : x
|
||||
|
||||
/* fistpll raises invalid exception for |y| >= 1L<<63. */
|
||||
fld %st // y : y : x
|
||||
fabs // |y| : y : x
|
||||
fcompl MO(p63) // y : x
|
||||
fnstsw
|
||||
sahf
|
||||
jnc 2f
|
||||
|
||||
/* First see whether `y' is a natural number. In this case we
|
||||
can use a more precise algorithm. */
|
||||
fld %st // y : y : x
|
||||
fistpll (%esp) // y : x
|
||||
fildll (%esp) // int(y) : y : x
|
||||
fucomp %st(1) // y : x
|
||||
fnstsw
|
||||
sahf
|
||||
jne 2f
|
||||
|
||||
/* OK, we have an integer value for y. */
|
||||
popl %eax
|
||||
cfi_adjust_cfa_offset (-4)
|
||||
popl %edx
|
||||
cfi_adjust_cfa_offset (-4)
|
||||
orl $0, %edx
|
||||
fstp %st(0) // x
|
||||
jns 4f // y >= 0, jump
|
||||
fdivrl MO(one) // 1/x (now referred to as x)
|
||||
negl %eax
|
||||
adcl $0, %edx
|
||||
negl %edx
|
||||
4: fldl MO(one) // 1 : x
|
||||
fxch
|
||||
|
||||
6: shrdl $1, %edx, %eax
|
||||
jnc 5f
|
||||
fxch
|
||||
fmul %st(1) // x : ST*x
|
||||
fxch
|
||||
5: fmul %st(0), %st // x*x : ST*x
|
||||
shrl $1, %edx
|
||||
movl %eax, %ecx
|
||||
orl %edx, %ecx
|
||||
jnz 6b
|
||||
fstp %st(0) // ST*x
|
||||
ret
|
||||
|
||||
/* y is ±NAN */
|
||||
30: fldl 4(%esp) // x : y
|
||||
fldl MO(one) // 1.0 : x : y
|
||||
fucomp %st(1) // x : y
|
||||
fnstsw
|
||||
sahf
|
||||
je 31f
|
||||
fxch // y : x
|
||||
31: fstp %st(1)
|
||||
ret
|
||||
|
||||
cfi_adjust_cfa_offset (8)
|
||||
.align ALIGNARG(4)
|
||||
2: /* y is a real number. */
|
||||
fxch // x : y
|
||||
fldl MO(one) // 1.0 : x : y
|
||||
fldl MO(limit) // 0.29 : 1.0 : x : y
|
||||
fld %st(2) // x : 0.29 : 1.0 : x : y
|
||||
fsub %st(2) // x-1 : 0.29 : 1.0 : x : y
|
||||
fabs // |x-1| : 0.29 : 1.0 : x : y
|
||||
fucompp // 1.0 : x : y
|
||||
fnstsw
|
||||
fxch // x : 1.0 : y
|
||||
sahf
|
||||
ja 7f
|
||||
fsub %st(1) // x-1 : 1.0 : y
|
||||
fyl2xp1 // log2(x) : y
|
||||
jmp 8f
|
||||
|
||||
7: fyl2x // log2(x) : y
|
||||
8: fmul %st(1) // y*log2(x) : y
|
||||
fst %st(1) // y*log2(x) : y*log2(x)
|
||||
frndint // int(y*log2(x)) : y*log2(x)
|
||||
fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
|
||||
fxch // fract(y*log2(x)) : int(y*log2(x))
|
||||
f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
|
||||
faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
|
||||
fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
|
||||
addl $8, %esp
|
||||
cfi_adjust_cfa_offset (-8)
|
||||
fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
|
||||
ret
|
||||
|
||||
|
||||
// pow(x,±0) = 1
|
||||
.align ALIGNARG(4)
|
||||
11: fstp %st(0) // pop y
|
||||
fldl MO(one)
|
||||
ret
|
||||
|
||||
// y == ±inf
|
||||
.align ALIGNARG(4)
|
||||
12: fstp %st(0) // pop y
|
||||
fldl MO(one) // 1
|
||||
fldl 4(%esp) // x : 1
|
||||
fabs // abs(x) : 1
|
||||
fucompp // < 1, == 1, or > 1
|
||||
fnstsw
|
||||
andb $0x45, %ah
|
||||
cmpb $0x45, %ah
|
||||
je 13f // jump if x is NaN
|
||||
|
||||
cmpb $0x40, %ah
|
||||
je 14f // jump if |x| == 1
|
||||
|
||||
shlb $1, %ah
|
||||
xorb %ah, %dl
|
||||
andl $2, %edx
|
||||
fldl MOX(inf_zero, %edx, 4)
|
||||
ret
|
||||
|
||||
.align ALIGNARG(4)
|
||||
14: fldl MO(one)
|
||||
ret
|
||||
|
||||
.align ALIGNARG(4)
|
||||
13: fldl 4(%esp) // load x == NaN
|
||||
ret
|
||||
|
||||
cfi_adjust_cfa_offset (8)
|
||||
.align ALIGNARG(4)
|
||||
// x is ±inf
|
||||
15: fstp %st(0) // y
|
||||
testb $2, %dh
|
||||
jz 16f // jump if x == +inf
|
||||
|
||||
// We must find out whether y is an odd integer.
|
||||
fld %st // y : y
|
||||
fistpll (%esp) // y
|
||||
fildll (%esp) // int(y) : y
|
||||
fucompp // <empty>
|
||||
fnstsw
|
||||
sahf
|
||||
jne 17f
|
||||
|
||||
// OK, the value is an integer, but is the number of bits small
|
||||
// enough so that all are coming from the mantissa?
|
||||
popl %eax
|
||||
cfi_adjust_cfa_offset (-4)
|
||||
popl %edx
|
||||
cfi_adjust_cfa_offset (-4)
|
||||
andb $1, %al
|
||||
jz 18f // jump if not odd
|
||||
movl %edx, %eax
|
||||
orl %edx, %edx
|
||||
jns 155f
|
||||
negl %eax
|
||||
155: cmpl $0x00200000, %eax
|
||||
ja 18f // does not fit in mantissa bits
|
||||
// It's an odd integer.
|
||||
shrl $31, %edx
|
||||
fldl MOX(minf_mzero, %edx, 8)
|
||||
ret
|
||||
|
||||
cfi_adjust_cfa_offset (8)
|
||||
.align ALIGNARG(4)
|
||||
16: fcompl MO(zero)
|
||||
addl $8, %esp
|
||||
cfi_adjust_cfa_offset (-8)
|
||||
fnstsw
|
||||
shrl $5, %eax
|
||||
andl $8, %eax
|
||||
fldl MOX(inf_zero, %eax, 1)
|
||||
ret
|
||||
|
||||
cfi_adjust_cfa_offset (8)
|
||||
.align ALIGNARG(4)
|
||||
17: shll $30, %edx // sign bit for y in right position
|
||||
addl $8, %esp
|
||||
cfi_adjust_cfa_offset (-8)
|
||||
18: shrl $31, %edx
|
||||
fldl MOX(inf_zero, %edx, 8)
|
||||
ret
|
||||
|
||||
cfi_adjust_cfa_offset (8)
|
||||
.align ALIGNARG(4)
|
||||
// x is ±0
|
||||
20: fstp %st(0) // y
|
||||
testb $2, %dl
|
||||
jz 21f // y > 0
|
||||
|
||||
// x is ±0 and y is < 0. We must find out whether y is an odd integer.
|
||||
testb $2, %dh
|
||||
jz 25f
|
||||
|
||||
fld %st // y : y
|
||||
fistpll (%esp) // y
|
||||
fildll (%esp) // int(y) : y
|
||||
fucompp // <empty>
|
||||
fnstsw
|
||||
sahf
|
||||
jne 26f
|
||||
|
||||
// OK, the value is an integer, but is the number of bits small
|
||||
// enough so that all are coming from the mantissa?
|
||||
popl %eax
|
||||
cfi_adjust_cfa_offset (-4)
|
||||
popl %edx
|
||||
cfi_adjust_cfa_offset (-4)
|
||||
andb $1, %al
|
||||
jz 27f // jump if not odd
|
||||
cmpl $0xffe00000, %edx
|
||||
jbe 27f // does not fit in mantissa bits
|
||||
// It's an odd integer.
|
||||
// Raise divide-by-zero exception and get minus infinity value.
|
||||
fldl MO(one)
|
||||
fdivl MO(zero)
|
||||
fchs
|
||||
ret
|
||||
|
||||
cfi_adjust_cfa_offset (8)
|
||||
25: fstp %st(0)
|
||||
26: addl $8, %esp
|
||||
cfi_adjust_cfa_offset (-8)
|
||||
27: // Raise divide-by-zero exception and get infinity value.
|
||||
fldl MO(one)
|
||||
fdivl MO(zero)
|
||||
ret
|
||||
|
||||
cfi_adjust_cfa_offset (8)
|
||||
.align ALIGNARG(4)
|
||||
// x is ±0 and y is > 0. We must find out whether y is an odd integer.
|
||||
21: testb $2, %dh
|
||||
jz 22f
|
||||
|
||||
fld %st // y : y
|
||||
fistpll (%esp) // y
|
||||
fildll (%esp) // int(y) : y
|
||||
fucompp // <empty>
|
||||
fnstsw
|
||||
sahf
|
||||
jne 23f
|
||||
|
||||
// OK, the value is an integer, but is the number of bits small
|
||||
// enough so that all are coming from the mantissa?
|
||||
popl %eax
|
||||
cfi_adjust_cfa_offset (-4)
|
||||
popl %edx
|
||||
cfi_adjust_cfa_offset (-4)
|
||||
andb $1, %al
|
||||
jz 24f // jump if not odd
|
||||
cmpl $0xffe00000, %edx
|
||||
jae 24f // does not fit in mantissa bits
|
||||
// It's an odd integer.
|
||||
fldl MO(mzero)
|
||||
ret
|
||||
|
||||
cfi_adjust_cfa_offset (8)
|
||||
22: fstp %st(0)
|
||||
23: addl $8, %esp // Don't use 2 x pop
|
||||
cfi_adjust_cfa_offset (-8)
|
||||
24: fldl MO(zero)
|
||||
ret
|
||||
|
||||
END(__ieee754_pow)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue