diff --git a/reactos/boot/freeldr/freeldr/arch/i386/hardware.c b/reactos/boot/freeldr/freeldr/arch/i386/hardware.c
index 8479b28a924..33cbc6e9a23 100644
--- a/reactos/boot/freeldr/freeldr/arch/i386/hardware.c
+++ b/reactos/boot/freeldr/freeldr/arch/i386/hardware.c
@@ -579,7 +579,7 @@ DetectBiosFloppyPeripheral(PCONFIGURATION_COMPONENT_DATA ControllerKey)
MmHeapFree(PartialResourceList);
/* Set 'Identifier' value */
- sprintf(Identifier, "FLOPPY%u", FloppyNumber + 1);
+ sprintf(Identifier, "FLOPPY%ld", FloppyNumber + 1);
FldrSetIdentifier(PeripheralKey, Identifier);
}
}
@@ -1218,7 +1218,7 @@ DetectSerialPorts(PCONFIGURATION_COMPONENT_DATA BusKey)
MmHeapFree(PartialResourceList);
/* Set 'Identifier' value */
- sprintf(Buffer, "COM%u", i + 1);
+ sprintf(Buffer, "COM%ld", i + 1);
FldrSetIdentifier(ControllerKey, Buffer);
DbgPrint((DPRINT_HWDETECT,
"Created value: Identifier %s\n",
@@ -1323,7 +1323,7 @@ DetectParallelPorts(PCONFIGURATION_COMPONENT_DATA BusKey)
MmHeapFree(PartialResourceList);
/* Set 'Identifier' value */
- sprintf(Buffer, "PARALLEL%u", i + 1);
+ sprintf(Buffer, "PARALLEL%ld", i + 1);
FldrSetIdentifier(ControllerKey, Buffer);
DbgPrint((DPRINT_HWDETECT,
"Created value: Identifier %s\n",
diff --git a/reactos/boot/freeldr/freeldr/custom.c b/reactos/boot/freeldr/freeldr/custom.c
index e4d9de58f91..6d9dab25865 100644
--- a/reactos/boot/freeldr/freeldr/custom.c
+++ b/reactos/boot/freeldr/freeldr/custom.c
@@ -91,7 +91,7 @@ VOID OptionMenuCustomBootDisk(VOID)
// Generate a unique section name
MachRTCGetCurrentDateTime(&Year, &Month, &Day, &Hour, &Minute, &Second);
- sprintf(SectionName, "CustomBootDisk%d%d%d%d%d%d", Year, Day, Month, Hour, Minute, Second);
+ sprintf(SectionName, "CustomBootDisk%ld%ld%ld%ld%ld%ld", Year, Day, Month, Hour, Minute, Second);
// Add the section
if (!IniAddSection(SectionName, &SectionId))
@@ -140,7 +140,7 @@ VOID OptionMenuCustomBootPartition(VOID)
// Generate a unique section name
MachRTCGetCurrentDateTime(&Year, &Month, &Day, &Hour, &Minute, &Second);
- sprintf(SectionName, "CustomBootPartition%d%d%d%d%d%d", Year, Day, Month, Hour, Minute, Second);
+ sprintf(SectionName, "CustomBootPartition%ld%ld%ld%ld%ld%ld", Year, Day, Month, Hour, Minute, Second);
// Add the section
if (!IniAddSection(SectionName, &SectionId))
@@ -202,7 +202,7 @@ VOID OptionMenuCustomBootBootSectorFile(VOID)
// Generate a unique section name
MachRTCGetCurrentDateTime(&Year, &Month, &Day, &Hour, &Minute, &Second);
- sprintf(SectionName, "CustomBootSectorFile%d%d%d%d%d%d", Year, Day, Month, Hour, Minute, Second);
+ sprintf(SectionName, "CustomBootSectorFile%ld%ld%ld%ld%ld%ld", Year, Day, Month, Hour, Minute, Second);
// Add the section
if (!IniAddSection(SectionName, &SectionId))
@@ -278,7 +278,7 @@ VOID OptionMenuCustomBootReactOS(VOID)
// Generate a unique section name
MachRTCGetCurrentDateTime(&Year, &Month, &Day, &Hour, &Minute, &Second);
- sprintf(SectionName, "CustomReactOS%d%d%d%d%d%d", Year, Day, Month, Hour, Minute, Second);
+ sprintf(SectionName, "CustomReactOS%ld%ld%ld%ld%ld%ld", Year, Day, Month, Hour, Minute, Second);
// Add the section
if (!IniAddSection(SectionName, &SectionId))
@@ -357,7 +357,7 @@ VOID OptionMenuCustomBootLinux(VOID)
// Generate a unique section name
MachRTCGetCurrentDateTime(&Year, &Month, &Day, &Hour, &Minute, &Second);
- sprintf(SectionName, "CustomLinux%d%d%d%d%d%d", Year, Day, Month, Hour, Minute, Second);
+ sprintf(SectionName, "CustomLinux%ld%ld%ld%ld%ld%ld", Year, Day, Month, Hour, Minute, Second);
// Add the section
if (!IniAddSection(SectionName, &SectionId))
diff --git a/reactos/boot/freeldr/freeldr/disk/disk.c b/reactos/boot/freeldr/freeldr/disk/disk.c
index fa94dbc8f13..d01dce380e9 100644
--- a/reactos/boot/freeldr/freeldr/disk/disk.c
+++ b/reactos/boot/freeldr/freeldr/disk/disk.c
@@ -41,7 +41,7 @@ VOID DiskError(PCSTR ErrorString, ULONG ErrorCode)
if (bReportError == FALSE)
return;
- sprintf(ErrorCodeString, "%s\n\nError Code: 0x%x\nError: %s", ErrorString, ErrorCode, DiskGetErrorCodeString(ErrorCode));
+ sprintf(ErrorCodeString, "%s\n\nError Code: 0x%lx\nError: %s", ErrorString, ErrorCode, DiskGetErrorCodeString(ErrorCode));
DbgPrint((DPRINT_DISK, "%s\n", ErrorCodeString));
diff --git a/reactos/boot/freeldr/freeldr/disk/partition.c b/reactos/boot/freeldr/freeldr/disk/partition.c
index bf3a2cbfc48..6c3fdf5bb1f 100644
--- a/reactos/boot/freeldr/freeldr/disk/partition.c
+++ b/reactos/boot/freeldr/freeldr/disk/partition.c
@@ -230,7 +230,7 @@ BOOLEAN DiskReadBootRecord(ULONG DriveNumber, ULONGLONG LogicalSectorNumber, PMA
// Check the partition table magic value
if (BootRecord->MasterBootRecordMagic != 0xaa55)
{
- sprintf(ErrMsg, "Invalid partition table magic 0x%x found on drive 0x%x",
+ sprintf(ErrMsg, "Invalid partition table magic 0x%x found on drive 0x%lx",
BootRecord->MasterBootRecordMagic, DriveNumber);
DiskError(ErrMsg, 0);
return FALSE;
diff --git a/reactos/boot/freeldr/freeldr/freeldr.rbuild b/reactos/boot/freeldr/freeldr/freeldr.rbuild
index e4d4dbfeed9..9255277187e 100644
--- a/reactos/boot/freeldr/freeldr/freeldr.rbuild
+++ b/reactos/boot/freeldr/freeldr/freeldr.rbuild
@@ -13,6 +13,9 @@
cmlib
rtl
libcntpr
+ -nostartfiles
+ -nostdlib
+ -lgcc
diff --git a/reactos/boot/freeldr/freeldr/freeldr_arch.rbuild b/reactos/boot/freeldr/freeldr/freeldr_arch.rbuild
index 10b6c84f7dd..fe5bc10fae9 100644
--- a/reactos/boot/freeldr/freeldr/freeldr_arch.rbuild
+++ b/reactos/boot/freeldr/freeldr/freeldr_arch.rbuild
@@ -8,11 +8,8 @@
cache
include
- -ffreestanding
- -fno-builtin
-fno-inline
-fno-zero-initialized-in-bss
- -Os
_alloca.S
archmach.c
hardware.c
diff --git a/reactos/boot/freeldr/freeldr/freeldr_base.rbuild b/reactos/boot/freeldr/freeldr/freeldr_base.rbuild
index 1e376d104c6..cd39dc744f9 100644
--- a/reactos/boot/freeldr/freeldr/freeldr_base.rbuild
+++ b/reactos/boot/freeldr/freeldr/freeldr_base.rbuild
@@ -7,11 +7,8 @@
include
- -ffreestanding
- -fno-builtin
-fno-inline
-fno-zero-initialized-in-bss
- -Os
blocklist.c
cache.c
@@ -36,9 +33,6 @@
inifile.c
parse.c
-
- libgcc2.c
-
meminit.c
mm.c
diff --git a/reactos/boot/freeldr/freeldr/freeldr_base64k.rbuild b/reactos/boot/freeldr/freeldr/freeldr_base64k.rbuild
index 1a416d9e1b9..30369d824a8 100644
--- a/reactos/boot/freeldr/freeldr/freeldr_base64k.rbuild
+++ b/reactos/boot/freeldr/freeldr/freeldr_base64k.rbuild
@@ -4,11 +4,8 @@
include
include
- -ffreestanding
- -fno-builtin
-fno-inline
-fno-zero-initialized-in-bss
- -Os
diff --git a/reactos/boot/freeldr/freeldr/freeldr_main.rbuild b/reactos/boot/freeldr/freeldr/freeldr_main.rbuild
index 2407bf00cf6..57178db0e82 100644
--- a/reactos/boot/freeldr/freeldr/freeldr_main.rbuild
+++ b/reactos/boot/freeldr/freeldr/freeldr_main.rbuild
@@ -4,11 +4,8 @@
include
include
- -ffreestanding
- -fno-builtin
-fno-inline
-fno-zero-initialized-in-bss
- -Os
bootmgr.c
drivemap.c
miscboot.c
diff --git a/reactos/boot/freeldr/freeldr/freeldr_startup.rbuild b/reactos/boot/freeldr/freeldr/freeldr_startup.rbuild
index 074c3c85c08..862bc782334 100644
--- a/reactos/boot/freeldr/freeldr/freeldr_startup.rbuild
+++ b/reactos/boot/freeldr/freeldr/freeldr_startup.rbuild
@@ -3,8 +3,6 @@
include
include
- -ffreestanding
- -fno-builtin
-fno-inline
-fno-zero-initialized-in-bss
diff --git a/reactos/boot/freeldr/freeldr/include/freeldr.h b/reactos/boot/freeldr/freeldr/include/freeldr.h
index 97409fc1151..5ab5417a29d 100644
--- a/reactos/boot/freeldr/freeldr/include/freeldr.h
+++ b/reactos/boot/freeldr/freeldr/include/freeldr.h
@@ -26,6 +26,7 @@
#include
#include
#define NTOSAPI
+#define printf TuiPrintf
#include
#include
#include
diff --git a/reactos/boot/freeldr/freeldr/include/ui/tui.h b/reactos/boot/freeldr/freeldr/include/ui/tui.h
index 3058cb4540c..d8e2b59fd6d 100644
--- a/reactos/boot/freeldr/freeldr/include/ui/tui.h
+++ b/reactos/boot/freeldr/freeldr/include/ui/tui.h
@@ -46,7 +46,7 @@ VOID TuiMessageBoxCritical(PCSTR MessageText); // Displays a message box on t
VOID TuiDrawProgressBarCenter(ULONG Position, ULONG Range, PCHAR ProgressText); // Draws the progress bar showing nPos percent filled
VOID TuiDrawProgressBar(ULONG Left, ULONG Top, ULONG Right, ULONG Bottom, ULONG Position, ULONG Range, PCHAR ProgressText); // Draws the progress bar showing nPos percent filled
BOOLEAN TuiEditBox(PCSTR MessageText, PCHAR EditTextBuffer, ULONG Length);
-
+int TuiPrintf(const char *format, ... );
UCHAR TuiTextToColor(PCSTR ColorText); // Converts the text color into it's equivalent color value
UCHAR TuiTextToFillStyle(PCSTR FillStyleText); // Converts the text fill into it's equivalent fill value
diff --git a/reactos/boot/freeldr/freeldr/math/i386.h b/reactos/boot/freeldr/freeldr/math/i386.h
deleted file mode 100644
index ae05907c263..00000000000
--- a/reactos/boot/freeldr/freeldr/math/i386.h
+++ /dev/null
@@ -1,3207 +0,0 @@
-/* Definitions of target machine for GNU compiler for IA-32.
- Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
- 2001, 2002 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* The purpose of this file is to define the characteristics of the i386,
- independent of assembler syntax or operating system.
-
- Three other files build on this one to describe a specific assembler syntax:
- bsd386.h, att386.h, and sun386.h.
-
- The actual tm.h file for a particular system should include
- this file, and then the file for the appropriate assembler syntax.
-
- Many macros that specify assembler syntax are omitted entirely from
- this file because they really belong in the files for particular
- assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
- ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
- that start with ASM_ or end in ASM_OP. */
-
-/* Stubs for half-pic support if not OSF/1 reference platform. */
-
-#ifndef HALF_PIC_P
-#define HALF_PIC_P() 0
-#define HALF_PIC_NUMBER_PTRS 0
-#define HALF_PIC_NUMBER_REFS 0
-#define HALF_PIC_ENCODE(DECL)
-#define HALF_PIC_DECLARE(NAME)
-#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it")
-#define HALF_PIC_ADDRESS_P(X) 0
-#define HALF_PIC_PTR(X) (X)
-#define HALF_PIC_FINISH(STREAM)
-#endif
-
-/* Define the specific costs for a given cpu */
-
-struct processor_costs {
- const int add; /* cost of an add instruction */
- const int lea; /* cost of a lea instruction */
- const int shift_var; /* variable shift costs */
- const int shift_const; /* constant shift costs */
- const int mult_init; /* cost of starting a multiply */
- const int mult_bit; /* cost of multiply per each bit set */
- const int divide; /* cost of a divide/mod */
- int movsx; /* The cost of movsx operation. */
- int movzx; /* The cost of movzx operation. */
- const int large_insn; /* insns larger than this cost more */
- const int move_ratio; /* The threshold of number of scalar
- memory-to-memory move insns. */
- const int movzbl_load; /* cost of loading using movzbl */
- const int int_load[3]; /* cost of loading integer registers
- in QImode, HImode and SImode relative
- to reg-reg move (2). */
- const int int_store[3]; /* cost of storing integer register
- in QImode, HImode and SImode */
- const int fp_move; /* cost of reg,reg fld/fst */
- const int fp_load[3]; /* cost of loading FP register
- in SFmode, DFmode and XFmode */
- const int fp_store[3]; /* cost of storing FP register
- in SFmode, DFmode and XFmode */
- const int mmx_move; /* cost of moving MMX register. */
- const int mmx_load[2]; /* cost of loading MMX register
- in SImode and DImode */
- const int mmx_store[2]; /* cost of storing MMX register
- in SImode and DImode */
- const int sse_move; /* cost of moving SSE register. */
- const int sse_load[3]; /* cost of loading SSE register
- in SImode, DImode and TImode*/
- const int sse_store[3]; /* cost of storing SSE register
- in SImode, DImode and TImode*/
- const int mmxsse_to_integer; /* cost of moving mmxsse register to
- integer and vice versa. */
- const int prefetch_block; /* bytes moved to cache for prefetch. */
- const int simultaneous_prefetches; /* number of parallel prefetch
- operations. */
-};
-
-extern const struct processor_costs *ix86_cost;
-
-/* Run-time compilation parameters selecting different hardware subsets. */
-
-extern int target_flags;
-
-/* Macros used in the machine description to test the flags. */
-
-/* configure can arrange to make this 2, to force a 486. */
-
-#ifndef TARGET_CPU_DEFAULT
-#define TARGET_CPU_DEFAULT 0
-#endif
-
-/* Masks for the -m switches */
-#define MASK_80387 0x00000001 /* Hardware floating point */
-#define MASK_RTD 0x00000002 /* Use ret that pops args */
-#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
-#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
-#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
-#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
-#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
-#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
-#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
-#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
-#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
-#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
-#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
-#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
-#define MASK_MMX 0x00004000 /* Support MMX regs/builtins */
-#define MASK_MMX_SET 0x00008000
-#define MASK_SSE 0x00010000 /* Support SSE regs/builtins */
-#define MASK_SSE_SET 0x00020000
-#define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */
-#define MASK_SSE2_SET 0x00080000
-#define MASK_3DNOW 0x00100000 /* Support 3Dnow builtins */
-#define MASK_3DNOW_SET 0x00200000
-#define MASK_3DNOW_A 0x00400000 /* Support Athlon 3Dnow builtins */
-#define MASK_3DNOW_A_SET 0x00800000
-#define MASK_128BIT_LONG_DOUBLE 0x01000000 /* long double size is 128bit */
-#define MASK_64BIT 0x02000000 /* Produce 64bit code */
-/* ... overlap with subtarget options starts by 0x04000000. */
-#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
-
-/* Use the floating point instructions */
-#define TARGET_80387 (target_flags & MASK_80387)
-
-/* Compile using ret insn that pops args.
- This will not work unless you use prototypes at least
- for all functions that can take varying numbers of args. */
-#define TARGET_RTD (target_flags & MASK_RTD)
-
-/* Align doubles to a two word boundary. This breaks compatibility with
- the published ABI's for structures containing doubles, but produces
- faster code on the pentium. */
-#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
-
-/* Use push instructions to save outgoing args. */
-#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
-
-/* Accumulate stack adjustments to prologue/epilogue. */
-#define TARGET_ACCUMULATE_OUTGOING_ARGS \
- (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
-
-/* Put uninitialized locals into bss, not data.
- Meaningful only on svr3. */
-#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
-
-/* Use IEEE floating point comparisons. These handle correctly the cases
- where the result of a comparison is unordered. Normally SIGFPE is
- generated in such cases, in which case this isn't needed. */
-#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
-
-/* Functions that return a floating point value may return that value
- in the 387 FPU or in 386 integer registers. If set, this flag causes
- the 387 to be used, which is compatible with most calling conventions. */
-#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
-
-/* Long double is 128bit instead of 96bit, even when only 80bits are used.
- This mode wastes cache, but avoid misaligned data accesses and simplifies
- address calculations. */
-#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
-
-/* Disable generation of FP sin, cos and sqrt operations for 387.
- This is because FreeBSD lacks these in the math-emulator-code */
-#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
-
-/* Don't create frame pointers for leaf functions */
-#define TARGET_OMIT_LEAF_FRAME_POINTER \
- (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
-
-/* Debug GO_IF_LEGITIMATE_ADDRESS */
-#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
-
-/* Debug FUNCTION_ARG macros */
-#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
-
-/* 64bit Sledgehammer mode */
-#ifdef TARGET_BI_ARCH
-#define TARGET_64BIT (target_flags & MASK_64BIT)
-#else
-#ifdef TARGET_64BIT_DEFAULT
-#define TARGET_64BIT 1
-#else
-#define TARGET_64BIT 0
-#endif
-#endif
-
-#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
-#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
-#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
-#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
-#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
-#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
-#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
-
-#define CPUMASK (1 << ix86_cpu)
-extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
-extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
-extern const int x86_branch_hints, x86_unroll_strlen;
-extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
-extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
-extern const int x86_use_cltd, x86_read_modify_write;
-extern const int x86_read_modify, x86_split_long_moves;
-extern const int x86_promote_QImode, x86_single_stringop;
-extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
-extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
-extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
-extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
-extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
-extern const int x86_epilogue_using_move, x86_decompose_lea;
-extern const int x86_arch_always_fancy_math_387;
-extern int x86_prefetch_sse;
-
-#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
-#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
-#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
-#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
-#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
-/* For sane SSE instruction set generation we need fcomi instruction. It is
- safe to enable all CMOVE instructions. */
-#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
-#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
-#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
-#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
-#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
-#define TARGET_MOVX (x86_movx & CPUMASK)
-#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
-#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
-#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
-#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
-#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
-#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
-#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
-#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
-#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
-#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
-#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
-#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
-#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
-#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
-#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
-#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
-#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
-#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
-#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
-#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
-#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
-#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
-#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
-#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
-#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
-
-#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
-
-#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
-#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
-
-#define ASSEMBLER_DIALECT (ix86_asm_dialect)
-
-#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
-#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
-#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
-#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
- && (ix86_fpmath & FPMATH_387))
-#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
-#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
-#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
-
-#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
-
-/* WARNING: Do not mark empty strings for translation, as calling
- gettext on an empty string does NOT return an empty
- string. */
-
-
-#define TARGET_SWITCHES \
-{ { "80387", MASK_80387, N_("Use hardware fp") }, \
- { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
- { "hard-float", MASK_80387, N_("Use hardware fp") }, \
- { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
- { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
- { "386", 0, "" /*Deprecated.*/}, \
- { "486", 0, "" /*Deprecated.*/}, \
- { "pentium", 0, "" /*Deprecated.*/}, \
- { "pentiumpro", 0, "" /*Deprecated.*/}, \
- { "intel-syntax", 0, "" /*Deprecated.*/}, \
- { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
- { "rtd", MASK_RTD, \
- N_("Alternate calling convention") }, \
- { "no-rtd", -MASK_RTD, \
- N_("Use normal calling convention") }, \
- { "align-double", MASK_ALIGN_DOUBLE, \
- N_("Align some doubles on dword boundary") }, \
- { "no-align-double", -MASK_ALIGN_DOUBLE, \
- N_("Align doubles on word boundary") }, \
- { "svr3-shlib", MASK_SVR3_SHLIB, \
- N_("Uninitialized locals in .bss") }, \
- { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
- N_("Uninitialized locals in .data") }, \
- { "ieee-fp", MASK_IEEE_FP, \
- N_("Use IEEE math for fp comparisons") }, \
- { "no-ieee-fp", -MASK_IEEE_FP, \
- N_("Do not use IEEE math for fp comparisons") }, \
- { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
- N_("Return values of functions in FPU registers") }, \
- { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
- N_("Do not return values of functions in FPU registers")}, \
- { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
- N_("Do not generate sin, cos, sqrt for FPU") }, \
- { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
- N_("Generate sin, cos, sqrt for FPU")}, \
- { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
- N_("Omit the frame pointer in leaf functions") }, \
- { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
- { "stack-arg-probe", MASK_STACK_PROBE, \
- N_("Enable stack probing") }, \
- { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
- { "windows", 0, 0 /* undocumented */ }, \
- { "dll", 0, 0 /* undocumented */ }, \
- { "align-stringops", -MASK_NO_ALIGN_STROPS, \
- N_("Align destination of the string operations") }, \
- { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
- N_("Do not align destination of the string operations") }, \
- { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
- N_("Inline all known string operations") }, \
- { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
- N_("Do not inline all known string operations") }, \
- { "push-args", -MASK_NO_PUSH_ARGS, \
- N_("Use push instructions to save outgoing arguments") }, \
- { "no-push-args", MASK_NO_PUSH_ARGS, \
- N_("Do not use push instructions to save outgoing arguments") }, \
- { "accumulate-outgoing-args", (MASK_ACCUMULATE_OUTGOING_ARGS \
- | MASK_ACCUMULATE_OUTGOING_ARGS_SET), \
- N_("Use push instructions to save outgoing arguments") }, \
- { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET, \
- N_("Do not use push instructions to save outgoing arguments") }, \
- { "mmx", MASK_MMX | MASK_MMX_SET, \
- N_("Support MMX built-in functions") }, \
- { "no-mmx", -MASK_MMX, \
- N_("Do not support MMX built-in functions") }, \
- { "no-mmx", MASK_MMX_SET, "" }, \
- { "3dnow", MASK_3DNOW | MASK_3DNOW_SET, \
- N_("Support 3DNow! built-in functions") }, \
- { "no-3dnow", -MASK_3DNOW, "" }, \
- { "no-3dnow", MASK_3DNOW_SET, \
- N_("Do not support 3DNow! built-in functions") }, \
- { "sse", MASK_SSE | MASK_SSE_SET, \
- N_("Support MMX and SSE built-in functions and code generation") }, \
- { "no-sse", -MASK_SSE, "" }, \
- { "no-sse", MASK_SSE_SET, \
- N_("Do not support MMX and SSE built-in functions and code generation") },\
- { "sse2", MASK_SSE2 | MASK_SSE2_SET, \
- N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
- { "no-sse2", -MASK_SSE2, "" }, \
- { "no-sse2", MASK_SSE2_SET, \
- N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
- { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
- N_("sizeof(long double) is 16") }, \
- { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
- N_("sizeof(long double) is 12") }, \
- { "64", MASK_64BIT, \
- N_("Generate 64bit x86-64 code") }, \
- { "32", -MASK_64BIT, \
- N_("Generate 32bit i386 code") }, \
- { "red-zone", -MASK_NO_RED_ZONE, \
- N_("Use red-zone in the x86-64 code") }, \
- { "no-red-zone", MASK_NO_RED_ZONE, \
- N_("Do not use red-zone in the x86-64 code") }, \
- SUBTARGET_SWITCHES \
- { "", TARGET_DEFAULT, 0 }}
-
-#ifdef TARGET_64BIT_DEFAULT
-#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
-#else
-#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
-#endif
-
-/* Which processor to schedule for. The cpu attribute defines a list that
- mirrors this list, so changes to i386.md must be made at the same time. */
-
-enum processor_type
-{
- PROCESSOR_I386, /* 80386 */
- PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
- PROCESSOR_PENTIUM,
- PROCESSOR_PENTIUMPRO,
- PROCESSOR_K6,
- PROCESSOR_ATHLON,
- PROCESSOR_PENTIUM4,
- PROCESSOR_max
-};
-enum fpmath_unit
-{
- FPMATH_387 = 1,
- FPMATH_SSE = 2
-};
-
-extern enum processor_type ix86_cpu;
-extern enum fpmath_unit ix86_fpmath;
-
-extern int ix86_arch;
-
-/* This macro is similar to `TARGET_SWITCHES' but defines names of
- command options that have values. Its definition is an
- initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- fixed part of the option name, and the address of a variable. The
- variable, type `char *', is set to the variable part of the given
- option if the fixed part matches. The actual option name is made
- by appending `-m' to the specified name. */
-#define TARGET_OPTIONS \
-{ { "cpu=", &ix86_cpu_string, \
- N_("Schedule code for given CPU")}, \
- { "fpmath=", &ix86_fpmath_string, \
- N_("Generate floating point mathematics using given instruction set")},\
- { "arch=", &ix86_arch_string, \
- N_("Generate code for given CPU")}, \
- { "regparm=", &ix86_regparm_string, \
- N_("Number of registers used to pass integer arguments") }, \
- { "align-loops=", &ix86_align_loops_string, \
- N_("Loop code aligned to this power of 2") }, \
- { "align-jumps=", &ix86_align_jumps_string, \
- N_("Jump targets are aligned to this power of 2") }, \
- { "align-functions=", &ix86_align_funcs_string, \
- N_("Function starts are aligned to this power of 2") }, \
- { "preferred-stack-boundary=", \
- &ix86_preferred_stack_boundary_string, \
- N_("Attempt to keep stack aligned to this power of 2") }, \
- { "branch-cost=", &ix86_branch_cost_string, \
- N_("Branches are this expensive (1-5, arbitrary units)") }, \
- { "cmodel=", &ix86_cmodel_string, \
- N_("Use given x86-64 code model") }, \
- { "debug-arg", &ix86_debug_arg_string, \
- "" /* Undocumented. */ }, \
- { "debug-addr", &ix86_debug_addr_string, \
- "" /* Undocumented. */ }, \
- { "asm=", &ix86_asm_string, \
- N_("Use given assembler dialect") }, \
- SUBTARGET_OPTIONS \
-}
-
-/* Sometimes certain combinations of command options do not make
- sense on a particular target machine. You can define a macro
- `OVERRIDE_OPTIONS' to take account of this. This macro, if
- defined, is executed once just after all the command options have
- been parsed.
-
- Don't use this macro to turn on various extra optimizations for
- `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
-
-#define OVERRIDE_OPTIONS override_options ()
-
-/* These are meant to be redefined in the host dependent files */
-#define SUBTARGET_SWITCHES
-#define SUBTARGET_OPTIONS
-
-/* Define this to change the optimizations performed by default. */
-#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
- optimization_options ((LEVEL), (SIZE))
-
-/* Specs for the compiler proper */
-
-#ifndef CC1_CPU_SPEC
-#define CC1_CPU_SPEC "\
-%{!mcpu*: \
-%{m386:-mcpu=i386 \
-%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
-%{m486:-mcpu=i486 \
-%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
-%{mpentium:-mcpu=pentium \
-%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
-%{mpentiumpro:-mcpu=pentiumpro \
-%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
-%{mintel-syntax:-masm=intel \
-%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
-%{mno-intel-syntax:-masm=att \
-%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
-#endif
-
-#define TARGET_CPU_DEFAULT_i386 0
-#define TARGET_CPU_DEFAULT_i486 1
-#define TARGET_CPU_DEFAULT_pentium 2
-#define TARGET_CPU_DEFAULT_pentium_mmx 3
-#define TARGET_CPU_DEFAULT_pentiumpro 4
-#define TARGET_CPU_DEFAULT_pentium2 5
-#define TARGET_CPU_DEFAULT_pentium3 6
-#define TARGET_CPU_DEFAULT_pentium4 7
-#define TARGET_CPU_DEFAULT_k6 8
-#define TARGET_CPU_DEFAULT_k6_2 9
-#define TARGET_CPU_DEFAULT_k6_3 10
-#define TARGET_CPU_DEFAULT_athlon 11
-#define TARGET_CPU_DEFAULT_athlon_sse 12
-
-#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
- "pentiumpro", "pentium2", "pentium3", \
- "pentium4", "k6", "k6-2", "k6-3",\
- "athlon", "athlon-4"}
-#ifndef CPP_CPU_DEFAULT_SPEC
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
--D__tune_pentium2__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
--D__tune_pentium2__ -D__tune_pentium3__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__"
-#endif
-#ifndef CPP_CPU_DEFAULT_SPEC
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
-#endif
-#endif /* CPP_CPU_DEFAULT_SPEC */
-
-#ifdef TARGET_BI_ARCH
-#define NO_BUILTIN_SIZE_TYPE
-#define NO_BUILTIN_PTRDIFF_TYPE
-#endif
-
-#ifdef NO_BUILTIN_SIZE_TYPE
-#define CPP_CPU32_SIZE_TYPE_SPEC \
- " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
-#define CPP_CPU64_SIZE_TYPE_SPEC \
- " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int"
-#else
-#define CPP_CPU32_SIZE_TYPE_SPEC ""
-#define CPP_CPU64_SIZE_TYPE_SPEC ""
-#endif
-
-#define CPP_CPU32_SPEC \
- "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
--D__i386__ %(cpp_cpu32sizet)"
-
-#define CPP_CPU64_SPEC \
- "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)"
-
-#define CPP_CPUCOMMON_SPEC "\
-%{march=i386:%{!mcpu*:-D__tune_i386__ }}\
-%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
-%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
- %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
-%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
- -D__pentium__mmx__ \
- %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\
-%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
- -D__pentiumpro -D__pentiumpro__ \
- %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
-%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
-%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \
- %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\
-%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \
- %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\
-%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \
- %{!mcpu*:-D__tune_athlon__ }}\
-%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \
- -D__athlon_sse__ \
- %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\
-%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
-%{m386|mcpu=i386:-D__tune_i386__ }\
-%{m486|mcpu=i486:-D__tune_i486__ }\
-%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\
-%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \
--D__tune_pentiumpro__ }\
-%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\
-%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
--D__tune_athlon__ }\
-%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
--D__tune_athlon_sse__ }\
-%{mcpu=pentium4:-D__tune_pentium4__ }\
-%{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\
--D__SSE__ }\
-%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\
-|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
-|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\
-%{march=k6-2|march=k6-3\
-|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
-|march=athlon-mp: -D__3dNOW__ }\
-%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
-|march=athlon-mp: -D__3dNOW_A__ }\
-%{march=pentium4: -D__SSE2__ }\
-%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
-
-#ifndef CPP_CPU_SPEC
-#ifdef TARGET_BI_ARCH
-#ifdef TARGET_64BIT_DEFAULT
-#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
-#else
-#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
-#endif
-#else
-#ifdef TARGET_64BIT_DEFAULT
-#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
-#else
-#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
-#endif
-#endif
-#endif
-
-#ifndef CC1_SPEC
-#define CC1_SPEC "%(cc1_cpu) "
-#endif
-
-/* This macro defines names of additional specifications to put in the
- specs that can be used in various specifications like CC1_SPEC. Its
- definition is an initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- specification name, and a string constant that used by the GNU CC driver
- program.
-
- Do not define this macro if it does not need to do anything. */
-
-#ifndef SUBTARGET_EXTRA_SPECS
-#define SUBTARGET_EXTRA_SPECS
-#endif
-
-#define EXTRA_SPECS \
- { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
- { "cpp_cpu", CPP_CPU_SPEC }, \
- { "cpp_cpu32", CPP_CPU32_SPEC }, \
- { "cpp_cpu64", CPP_CPU64_SPEC }, \
- { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC }, \
- { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC }, \
- { "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \
- { "cc1_cpu", CC1_CPU_SPEC }, \
- SUBTARGET_EXTRA_SPECS
-
-/* target machine storage layout */
-
-/* Define for XFmode or TFmode extended real floating point support.
- This will automatically cause REAL_ARITHMETIC to be defined.
-
- The XFmode is specified by i386 ABI, while TFmode may be faster
- due to alignment and simplifications in the address calculations.
- */
-#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
-#define MAX_LONG_DOUBLE_TYPE_SIZE 128
-#ifdef __x86_64__
-#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
-#else
-#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
-#endif
-/* Tell real.c that this is the 80-bit Intel extended float format
- packaged in a 128-bit or 96bit entity. */
-#define INTEL_EXTENDED_IEEE_FORMAT 1
-
-
-#define SHORT_TYPE_SIZE 16
-#define INT_TYPE_SIZE 32
-#define FLOAT_TYPE_SIZE 32
-#define LONG_TYPE_SIZE BITS_PER_WORD
-#define MAX_WCHAR_TYPE_SIZE 32
-#define DOUBLE_TYPE_SIZE 64
-#define LONG_LONG_TYPE_SIZE 64
-
-#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
-#define MAX_BITS_PER_WORD 64
-#define MAX_LONG_TYPE_SIZE 64
-#else
-#define MAX_BITS_PER_WORD 32
-#define MAX_LONG_TYPE_SIZE 32
-#endif
-
-/* Define if you don't want extended real, but do want to use the
- software floating point emulator for REAL_ARITHMETIC and
- decimal <-> binary conversion. */
-/* #define REAL_ARITHMETIC */
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* That is true on the 80386. */
-
-#define BITS_BIG_ENDIAN 0
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* That is not true on the 80386. */
-#define BYTES_BIG_ENDIAN 0
-
-/* Define this if most significant word of a multiword number is the lowest
- numbered. */
-/* Not true for 80386 */
-#define WORDS_BIG_ENDIAN 0
-
-/* number of bits in an addressable storage unit */
-#define BITS_PER_UNIT 8
-
-/* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 80386, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
-#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
-
-/* Width of a word, in units (bytes). */
-#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
-#define MIN_UNITS_PER_WORD 4
-
-/* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
-#define POINTER_SIZE BITS_PER_WORD
-
-/* Allocation boundary (in *bits*) for storing arguments in argument list. */
-#define PARM_BOUNDARY BITS_PER_WORD
-
-/* Boundary (in *bits*) on which stack pointer should be aligned. */
-#define STACK_BOUNDARY BITS_PER_WORD
-
-/* Boundary (in *bits*) on which the stack pointer preferrs to be
- aligned; the compiler cannot rely on having this alignment. */
-#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
-
-/* As of July 2001, many runtimes to not align the stack properly when
- entering main. This causes expand_main_function to forcably align
- the stack, which results in aligned frames for functions called from
- main, though it does nothing for the alignment of main itself. */
-#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
- (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
-
-/* Allocation boundary for the code of a function. */
-#define FUNCTION_BOUNDARY 16
-
-/* Alignment of field after `int : 0' in a structure. */
-
-#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
-
-/* Minimum size in bits of the largest boundary to which any
- and all fundamental data types supported by the hardware
- might need to be aligned. No data type wants to be aligned
- rounder than this.
-
- Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
- and Pentium Pro XFmode values at 128 bit boundaries. */
-
-#define BIGGEST_ALIGNMENT 128
-
-/* Decide whether a variable of mode MODE must be 128 bit aligned. */
-#define ALIGN_MODE_128(MODE) \
- ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
- || (MODE) == V4SFmode || (MODE) == V4SImode)
-
-/* The published ABIs say that doubles should be aligned on word
- boundaries, so lower the aligment for structure fields unless
- -malign-double is set. */
-/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
- constant. Use the smaller value in that context. */
-#ifndef IN_TARGET_LIBS
-#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
-#else
-#define BIGGEST_FIELD_ALIGNMENT 32
-#endif
-
-/* If defined, a C expression to compute the alignment given to a
- constant that is being placed in memory. EXP is the constant
- and ALIGN is the alignment that the object would ordinarily have.
- The value of this macro is used instead of that alignment to align
- the object.
-
- If this macro is not defined, then ALIGN is used.
-
- The typical use of this macro is to increase alignment for string
- constants to be word aligned so that `strcpy' calls that copy
- constants can be done inline. */
-
-#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
-
-/* If defined, a C expression to compute the alignment for a static
- variable. TYPE is the data type, and ALIGN is the alignment that
- the object would ordinarily have. The value of this macro is used
- instead of that alignment to align the object.
-
- If this macro is not defined, then ALIGN is used.
-
- One use of this macro is to increase alignment of medium-size
- data to make it all fit in fewer cache lines. Another is to
- cause character arrays to be word-aligned so that `strcpy' calls
- that copy constants to character arrays can be done inline. */
-
-#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
-
-/* If defined, a C expression to compute the alignment for a local
- variable. TYPE is the data type, and ALIGN is the alignment that
- the object would ordinarily have. The value of this macro is used
- instead of that alignment to align the object.
-
- If this macro is not defined, then ALIGN is used.
-
- One use of this macro is to increase alignment of medium-size
- data to make it all fit in fewer cache lines. */
-
-#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
-
-/* If defined, a C expression that gives the alignment boundary, in
- bits, of an argument with the specified mode and type. If it is
- not defined, `PARM_BOUNDARY' is used for all arguments. */
-
-#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
- ix86_function_arg_boundary ((MODE), (TYPE))
-
-/* Set this non-zero if move instructions will actually fail to work
- when given unaligned data. */
-#define STRICT_ALIGNMENT 0
-
-/* If bit field type is int, don't let it cross an int,
- and give entire struct the alignment of an int. */
-/* Required on the 386 since it doesn't have bitfield insns. */
-#define PCC_BITFIELD_TYPE_MATTERS 1
-
-/* Standard register usage. */
-
-/* This processor has special stack-like registers. See reg-stack.c
- for details. */
-
-#define STACK_REGS
-#define IS_STACK_MODE(MODE) \
- ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
- || (MODE) == TFmode)
-
-/* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- In the 80386 we give the 8 general purpose registers the numbers 0-7.
- We number the floating point registers 8-15.
- Note that registers 0-7 can be accessed as a short or int,
- while only 0-3 may be used with byte `mov' instructions.
-
- Reg 16 does not correspond to any hardware register, but instead
- appears in the RTL as an argument pointer prior to reload, and is
- eliminated during reloading in favor of either the stack or frame
- pointer. */
-
-#define FIRST_PSEUDO_REGISTER 53
-
-/* Number of hardware registers that go into the DWARF-2 unwind info.
- If not defined, equals FIRST_PSEUDO_REGISTER. */
-
-#define DWARF_FRAME_REGISTERS 17
-
-/* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the 80386, the stack pointer is such, as is the arg pointer.
-
- The value is an mask - bit 1 is set for fixed registers
- for 32bit target, while 2 is set for fixed registers for 64bit.
- Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
- */
-#define FIXED_REGISTERS \
-/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
-{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
-/*arg,flags,fpsr,dir,frame*/ \
- 3, 3, 3, 3, 3, \
-/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
-/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
-/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
- 1, 1, 1, 1, 1, 1, 1, 1, \
-/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
- 1, 1, 1, 1, 1, 1, 1, 1}
-
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like.
-
- The value is an mask - bit 1 is set for call used
- for 32bit target, while 2 is set for call used for 64bit.
- Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
-*/
-#define CALL_USED_REGISTERS \
-/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
-{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
-/*arg,flags,fpsr,dir,frame*/ \
- 3, 3, 3, 3, 3, \
-/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
- 3, 3, 3, 3, 3, 3, 3, 3, \
-/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
- 3, 3, 3, 3, 3, 3, 3, 3, \
-/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
- 3, 3, 3, 3, 1, 1, 1, 1, \
-/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
- 3, 3, 3, 3, 3, 3, 3, 3} \
-
-/* Order in which to allocate registers. Each register must be
- listed once, even those in FIXED_REGISTERS. List frame pointer
- late and fixed registers last. Note that, in general, we prefer
- registers listed in CALL_USED_REGISTERS, keeping the others
- available for storage of persistent values.
-
- The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
- so this is just empty initializer for array. */
-
-#define REG_ALLOC_ORDER \
-{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
- 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
- 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
- 48, 49, 50, 51, 52 }
-
-/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
- to be rearranged based on a particular function. When using sse math,
- we want to allocase SSE before x87 registers and vice vera. */
-
-#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
-
-
-/* Macro to conditionally modify fixed_regs/call_used_regs. */
-#define CONDITIONAL_REGISTER_USAGE \
-do { \
- int i; \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- { \
- fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
- call_used_regs[i] = (call_used_regs[i] \
- & (TARGET_64BIT ? 2 : 1)) != 0; \
- } \
- if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
- { \
- fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- } \
- if (! TARGET_MMX) \
- { \
- int i; \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- if (! TARGET_SSE) \
- { \
- int i; \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
- { \
- int i; \
- HARD_REG_SET x; \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- } while (0)
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- Actually there are no two word move instructions for consecutive
- registers. And only registers 0-3 may have mov byte instructions
- applied to them.
- */
-
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
- ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
- : ((MODE) == TFmode \
- ? (TARGET_64BIT ? 2 : 3) \
- : (MODE) == TCmode \
- ? (TARGET_64BIT ? 4 : 6) \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
-
-#define VALID_SSE_REG_MODE(MODE) \
- ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
- || (MODE) == SFmode \
- || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
-
-#define VALID_MMX_REG_MODE_3DNOW(MODE) \
- ((MODE) == V2SFmode || (MODE) == SFmode)
-
-#define VALID_MMX_REG_MODE(MODE) \
- ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
- || (MODE) == V2SImode || (MODE) == SImode)
-
-#define VECTOR_MODE_SUPPORTED_P(MODE) \
- (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
- : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
- : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
-
-#define VALID_FP_MODE_P(MODE) \
- ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
- || (!TARGET_64BIT && (MODE) == XFmode) \
- || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
- || (!TARGET_64BIT && (MODE) == XCmode))
-
-#define VALID_INT_MODE_P(MODE) \
- ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
- || (MODE) == DImode \
- || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
- || (MODE) == CDImode \
- || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
-
-/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
-
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ix86_hard_regno_mode_ok ((REGNO), (MODE))
-
-/* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-
-#define MODES_TIEABLE_P(MODE1, MODE2) \
- ((MODE1) == (MODE2) \
- || (((MODE1) == HImode || (MODE1) == SImode \
- || ((MODE1) == QImode \
- && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
- || ((MODE1) == DImode && TARGET_64BIT)) \
- && ((MODE2) == HImode || (MODE2) == SImode \
- || ((MODE1) == QImode \
- && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
- || ((MODE2) == DImode && TARGET_64BIT))))
-
-
-/* Specify the modes required to caller save a given hard regno.
- We do this on i386 to prevent flags from being saved at all.
-
- Kill any attempts to combine saving of modes. */
-
-#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
- (CC_REGNO_P (REGNO) ? VOIDmode \
- : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
- : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
- : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
- : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
- : (MODE))
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* on the 386 the pc register is %eip, and is not usable as a general
- register. The ordinary mov instructions won't work */
-/* #define PC_REGNUM */
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 7
-
-/* Base register for access to local variables of the function. */
-#define HARD_FRAME_POINTER_REGNUM 6
-
-/* Base register for access to local variables of the function. */
-#define FRAME_POINTER_REGNUM 20
-
-/* First floating point reg */
-#define FIRST_FLOAT_REG 8
-
-/* First & last stack-like regs */
-#define FIRST_STACK_REG FIRST_FLOAT_REG
-#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
-
-#define FLAGS_REG 17
-#define FPSR_REG 18
-#define DIRFLAG_REG 19
-
-#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
-#define LAST_SSE_REG (FIRST_SSE_REG + 7)
-
-#define FIRST_MMX_REG (LAST_SSE_REG + 1)
-#define LAST_MMX_REG (FIRST_MMX_REG + 7)
-
-#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
-#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
-
-#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
-#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
-
-/* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
-#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
-
-/* Override this in other tm.h files to cope with various OS losage
- requiring a frame pointer. */
-#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
-#define SUBTARGET_FRAME_POINTER_REQUIRED 0
-#endif
-
-/* Make sure we can access arbitrary call frames. */
-#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
-
-/* Base register for access to arguments of the function. */
-#define ARG_POINTER_REGNUM 16
-
-/* Register in which static-chain is passed to a function.
- We do use ECX as static chain register for 32 bit ABI. On the
- 64bit ABI, ECX is an argument register, so we use R10 instead. */
-#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
-
-/* Register to hold the addressing base for position independent
- code access to data items. We don't use PIC pointer for 64bit
- mode. Define the regnum to dummy value to prevent gcc from
- pessimizing code dealing with EBX. */
-#define PIC_OFFSET_TABLE_REGNUM \
- (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3)
-
-/* Register in which address to store a structure value
- arrives in the function. On the 386, the prologue
- copies this from the stack to register %eax. */
-#define STRUCT_VALUE_INCOMING 0
-
-/* Place in which caller passes the structure value address.
- 0 means push the value on the stack like an argument. */
-#define STRUCT_VALUE 0
-
-/* A C expression which can inhibit the returning of certain function
- values in registers, based on the type of value. A nonzero value
- says to return the function value in memory, just as large
- structures are always returned. Here TYPE will be a C expression
- of type `tree', representing the data type of the value.
-
- Note that values of mode `BLKmode' must be explicitly handled by
- this macro. Also, the option `-fpcc-struct-return' takes effect
- regardless of this macro. On most systems, it is possible to
- leave the macro undefined; this causes a default definition to be
- used, whose value is the constant 1 for `BLKmode' values, and 0
- otherwise.
-
- Do not use this macro to indicate that structures and unions
- should always be returned in memory. You should instead use
- `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
-
-#define RETURN_IN_MEMORY(TYPE) \
- ix86_return_in_memory (TYPE)
-
-
-/* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union.
-
- It might seem that class BREG is unnecessary, since no useful 386
- opcode needs reg %ebx. But some systems pass args to the OS in ebx,
- and the "b" register constraint is useful in asms for syscalls.
-
- The flags and fpsr registers are in no class. */
-
-enum reg_class
-{
- NO_REGS,
- AREG, DREG, CREG, BREG, SIREG, DIREG,
- AD_REGS, /* %eax/%edx for DImode */
- Q_REGS, /* %eax %ebx %ecx %edx */
- NON_Q_REGS, /* %esi %edi %ebp %esp */
- INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
- LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
- GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
- FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
- FLOAT_REGS,
- SSE_REGS,
- MMX_REGS,
- FP_TOP_SSE_REGS,
- FP_SECOND_SSE_REGS,
- FLOAT_SSE_REGS,
- FLOAT_INT_REGS,
- INT_SSE_REGS,
- FLOAT_INT_SSE_REGS,
- ALL_REGS, LIM_REG_CLASSES
-};
-
-#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
-
-#define INTEGER_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), GENERAL_REGS)
-#define FLOAT_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), FLOAT_REGS)
-#define SSE_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), SSE_REGS)
-#define MMX_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), MMX_REGS)
-#define MAYBE_INTEGER_CLASS_P(CLASS) \
- reg_classes_intersect_p ((CLASS), GENERAL_REGS)
-#define MAYBE_FLOAT_CLASS_P(CLASS) \
- reg_classes_intersect_p ((CLASS), FLOAT_REGS)
-#define MAYBE_SSE_CLASS_P(CLASS) \
- reg_classes_intersect_p (SSE_REGS, (CLASS))
-#define MAYBE_MMX_CLASS_P(CLASS) \
- reg_classes_intersect_p (MMX_REGS, (CLASS))
-
-#define Q_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), Q_REGS)
-
-/* Give names of register classes as strings for dump file. */
-
-#define REG_CLASS_NAMES \
-{ "NO_REGS", \
- "AREG", "DREG", "CREG", "BREG", \
- "SIREG", "DIREG", \
- "AD_REGS", \
- "Q_REGS", "NON_Q_REGS", \
- "INDEX_REGS", \
- "LEGACY_REGS", \
- "GENERAL_REGS", \
- "FP_TOP_REG", "FP_SECOND_REG", \
- "FLOAT_REGS", \
- "SSE_REGS", \
- "MMX_REGS", \
- "FP_TOP_SSE_REGS", \
- "FP_SECOND_SSE_REGS", \
- "FLOAT_SSE_REGS", \
- "FLOAT_INT_REGS", \
- "INT_SSE_REGS", \
- "FLOAT_INT_SSE_REGS", \
- "ALL_REGS" }
-
-/* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
-#define REG_CLASS_CONTENTS \
-{ { 0x00, 0x0 }, \
- { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
- { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
- { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
- { 0x03, 0x0 }, /* AD_REGS */ \
- { 0x0f, 0x0 }, /* Q_REGS */ \
- { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
- { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
- { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
- { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
- { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
- { 0xff00, 0x0 }, /* FLOAT_REGS */ \
-{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
-{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
-{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
-{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
-{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
- { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
-{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
-{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
-{ 0xffffffff,0x1fffff } \
-}
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
-#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
-
-/* When defined, the compiler allows registers explicitly used in the
- rtl to be used as spill registers but prevents the compiler from
- extending the lifetime of these registers. */
-
-#define SMALL_REGISTER_CLASSES 1
-
-#define QI_REG_P(X) \
- (REG_P (X) && REGNO (X) < 4)
-
-#define GENERAL_REGNO_P(N) \
- ((N) < 8 || REX_INT_REGNO_P (N))
-
-#define GENERAL_REG_P(X) \
- (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
-
-#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
-
-#define NON_QI_REG_P(X) \
- (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
-
-#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
-#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
-
-#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
-#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
-#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
-#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
-
-#define SSE_REGNO_P(N) \
- (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
- || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
-
-#define SSE_REGNO(N) \
- ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
-#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
-
-#define SSE_FLOAT_MODE_P(MODE) \
- ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
-
-#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
-#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
-
-#define STACK_REG_P(XOP) \
- (REG_P (XOP) && \
- REGNO (XOP) >= FIRST_STACK_REG && \
- REGNO (XOP) <= LAST_STACK_REG)
-
-#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
-
-#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
-
-#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
-#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
-
-/* Indicate whether hard register numbered REG_NO should be converted
- to SSA form. */
-#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
- ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
-
-/* The class value for index registers, and the one for base regs. */
-
-#define INDEX_REG_CLASS INDEX_REGS
-#define BASE_REG_CLASS GENERAL_REGS
-
-/* Get reg_class from a letter such as appears in the machine description. */
-
-#define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'r' ? GENERAL_REGS : \
- (C) == 'R' ? LEGACY_REGS : \
- (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
- (C) == 'Q' ? Q_REGS : \
- (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FLOAT_REGS \
- : NO_REGS) : \
- (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FP_TOP_REG \
- : NO_REGS) : \
- (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FP_SECOND_REG \
- : NO_REGS) : \
- (C) == 'a' ? AREG : \
- (C) == 'b' ? BREG : \
- (C) == 'c' ? CREG : \
- (C) == 'd' ? DREG : \
- (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
- (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
- (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
- (C) == 'A' ? AD_REGS : \
- (C) == 'D' ? DIREG : \
- (C) == 'S' ? SIREG : NO_REGS)
-
-/* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- I is for non-DImode shifts.
- J is for DImode shifts.
- K is for signed imm8 operands.
- L is for andsi as zero-extending move.
- M is for shifts that can be executed by the "lea" opcode.
- N is for immedaite operands for out/in instructions (0-255)
- */
-
-#define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
- : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
- : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
- : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
- : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
- : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
- : 0)
-
-/* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
- TARGET_387 isn't set, because the stack register converter may need to
- load 0.0 into the function value register. */
-
-#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? standard_80387_constant_p (VALUE) \
- : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
-
-/* A C expression that defines the optional machine-dependent
- constraint letters that can be used to segregate specific types of
- operands, usually memory references, for the target machine. Any
- letter that is not elsewhere defined and not matched by
- `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
- be defined.
-
- If it is required for a particular target machine, it should
- return 1 if VALUE corresponds to the operand type represented by
- the constraint letter C. If C is not defined as an extra
- constraint, the value returned should be 0 regardless of VALUE. */
-
-#define EXTRA_CONSTRAINT(VALUE, C) \
- ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \
- : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \
- : 0)
-
-/* Place additional restrictions on the register class to use when it
- is necessary to be able to hold a value of mode MODE in a reload
- register for which class CLASS would ordinarily be used. */
-
-#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
- ((MODE) == QImode && !TARGET_64BIT \
- && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
- || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
- ? Q_REGS : (CLASS))
-
-/* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
- On the 80386 series, we prevent floating constants from being
- reloaded into floating registers (since no move-insn can do that)
- and we ensure that QImodes aren't reloaded into the esi or edi reg. */
-
-/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
- QImode must go into class Q_REGS.
- Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
- movdf to do mem-to-mem moves through integer regs. */
-
-#define PREFERRED_RELOAD_CLASS(X, CLASS) \
- ix86_preferred_reload_class ((X), (CLASS))
-
-/* If we are copying between general and FP registers, we need a memory
- location. The same is true for SSE and MMX registers. */
-#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
- ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
-
-/* QImode spills from non-QI registers need a scratch. This does not
- happen often -- the only example so far requires an uninitialized
- pseudo. */
-
-#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
- (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
- || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
- ? Q_REGS : NO_REGS)
-
-/* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
-/* On the 80386, this is the size of MODE in words,
- except in the FP regs, where a single reg is always enough.
- The TFmodes are really just 80bit values, so we use only 3 registers
- to hold them, instead of 4, as the size would suggest.
- */
-#define CLASS_MAX_NREGS(CLASS, MODE) \
- (!MAYBE_INTEGER_CLASS_P (CLASS) \
- ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
- : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
- + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
-/* A C expression whose value is nonzero if pseudos that have been
- assigned to registers of class CLASS would likely be spilled
- because registers of CLASS are needed for spill registers.
-
- The default value of this macro returns 1 if CLASS has exactly one
- register and zero otherwise. On most machines, this default
- should be used. Only define this macro to some other expression
- if pseudo allocated by `local-alloc.c' end up in memory because
- their hard registers were needed for spill registers. If this
- macro returns nonzero for those classes, those pseudos will only
- be allocated by `global.c', which knows how to reallocate the
- pseudo to another register. If there would not be another
- register available for reallocation, you should not change the
- definition of this macro since the only effect of such a
- definition would be to slow down register allocation. */
-
-#define CLASS_LIKELY_SPILLED_P(CLASS) \
- (((CLASS) == AREG) \
- || ((CLASS) == DREG) \
- || ((CLASS) == CREG) \
- || ((CLASS) == BREG) \
- || ((CLASS) == AD_REGS) \
- || ((CLASS) == SIREG) \
- || ((CLASS) == DIREG))
-
-/* A C statement that adds to CLOBBERS any hard regs the port wishes
- to automatically clobber for all asms.
-
- We do this in the new i386 backend to maintain source compatibility
- with the old cc0-based compiler. */
-
-#define MD_ASM_CLOBBERS(CLOBBERS) \
- do { \
- (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
- (CLOBBERS)); \
- (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
- (CLOBBERS)); \
- (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
- (CLOBBERS)); \
- } while (0)
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-#define STACK_GROWS_DOWNWARD
-
-/* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
-#define FRAME_GROWS_DOWNWARD
-
-/* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
-#define STARTING_FRAME_OFFSET 0
-
-/* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On 386 pushw decrements by exactly 2 no matter what the position was.
- On the 386 there is no pushb; we use pushw instead, and this
- has the effect of rounding up to 2.
-
- For 64bit ABI we round up to 8 bytes.
- */
-
-#define PUSH_ROUNDING(BYTES) \
- (TARGET_64BIT \
- ? (((BYTES) + 7) & (-8)) \
- : (((BYTES) + 1) & (-2)))
-
-/* If defined, the maximum amount of space required for outgoing arguments will
- be computed and placed into the variable
- `current_function_outgoing_args_size'. No space will be pushed onto the
- stack for each call; instead, the function prologue should increase the stack
- frame size by this amount. */
-
-#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
-
-/* If defined, a C expression whose value is nonzero when we want to use PUSH
- instructions to pass outgoing arguments. */
-
-#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
-
-/* Offset of first parameter from the argument pointer register value. */
-#define FIRST_PARM_OFFSET(FNDECL) 0
-
-/* Define this macro if functions should assume that stack space has been
- allocated for arguments even when their values are passed in registers.
-
- The value of this macro is the size, in bytes, of the area reserved for
- arguments passed in registers for the function represented by FNDECL.
-
- This space can be allocated by the caller, or be a part of the
- machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
- which. */
-#define REG_PARM_STACK_SPACE(FNDECL) 0
-
-/* Define as a C expression that evaluates to nonzero if we do not know how
- to pass TYPE solely in registers. The file expr.h defines a
- definition that is usually appropriate, refer to expr.h for additional
- documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
- computed in the stack and then loaded into a register. */
-#define MUST_PASS_IN_STACK(MODE, TYPE) \
- ((TYPE) != 0 \
- && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
- || TREE_ADDRESSABLE (TYPE) \
- || ((MODE) == TImode) \
- || ((MODE) == BLKmode \
- && ! ((TYPE) != 0 \
- && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
- && 0 == (int_size_in_bytes (TYPE) \
- % (PARM_BOUNDARY / BITS_PER_UNIT))) \
- && (FUNCTION_ARG_PADDING (MODE, TYPE) \
- == (BYTES_BIG_ENDIAN ? upward : downward)))))
-
-/* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNDECL is the declaration node of the function (as a tree),
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the 80386, the RTD insn may be used to pop them if the number
- of args is fixed, but if the number is variable then the caller
- must pop them all. RTD can't be used for library calls now
- because the library is compiled with the Unix compiler.
- Use of RTD is a selectable option, since it is incompatible with
- standard Unix calling sequences. If the option is not selected,
- the caller must always pop the args.
-
- The attribute NTAPI is equivalent to RTD on a per module basis. */
-
-#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
- ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
-
-/* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-#define FUNCTION_VALUE(VALTYPE, FUNC) \
- ix86_function_value (VALTYPE)
-
-#define FUNCTION_VALUE_REGNO_P(N) \
- ix86_function_value_regno_p (N)
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
-#define LIBCALL_VALUE(MODE) \
- ix86_libcall_value (MODE)
-
-/* Define the size of the result block used for communication between
- untyped_call and untyped_return. The block contains a DImode value
- followed by the block used by fnsave and frstor. */
-
-#define APPLY_RESULT_SIZE (8+108)
-
-/* 1 if N is a possible register number for function argument passing. */
-#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
-
-/* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go. */
-
-typedef struct ix86_args {
- int words; /* # words passed so far */
- int nregs; /* # registers available for passing */
- int regno; /* next available register number */
- int sse_words; /* # sse words passed so far */
- int sse_nregs; /* # sse registers available for passing */
- int sse_regno; /* next available sse register number */
- int maybe_vaarg; /* true for calls to possibly vardic fncts. */
-} CUMULATIVE_ARGS;
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0. */
-
-#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
- init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
-#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
-
-/* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- function_arg (&(CUM), (MODE), (TYPE), (NAMED))
-
-/* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
-#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
-
-/* If PIC, we cannot make sibling calls to global functions
- because the PLT requires %ebx live.
- If we are returning floats on the register stack, we cannot make
- sibling calls to functions that return floats. (The stack adjust
- instruction will wind up after the sibcall jump, and not be executed.) */
-#define FUNCTION_OK_FOR_SIBCALL(DECL) \
- ((DECL) \
- && (! flag_pic || ! TREE_PUBLIC (DECL)) \
- && (! TARGET_FLOAT_RETURNS_IN_80387 \
- || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
- || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
-
-/* Perform any needed actions needed for a function that is receiving a
- variable number of arguments.
-
- CUM is as above.
-
- MODE and TYPE are the mode and type of the current parameter.
-
- PRETEND_SIZE is a variable that should be set to the amount of stack
- that must be pushed by the prolog to pretend that our caller pushed
- it.
-
- Normally, this macro will push all remaining incoming registers on the
- stack and set PRETEND_SIZE to the length of the registers pushed. */
-
-#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
- ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
- (NO_RTL))
-
-/* Define the `__builtin_va_list' type for the ABI. */
-#define BUILD_VA_LIST_TYPE(VALIST) \
- ((VALIST) = ix86_build_va_list ())
-
-/* Implement `va_start' for varargs and stdarg. */
-#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
- ix86_va_start ((STDARG), (VALIST), (NEXTARG))
-
-/* Implement `va_arg'. */
-#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
- ix86_va_arg ((VALIST), (TYPE))
-
-/* This macro is invoked at the end of compilation. It is used here to
- output code for -fpic that will load the return address into %ebx. */
-
-#undef ASM_FILE_END
-#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
-
-/* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
-#define FUNCTION_PROFILER(FILE, LABELNO) \
-do { \
- if (flag_pic) \
- { \
- fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
- LPREFIX, (LABELNO)); \
- fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \
- } \
- else \
- { \
- fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
- fprintf ((FILE), "\tcall\t_mcount\n"); \
- } \
-} while (0)
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-/* Note on the 386 it might be more efficient not to define this since
- we have to restore it ourselves from the frame pointer, in order to
- use pop */
-
-#define EXIT_IGNORE_STACK 1
-
-/* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts. */
-
-/* On the 386, the trampoline contains two instructions:
- mov #STATIC,ecx
- jmp FUNCTION
- The trampoline is generated entirely at runtime. The operand of JMP
- is the address of FUNCTION relative to the instruction following the
- JMP (which is 5 bytes long). */
-
-/* Length in units of the trampoline for entering a nested function. */
-
-#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
-
-/* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
-#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
-
-/* Definitions for register eliminations.
-
- This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference.
-
- There are two registers that can always be eliminated on the i386.
- The frame pointer and the arg pointer can be replaced by either the
- hard frame pointer or to the stack pointer, depending upon the
- circumstances. The hard frame pointer is not used before reload and
- so it is not eligible for elimination. */
-
-#define ELIMINABLE_REGS \
-{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
-
-/* Given FROM and TO register numbers, say whether this elimination is
- allowed. Frame pointer elimination is automatically handled.
-
- All other eliminations are valid. */
-
-#define CAN_ELIMINATE(FROM, TO) \
- ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
-
-/* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
-
-#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
-
-/* Addressing modes, and classification of registers for them. */
-
-/* #define HAVE_POST_INCREMENT 0 */
-/* #define HAVE_POST_DECREMENT 0 */
-
-/* #define HAVE_PRE_DECREMENT 0 */
-/* #define HAVE_PRE_INCREMENT 0 */
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
-#define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < STACK_POINTER_REGNUM \
- || (REGNO >= FIRST_REX_INT_REG \
- && (REGNO) <= LAST_REX_INT_REG) \
- || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
- && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
- || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
-
-#define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) <= STACK_POINTER_REGNUM \
- || (REGNO) == ARG_POINTER_REGNUM \
- || (REGNO) == FRAME_POINTER_REGNUM \
- || (REGNO >= FIRST_REX_INT_REG \
- && (REGNO) <= LAST_REX_INT_REG) \
- || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
- && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
- || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
-
-#define REGNO_OK_FOR_SIREG_P(REGNO) \
- ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
-#define REGNO_OK_FOR_DIREG_P(REGNO) \
- ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
-
-/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
-
-/* Non strict versions, pseudos are ok */
-#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
- (REGNO (X) < STACK_POINTER_REGNUM \
- || (REGNO (X) >= FIRST_REX_INT_REG \
- && REGNO (X) <= LAST_REX_INT_REG) \
- || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
- (REGNO (X) <= STACK_POINTER_REGNUM \
- || REGNO (X) == ARG_POINTER_REGNUM \
- || REGNO (X) == FRAME_POINTER_REGNUM \
- || (REGNO (X) >= FIRST_REX_INT_REG \
- && REGNO (X) <= LAST_REX_INT_REG) \
- || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-/* Strict versions, hard registers only */
-#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
-#ifndef REG_OK_STRICT
-#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
-#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
-
-#else
-#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
-#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
-#endif
-
-/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
- except for CONSTANT_ADDRESS_P which is usually machine-independent.
-
- See legitimize_pic_address in i386.c for details as to what
- constitutes a legitimate address when -fpic is used. */
-
-#define MAX_REGS_PER_ADDRESS 2
-
-#define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == CONST_DOUBLE)
-
-/* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
-#define LEGITIMATE_CONSTANT_P(X) 1
-
-#ifdef REG_OK_STRICT
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
-do { \
- if (legitimate_address_p ((MODE), (X), 1)) \
- goto ADDR; \
-} while (0)
-
-#else
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
-do { \
- if (legitimate_address_p ((MODE), (X), 0)) \
- goto ADDR; \
-} while (0)
-
-#endif
-
-/* If defined, a C expression to determine the base term of address X.
- This macro is used in only one place: `find_base_term' in alias.c.
-
- It is always safe for this macro to not be defined. It exists so
- that alias analysis can understand machine-dependent addresses.
-
- The typical use of this macro is to handle addresses containing
- a label_ref or symbol_ref within an UNSPEC. */
-
-#define FIND_BASE_TERM(X) ix86_find_base_term (X)
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the 80386, we handle X+REG by loading X into a register R and
- using R+REG. R will go in a general reg and indexing will be used.
- However, if REG is a broken-out memory address or multiplication,
- nothing needs to be done because REG can certainly go in a general reg.
-
- When -fpic is used, special handling is needed for symbolic references.
- See comments by legitimize_pic_address in i386.c for details. */
-
-#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
-do { \
- (X) = legitimize_address ((X), (OLDX), (MODE)); \
- if (memory_address_p ((MODE), (X))) \
- goto WIN; \
-} while (0)
-
-#define REWRITE_ADDRESS(X) rewrite_address (X)
-
-/* Nonzero if the constant value X is a legitimate general operand
- when generating PIC code. It is given that flag_pic is on and
- that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
-#define LEGITIMATE_PIC_OPERAND_P(X) \
- (! SYMBOLIC_CONST (X) \
- || legitimate_pic_address_disp_p (X))
-
-#define SYMBOLIC_CONST(X) \
- (GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == LABEL_REF \
- || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
-
-/* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the 80386, only postdecrement and postincrement address depend thus
- (the amount of decrement or increment being the length of the operand). */
-#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
-do { \
- if (GET_CODE (ADDR) == POST_INC \
- || GET_CODE (ADDR) == POST_DEC) \
- goto LABEL; \
-} while (0)
-
-/* Codes for all the SSE/MMX builtins. */
-enum ix86_builtins
-{
- IX86_BUILTIN_ADDPS,
- IX86_BUILTIN_ADDSS,
- IX86_BUILTIN_DIVPS,
- IX86_BUILTIN_DIVSS,
- IX86_BUILTIN_MULPS,
- IX86_BUILTIN_MULSS,
- IX86_BUILTIN_SUBPS,
- IX86_BUILTIN_SUBSS,
-
- IX86_BUILTIN_CMPEQPS,
- IX86_BUILTIN_CMPLTPS,
- IX86_BUILTIN_CMPLEPS,
- IX86_BUILTIN_CMPGTPS,
- IX86_BUILTIN_CMPGEPS,
- IX86_BUILTIN_CMPNEQPS,
- IX86_BUILTIN_CMPNLTPS,
- IX86_BUILTIN_CMPNLEPS,
- IX86_BUILTIN_CMPNGTPS,
- IX86_BUILTIN_CMPNGEPS,
- IX86_BUILTIN_CMPORDPS,
- IX86_BUILTIN_CMPUNORDPS,
- IX86_BUILTIN_CMPNEPS,
- IX86_BUILTIN_CMPEQSS,
- IX86_BUILTIN_CMPLTSS,
- IX86_BUILTIN_CMPLESS,
- IX86_BUILTIN_CMPGTSS,
- IX86_BUILTIN_CMPGESS,
- IX86_BUILTIN_CMPNEQSS,
- IX86_BUILTIN_CMPNLTSS,
- IX86_BUILTIN_CMPNLESS,
- IX86_BUILTIN_CMPNGTSS,
- IX86_BUILTIN_CMPNGESS,
- IX86_BUILTIN_CMPORDSS,
- IX86_BUILTIN_CMPUNORDSS,
- IX86_BUILTIN_CMPNESS,
-
- IX86_BUILTIN_COMIEQSS,
- IX86_BUILTIN_COMILTSS,
- IX86_BUILTIN_COMILESS,
- IX86_BUILTIN_COMIGTSS,
- IX86_BUILTIN_COMIGESS,
- IX86_BUILTIN_COMINEQSS,
- IX86_BUILTIN_UCOMIEQSS,
- IX86_BUILTIN_UCOMILTSS,
- IX86_BUILTIN_UCOMILESS,
- IX86_BUILTIN_UCOMIGTSS,
- IX86_BUILTIN_UCOMIGESS,
- IX86_BUILTIN_UCOMINEQSS,
-
- IX86_BUILTIN_CVTPI2PS,
- IX86_BUILTIN_CVTPS2PI,
- IX86_BUILTIN_CVTSI2SS,
- IX86_BUILTIN_CVTSS2SI,
- IX86_BUILTIN_CVTTPS2PI,
- IX86_BUILTIN_CVTTSS2SI,
-
- IX86_BUILTIN_MAXPS,
- IX86_BUILTIN_MAXSS,
- IX86_BUILTIN_MINPS,
- IX86_BUILTIN_MINSS,
-
- IX86_BUILTIN_LOADAPS,
- IX86_BUILTIN_LOADUPS,
- IX86_BUILTIN_STOREAPS,
- IX86_BUILTIN_STOREUPS,
- IX86_BUILTIN_LOADSS,
- IX86_BUILTIN_STORESS,
- IX86_BUILTIN_MOVSS,
-
- IX86_BUILTIN_MOVHLPS,
- IX86_BUILTIN_MOVLHPS,
- IX86_BUILTIN_LOADHPS,
- IX86_BUILTIN_LOADLPS,
- IX86_BUILTIN_STOREHPS,
- IX86_BUILTIN_STORELPS,
-
- IX86_BUILTIN_MASKMOVQ,
- IX86_BUILTIN_MOVMSKPS,
- IX86_BUILTIN_PMOVMSKB,
-
- IX86_BUILTIN_MOVNTPS,
- IX86_BUILTIN_MOVNTQ,
-
- IX86_BUILTIN_PACKSSWB,
- IX86_BUILTIN_PACKSSDW,
- IX86_BUILTIN_PACKUSWB,
-
- IX86_BUILTIN_PADDB,
- IX86_BUILTIN_PADDW,
- IX86_BUILTIN_PADDD,
- IX86_BUILTIN_PADDSB,
- IX86_BUILTIN_PADDSW,
- IX86_BUILTIN_PADDUSB,
- IX86_BUILTIN_PADDUSW,
- IX86_BUILTIN_PSUBB,
- IX86_BUILTIN_PSUBW,
- IX86_BUILTIN_PSUBD,
- IX86_BUILTIN_PSUBSB,
- IX86_BUILTIN_PSUBSW,
- IX86_BUILTIN_PSUBUSB,
- IX86_BUILTIN_PSUBUSW,
-
- IX86_BUILTIN_PAND,
- IX86_BUILTIN_PANDN,
- IX86_BUILTIN_POR,
- IX86_BUILTIN_PXOR,
-
- IX86_BUILTIN_PAVGB,
- IX86_BUILTIN_PAVGW,
-
- IX86_BUILTIN_PCMPEQB,
- IX86_BUILTIN_PCMPEQW,
- IX86_BUILTIN_PCMPEQD,
- IX86_BUILTIN_PCMPGTB,
- IX86_BUILTIN_PCMPGTW,
- IX86_BUILTIN_PCMPGTD,
-
- IX86_BUILTIN_PEXTRW,
- IX86_BUILTIN_PINSRW,
-
- IX86_BUILTIN_PMADDWD,
-
- IX86_BUILTIN_PMAXSW,
- IX86_BUILTIN_PMAXUB,
- IX86_BUILTIN_PMINSW,
- IX86_BUILTIN_PMINUB,
-
- IX86_BUILTIN_PMULHUW,
- IX86_BUILTIN_PMULHW,
- IX86_BUILTIN_PMULLW,
-
- IX86_BUILTIN_PSADBW,
- IX86_BUILTIN_PSHUFW,
-
- IX86_BUILTIN_PSLLW,
- IX86_BUILTIN_PSLLD,
- IX86_BUILTIN_PSLLQ,
- IX86_BUILTIN_PSRAW,
- IX86_BUILTIN_PSRAD,
- IX86_BUILTIN_PSRLW,
- IX86_BUILTIN_PSRLD,
- IX86_BUILTIN_PSRLQ,
- IX86_BUILTIN_PSLLWI,
- IX86_BUILTIN_PSLLDI,
- IX86_BUILTIN_PSLLQI,
- IX86_BUILTIN_PSRAWI,
- IX86_BUILTIN_PSRADI,
- IX86_BUILTIN_PSRLWI,
- IX86_BUILTIN_PSRLDI,
- IX86_BUILTIN_PSRLQI,
-
- IX86_BUILTIN_PUNPCKHBW,
- IX86_BUILTIN_PUNPCKHWD,
- IX86_BUILTIN_PUNPCKHDQ,
- IX86_BUILTIN_PUNPCKLBW,
- IX86_BUILTIN_PUNPCKLWD,
- IX86_BUILTIN_PUNPCKLDQ,
-
- IX86_BUILTIN_SHUFPS,
-
- IX86_BUILTIN_RCPPS,
- IX86_BUILTIN_RCPSS,
- IX86_BUILTIN_RSQRTPS,
- IX86_BUILTIN_RSQRTSS,
- IX86_BUILTIN_SQRTPS,
- IX86_BUILTIN_SQRTSS,
-
- IX86_BUILTIN_UNPCKHPS,
- IX86_BUILTIN_UNPCKLPS,
-
- IX86_BUILTIN_ANDPS,
- IX86_BUILTIN_ANDNPS,
- IX86_BUILTIN_ORPS,
- IX86_BUILTIN_XORPS,
-
- IX86_BUILTIN_EMMS,
- IX86_BUILTIN_LDMXCSR,
- IX86_BUILTIN_STMXCSR,
- IX86_BUILTIN_SFENCE,
-
- /* 3DNow! Original */
- IX86_BUILTIN_FEMMS,
- IX86_BUILTIN_PAVGUSB,
- IX86_BUILTIN_PF2ID,
- IX86_BUILTIN_PFACC,
- IX86_BUILTIN_PFADD,
- IX86_BUILTIN_PFCMPEQ,
- IX86_BUILTIN_PFCMPGE,
- IX86_BUILTIN_PFCMPGT,
- IX86_BUILTIN_PFMAX,
- IX86_BUILTIN_PFMIN,
- IX86_BUILTIN_PFMUL,
- IX86_BUILTIN_PFRCP,
- IX86_BUILTIN_PFRCPIT1,
- IX86_BUILTIN_PFRCPIT2,
- IX86_BUILTIN_PFRSQIT1,
- IX86_BUILTIN_PFRSQRT,
- IX86_BUILTIN_PFSUB,
- IX86_BUILTIN_PFSUBR,
- IX86_BUILTIN_PI2FD,
- IX86_BUILTIN_PMULHRW,
-
- /* 3DNow! Athlon Extensions */
- IX86_BUILTIN_PF2IW,
- IX86_BUILTIN_PFNACC,
- IX86_BUILTIN_PFPNACC,
- IX86_BUILTIN_PI2FW,
- IX86_BUILTIN_PSWAPDSI,
- IX86_BUILTIN_PSWAPDSF,
-
- IX86_BUILTIN_SSE_ZERO,
- IX86_BUILTIN_MMX_ZERO,
-
- IX86_BUILTIN_MAX
-};
-
-/* Define this macro if references to a symbol must be treated
- differently depending on something about the variable or
- function named by the symbol (such as what section it is in).
-
- On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
- so that we may access it directly in the GOT. */
-
-#define ENCODE_SECTION_INFO(DECL) \
-do { \
- if (flag_pic) \
- { \
- rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
- ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
- \
- if (GET_CODE (rtl) == MEM) \
- { \
- if (TARGET_DEBUG_ADDR \
- && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
- { \
- fprintf (stderr, "Encode %s, public = %d\n", \
- IDENTIFIER_POINTER (DECL_NAME (DECL)), \
- TREE_PUBLIC (DECL)); \
- } \
- \
- SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
- = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
- || ! TREE_PUBLIC (DECL)); \
- } \
- } \
-} while (0)
-
-/* The `FINALIZE_PIC' macro serves as a hook to emit these special
- codes once the function is being compiled into assembly code, but
- not before. (It is not done before, because in the case of
- compiling an inline function, it would lead to multiple PIC
- prologues being included in functions which used inline functions
- and were compiled to assembly language.) */
-
-#define FINALIZE_PIC \
- (current_function_uses_pic_offset_table |= current_function_profile)
-
-
-/* Max number of args passed in registers. If this is more than 3, we will
- have problems with ebx (register #4), since it is a caller save register and
- is also used as the pic register in ELF. So for now, don't allow more than
- 3 registers to be passed in registers. */
-
-#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
-
-#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
-
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
-
-/* Define as C expression which evaluates to nonzero if the tablejump
- instruction expects the table to contain offsets from the address of the
- table.
- Do not define this if the table should contain absolute addresses. */
-/* #define CASE_VECTOR_PC_RELATIVE 1 */
-
-/* Define this as 1 if `char' should by default be signed; else as 0. */
-#define DEFAULT_SIGNED_CHAR 1
-
-/* Number of bytes moved into a data cache for a single prefetch operation. */
-#define PREFETCH_BLOCK ix86_cost->prefetch_block
-
-/* Number of prefetch operations that can be done in parallel. */
-#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
-
-/* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
-#define MOVE_MAX 16
-
-/* MOVE_MAX_PIECES is the number of bytes at a time which we can
- move efficiently, as opposed to MOVE_MAX which is the maximum
- number of bytes we can move with a single instruction. */
-#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
-
-/* If a memory-to-memory move would take MOVE_RATIO or more simple
- move-instruction pairs, we will do a movstr or libcall instead.
- Increasing the value will always make code faster, but eventually
- incurs high cost in increased code size.
-
- If you don't define this, a reasonable default is used. */
-
-#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
-
-/* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
-/* On i386, shifts do truncate the count. But bit opcodes don't. */
-
-/* #define SHIFT_COUNT_TRUNCATED */
-
-/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-/* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
-#define STORE_FLAG_VALUE 1
-
-/* When a prototype says `char' or `short', really pass an `int'.
- (The 386 can't easily push less than an int.) */
-
-#define PROMOTE_PROTOTYPES (!TARGET_64BIT)
-
-/* A macro to update M and UNSIGNEDP when an object whose type is
- TYPE and which has the specified mode and signedness is to be
- stored in a register. This macro is only called when TYPE is a
- scalar type.
-
- On i386 it is sometimes useful to promote HImode and QImode
- quantities to SImode. The choice depends on target type. */
-
-#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
-do { \
- if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
- || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
- (MODE) = SImode; \
-} while (0)
-
-/* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
-#define Pmode (TARGET_64BIT ? DImode : SImode)
-
-/* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
-#define FUNCTION_MODE QImode
-
-/* A part of a C `switch' statement that describes the relative costs
- of constant RTL expressions. It must contain `case' labels for
- expression codes `const_int', `const', `symbol_ref', `label_ref'
- and `const_double'. Each case must ultimately reach a `return'
- statement to return the relative cost of the use of that kind of
- constant value in an expression. The cost may depend on the
- precise value of the constant, which is available for examination
- in X, and the rtx code of the expression in which it is contained,
- found in OUTER_CODE.
-
- CODE is the expression code--redundant, since it can be obtained
- with `GET_CODE (X)'. */
-
-#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
- case CONST_INT: \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
- return 3; \
- if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
- return 2; \
- return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
- \
- case CONST_DOUBLE: \
- { \
- int code; \
- if (GET_MODE (RTX) == VOIDmode) \
- return 0; \
- \
- code = standard_80387_constant_p (RTX); \
- return code == 1 ? 1 : \
- code == 2 ? 2 : \
- 3; \
- }
-
-/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
-#define TOPLEVEL_COSTS_N_INSNS(N) \
- do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
-
-/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
- This can be used, for example, to indicate how costly a multiply
- instruction is. In writing this macro, you can use the construct
- `COSTS_N_INSNS (N)' to specify a cost equal to N fast
- instructions. OUTER_CODE is the code of the expression in which X
- is contained.
-
- This macro is optional; do not define it if the default cost
- assumptions are adequate for the target machine. */
-
-#define RTX_COSTS(X, CODE, OUTER_CODE) \
- case ZERO_EXTEND: \
- /* The zero extensions is often completely free on x86_64, so make \
- it as cheap as possible. */ \
- if (TARGET_64BIT && GET_MODE (X) == DImode \
- && GET_MODE (XEXP (X, 0)) == SImode) \
- { \
- total = 1; goto egress_rtx_costs; \
- } \
- else \
- TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
- ix86_cost->add : ix86_cost->movzx); \
- break; \
- case SIGN_EXTEND: \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
- break; \
- case ASHIFT: \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
- { \
- HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
- if (value == 1) \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
- if ((value == 2 || value == 3) \
- && !TARGET_DECOMPOSE_LEA \
- && ix86_cost->lea <= ix86_cost->shift_const) \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
- } \
- /* fall through */ \
- \
- case ROTATE: \
- case ASHIFTRT: \
- case LSHIFTRT: \
- case ROTATERT: \
- if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
- { \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
- { \
- if (INTVAL (XEXP (X, 1)) > 32) \
- TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
- else \
- TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
- } \
- else \
- { \
- if (GET_CODE (XEXP (X, 1)) == AND) \
- TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
- else \
- TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
- } \
- } \
- else \
- { \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
- else \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
- } \
- break; \
- \
- case MULT: \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
- { \
- unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
- int nbits = 0; \
- \
- while (value != 0) \
- { \
- nbits++; \
- value >>= 1; \
- } \
- \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
- + nbits * ix86_cost->mult_bit); \
- } \
- else /* This is arbitrary */ \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
- + 7 * ix86_cost->mult_bit); \
- \
- case DIV: \
- case UDIV: \
- case MOD: \
- case UMOD: \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
- \
- case PLUS: \
- if (!TARGET_DECOMPOSE_LEA \
- && INTEGRAL_MODE_P (GET_MODE (X)) \
- && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
- { \
- if (GET_CODE (XEXP (X, 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
- && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
- && CONSTANT_P (XEXP (X, 1))) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
- if (val == 2 || val == 4 || val == 8) \
- { \
- return (COSTS_N_INSNS (ix86_cost->lea) \
- + rtx_cost (XEXP (XEXP (X, 0), 1), \
- (OUTER_CODE)) \
- + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
- (OUTER_CODE)) \
- + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
- } \
- } \
- else if (GET_CODE (XEXP (X, 0)) == MULT \
- && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
- if (val == 2 || val == 4 || val == 8) \
- { \
- return (COSTS_N_INSNS (ix86_cost->lea) \
- + rtx_cost (XEXP (XEXP (X, 0), 0), \
- (OUTER_CODE)) \
- + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
- } \
- } \
- else if (GET_CODE (XEXP (X, 0)) == PLUS) \
- { \
- return (COSTS_N_INSNS (ix86_cost->lea) \
- + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
- + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
- + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
- } \
- } \
- \
- /* fall through */ \
- case AND: \
- case IOR: \
- case XOR: \
- case MINUS: \
- if (!TARGET_64BIT && GET_MODE (X) == DImode) \
- return (COSTS_N_INSNS (ix86_cost->add) * 2 \
- + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
- << (GET_MODE (XEXP (X, 0)) != DImode)) \
- + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
- << (GET_MODE (XEXP (X, 1)) != DImode))); \
- \
- /* fall through */ \
- case NEG: \
- case NOT: \
- if (!TARGET_64BIT && GET_MODE (X) == DImode) \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
- \
- egress_rtx_costs: \
- break;
-
-
-/* An expression giving the cost of an addressing mode that contains
- ADDRESS. If not defined, the cost is computed from the ADDRESS
- expression and the `CONST_COSTS' values.
-
- For most CISC machines, the default cost is a good approximation
- of the true cost of the addressing mode. However, on RISC
- machines, all instructions normally have the same length and
- execution time. Hence all addresses will have equal costs.
-
- In cases where more than one form of an address is known, the form
- with the lowest cost will be used. If multiple forms have the
- same, lowest, cost, the one that is the most complex will be used.
-
- For example, suppose an address that is equal to the sum of a
- register and a constant is used twice in the same basic block.
- When this macro is not defined, the address will be computed in a
- register and memory references will be indirect through that
- register. On machines where the cost of the addressing mode
- containing the sum is no higher than that of a simple indirect
- reference, this will produce an additional instruction and
- possibly require an additional register. Proper specification of
- this macro eliminates this overhead for such machines.
-
- Similar use of this macro is made in strength reduction of loops.
-
- ADDRESS need not be valid as an address. In such a case, the cost
- is not relevant and can be any value; invalid addresses need not be
- assigned a different cost.
-
- On machines where an address involving more than one register is as
- cheap as an address computation involving only one register,
- defining `ADDRESS_COST' to reflect this can cause two registers to
- be live over a region of code where only one would have been if
- `ADDRESS_COST' were not defined in that manner. This effect should
- be considered in the definition of this macro. Equivalent costs
- should probably only be given to addresses with different numbers
- of registers on machines with lots of registers.
-
- This macro will normally either not be defined or be defined as a
- constant.
-
- For i386, it is better to use a complex address than let gcc copy
- the address into a reg and make a new pseudo. But not if the address
- requires to two regs - that would mean more pseudos with longer
- lifetimes. */
-
-#define ADDRESS_COST(RTX) \
- ix86_address_cost (RTX)
-
-/* A C expression for the cost of moving data from a register in class FROM to
- one in class TO. The classes are expressed using the enumeration values
- such as `GENERAL_REGS'. A value of 2 is the default; other values are
- interpreted relative to that.
-
- It is not required that the cost always equal 2 when FROM is the same as TO;
- on some machines it is expensive to move between registers if they are not
- general registers. */
-
-#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
- ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
-
-/* A C expression for the cost of moving data of mode M between a
- register and memory. A value of 2 is the default; this cost is
- relative to those in `REGISTER_MOVE_COST'.
-
- If moving between registers and memory is more expensive than
- between two registers, you should define this macro to express the
- relative cost. */
-
-#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
- ix86_memory_move_cost ((MODE), (CLASS), (IN))
-
-/* A C expression for the cost of a branch instruction. A value of 1
- is the default; other values are interpreted relative to that. */
-
-#define BRANCH_COST ix86_branch_cost
-
-/* Define this macro as a C expression which is nonzero if accessing
- less than a word of memory (i.e. a `char' or a `short') is no
- faster than accessing a word of memory, i.e., if such access
- require more than one instruction or if there is no difference in
- cost between byte and (aligned) word loads.
-
- When this macro is not defined, the compiler will access a field by
- finding the smallest containing object; when it is defined, a
- fullword load will be used if alignment permits. Unless bytes
- accesses are faster than word accesses, using word accesses is
- preferable since it may eliminate subsequent memory access if
- subsequent accesses occur to other fields in the same word of the
- structure, but to different bytes. */
-
-#define SLOW_BYTE_ACCESS 0
-
-/* Nonzero if access to memory by shorts is slow and undesirable. */
-#define SLOW_SHORT_ACCESS 0
-
-/* Define this macro to be the value 1 if unaligned accesses have a
- cost many times greater than aligned accesses, for example if they
- are emulated in a trap handler.
-
- When this macro is non-zero, the compiler will act as if
- `STRICT_ALIGNMENT' were non-zero when generating code for block
- moves. This can cause significantly more instructions to be
- produced. Therefore, do not set this macro non-zero if unaligned
- accesses only add a cycle or two to the time for a memory access.
-
- If the value of this macro is always zero, it need not be defined. */
-
-/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
-
-/* Define this macro to inhibit strength reduction of memory
- addresses. (On some machines, such strength reduction seems to do
- harm rather than good.) */
-
-/* #define DONT_REDUCE_ADDR */
-
-/* Define this macro if it is as good or better to call a constant
- function address than to call an address kept in a register.
-
- Desirable on the 386 because a CALL with a constant address is
- faster than one with a register address. */
-
-#define NO_FUNCTION_CSE
-
-/* Define this macro if it is as good or better for a function to call
- itself with an explicit address than to call an address kept in a
- register. */
-
-#define NO_RECURSIVE_FUNCTION_CSE
-
-/* Add any extra modes needed to represent the condition code.
-
- For the i386, we need separate modes when floating-point
- equality comparisons are being done.
-
- Add CCNO to indicate comparisons against zero that requires
- Overflow flag to be unset. Sign bit test is used instead and
- thus can be used to form "a&b>0" type of tests.
-
- Add CCGC to indicate comparisons agains zero that allows
- unspecified garbage in the Carry flag. This mode is used
- by inc/dec instructions.
-
- Add CCGOC to indicate comparisons agains zero that allows
- unspecified garbage in the Carry and Overflow flag. This
- mode is used to simulate comparisons of (a-b) and (a+b)
- against zero using sub/cmp/add operations.
-
- Add CCZ to indicate that only the Zero flag is valid. */
-
-#define EXTRA_CC_MODES \
- CC (CCGCmode, "CCGC") \
- CC (CCGOCmode, "CCGOC") \
- CC (CCNOmode, "CCNO") \
- CC (CCZmode, "CCZ") \
- CC (CCFPmode, "CCFP") \
- CC (CCFPUmode, "CCFPU")
-
-/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison.
-
- For floating-point equality comparisons, CCFPEQmode should be used.
- VOIDmode should be used in all other cases.
-
- For integer comparisons against zero, reduce to CCNOmode or CCZmode if
- possible, to allow for more combinations. */
-
-#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
-
-/* Return non-zero if MODE implies a floating point inequality can be
- reversed. */
-
-#define REVERSIBLE_CC_MODE(MODE) 1
-
-/* A C expression whose value is reversed condition code of the CODE for
- comparison done in CC_MODE mode. */
-#define REVERSE_CONDITION(CODE, MODE) \
- ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
- : reverse_condition_maybe_unordered (CODE))
-
-
-/* Control the assembler format that we output, to the extent
- this does not vary between assemblers. */
-
-/* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
-/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
- For non floating point regs, the following are the HImode names.
-
- For float regs, the stack top is sometimes referred to as "%st(0)"
- instead of just "%st". PRINT_REG handles this with the "y" code. */
-
-#undef HI_REGISTER_NAMES
-#define HI_REGISTER_NAMES \
-{"ax","dx","cx","bx","si","di","bp","sp", \
- "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
- "flags","fpsr", "dirflag", "frame", \
- "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
- "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
- "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
-
-#define REGISTER_NAMES HI_REGISTER_NAMES
-
-/* Table of additional register names to use in user input. */
-
-#define ADDITIONAL_REGISTER_NAMES \
-{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
- { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
- { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
- { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
- { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
- { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
- { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
- { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
-
-/* Note we are omitting these since currently I don't know how
-to get gcc to use these, since they want the same but different
-number as al, and ax.
-*/
-
-#define QI_REGISTER_NAMES \
-{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
-
-/* These parallel the array above, and can be used to access bits 8:15
- of regs 0 through 3. */
-
-#define QI_HIGH_REGISTER_NAMES \
-{"ah", "dh", "ch", "bh", }
-
-/* How to renumber registers for dbx and gdb. */
-
-#define DBX_REGISTER_NUMBER(N) \
- (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
-
-extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
-extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
-extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
-
-/* Before the prologue, RA is at 0(%esp). */
-#define INCOMING_RETURN_ADDR_RTX \
- gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
-
-/* After the prologue, RA is at -4(AP) in the current frame. */
-#define RETURN_ADDR_RTX(COUNT, FRAME) \
- ((COUNT) == 0 \
- ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
- : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
-
-/* PC is dbx register 8; let's use that column for RA. */
-#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
-
-/* Before the prologue, the top of the frame is at 4(%esp). */
-#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
-
-/* Describe how we implement __builtin_eh_return. */
-#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
-#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
-
-
-/* Select a format to encode pointers in exception handling data. CODE
- is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
- true if the symbol may be affected by dynamic relocations.
-
- ??? All x86 object file formats are capable of representing this.
- After all, the relocation needed is the same as for the call insn.
- Whether or not a particular assembler allows us to enter such, I
- guess we'll have to see. */
-#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
- (flag_pic \
- ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
- : DW_EH_PE_absptr)
-
-/* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
-#define ASM_OUTPUT_LABEL(FILE, NAME) \
- (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
-
-/* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
-#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
-( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
-/* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
- asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)])
-
-/* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
- asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)])
-
-/* This is how to output an element of a case-vector that is absolute. */
-
-#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- ix86_output_addr_vec_elt ((FILE), (VALUE))
-
-/* This is how to output an element of a case-vector that is relative. */
-
-#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
- ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
-
-/* Under some conditions we need jump tables in the text section, because
- the assembler cannot handle label differences between sections. */
-
-#define JUMP_TABLES_IN_TEXT_SECTION \
- (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
-
-/* A C statement that outputs an address constant appropriate to
- for DWARF debugging. */
-
-#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
- i386_dwarf_output_addr_const ((FILE), (X))
-
-/* Either simplify a location expression, or return the original. */
-
-#define ASM_SIMPLIFY_DWARF_ADDR(X) \
- i386_simplify_dwarf_addr (X)
-
-/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
- and switch back. For x86 we do this only to save a few bytes that
- would otherwise be unused in the text section. */
-#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
- asm (SECTION_OP "\n\t" \
- "call " USER_LABEL_PREFIX #FUNC "\n" \
- TEXT_SECTION_ASM_OP);
-
-/* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- Effect of various CODE letters is described in i386.c near
- print_operand function. */
-
-#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '*' || (CODE) == '+')
-
-/* Print the name of a register based on its machine mode and number.
- If CODE is 'w', pretend the mode is HImode.
- If CODE is 'b', pretend the mode is QImode.
- If CODE is 'k', pretend the mode is SImode.
- If CODE is 'q', pretend the mode is DImode.
- If CODE is 'h', pretend the reg is the `high' byte register.
- If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
-
-#define PRINT_REG(X, CODE, FILE) \
- print_reg ((X), (CODE), (FILE))
-
-#define PRINT_OPERAND(FILE, X, CODE) \
- print_operand ((FILE), (X), (CODE))
-
-#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- print_operand_address ((FILE), (ADDR))
-
-/* Print the name of a register for based on its machine mode and number.
- This macro is used to print debugging output.
- This macro is different from PRINT_REG in that it may be used in
- programs that are not linked with aux-output.o. */
-
-#define DEBUG_PRINT_REG(X, CODE, FILE) \
- do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
- static const char * const qi_name[] = QI_REGISTER_NAMES; \
- fprintf ((FILE), "%d ", REGNO (X)); \
- if (REGNO (X) == FLAGS_REG) \
- { fputs ("flags", (FILE)); break; } \
- if (REGNO (X) == DIRFLAG_REG) \
- { fputs ("dirflag", (FILE)); break; } \
- if (REGNO (X) == FPSR_REG) \
- { fputs ("fpsr", (FILE)); break; } \
- if (REGNO (X) == ARG_POINTER_REGNUM) \
- { fputs ("argp", (FILE)); break; } \
- if (REGNO (X) == FRAME_POINTER_REGNUM) \
- { fputs ("frame", (FILE)); break; } \
- if (STACK_TOP_P (X)) \
- { fputs ("st(0)", (FILE)); break; } \
- if (FP_REG_P (X)) \
- { fputs (hi_name[REGNO(X)], (FILE)); break; } \
- if (REX_INT_REG_P (X)) \
- { \
- switch (GET_MODE_SIZE (GET_MODE (X))) \
- { \
- default: \
- case 8: \
- fprintf ((FILE), "r%i", REGNO (X) \
- - FIRST_REX_INT_REG + 8); \
- break; \
- case 4: \
- fprintf ((FILE), "r%id", REGNO (X) \
- - FIRST_REX_INT_REG + 8); \
- break; \
- case 2: \
- fprintf ((FILE), "r%iw", REGNO (X) \
- - FIRST_REX_INT_REG + 8); \
- break; \
- case 1: \
- fprintf ((FILE), "r%ib", REGNO (X) \
- - FIRST_REX_INT_REG + 8); \
- break; \
- } \
- break; \
- } \
- switch (GET_MODE_SIZE (GET_MODE (X))) \
- { \
- case 8: \
- fputs ("r", (FILE)); \
- fputs (hi_name[REGNO (X)], (FILE)); \
- break; \
- default: \
- fputs ("e", (FILE)); \
- case 2: \
- fputs (hi_name[REGNO (X)], (FILE)); \
- break; \
- case 1: \
- fputs (qi_name[REGNO (X)], (FILE)); \
- break; \
- } \
- } while (0)
-
-/* a letter which is not needed by the normal asm syntax, which
- we can use for operand syntax in the extended asm */
-
-#define ASM_OPERAND_LETTER '#'
-#define RET return ""
-#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
-
-/* Define the codes that are matched by predicates in i386.c. */
-
-#define PREDICATE_CODES \
- {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
- SYMBOL_REF, LABEL_REF}}, \
- {"shiftdi_operand", {SUBREG, REG, MEM}}, \
- {"const_int_1_operand", {CONST_INT}}, \
- {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
- {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
- LABEL_REF, SUBREG, REG, MEM}}, \
- {"pic_symbolic_operand", {CONST}}, \
- {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
- {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
- {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
- {"const1_operand", {CONST_INT}}, \
- {"const248_operand", {CONST_INT}}, \
- {"incdec_operand", {CONST_INT}}, \
- {"mmx_reg_operand", {REG}}, \
- {"reg_no_sp_operand", {SUBREG, REG}}, \
- {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
- SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
- {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
- {"q_regs_operand", {SUBREG, REG}}, \
- {"non_q_regs_operand", {SUBREG, REG}}, \
- {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
- ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
- GE, UNGE, LTGT, UNEQ}}, \
- {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
- ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
- }}, \
- {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
- GTU, UNORDERED, ORDERED, UNLE, UNLT, \
- UNGE, UNGT, LTGT, UNEQ }}, \
- {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
- {"ext_register_operand", {SUBREG, REG}}, \
- {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
- {"mult_operator", {MULT}}, \
- {"div_operator", {DIV}}, \
- {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
- UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
- UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
- LSHIFTRT, ROTATERT}}, \
- {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
- {"memory_displacement_operand", {MEM}}, \
- {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
- LABEL_REF, SUBREG, REG, MEM, AND}}, \
- {"long_memory_operand", {MEM}},
-
-/* A list of predicates that do special things with modes, and so
- should not elicit warnings for VOIDmode match_operand. */
-
-#define SPECIAL_MODE_PREDICATES \
- "ext_register_operand",
-
-/* CM_32 is used by 32bit ABI
- CM_SMALL is small model assuming that all code and data fits in the first
- 31bits of address space.
- CM_KERNEL is model assuming that all code and data fits in the negative
- 31bits of address space.
- CM_MEDIUM is model assuming that code fits in the first 31bits of address
- space. Size of data is unlimited.
- CM_LARGE is model making no assumptions about size of particular sections.
-
- CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
- tables first in 31bits of address space.
- */
-enum cmodel {
- CM_32,
- CM_SMALL,
- CM_KERNEL,
- CM_MEDIUM,
- CM_LARGE,
- CM_SMALL_PIC
-};
-
-/* Size of the RED_ZONE area. */
-#define RED_ZONE_SIZE 128
-/* Reserved area of the red zone for temporaries. */
-#define RED_ZONE_RESERVE 8
-extern const char *ix86_debug_arg_string, *ix86_debug_addr_string;
-
-enum asm_dialect {
- ASM_ATT,
- ASM_INTEL
-};
-extern const char *ix86_asm_string;
-extern enum asm_dialect ix86_asm_dialect;
-/* Value of -mcmodel specified by user. */
-extern const char *ix86_cmodel_string;
-extern enum cmodel ix86_cmodel;
-
-/* Variables in i386.c */
-extern const char *ix86_cpu_string; /* for -mcpu= */
-extern const char *ix86_arch_string; /* for -march= */
-extern const char *ix86_fpmath_string; /* for -mfpmath= */
-extern const char *ix86_regparm_string; /* # registers to use to pass args */
-extern const char *ix86_align_loops_string; /* power of two alignment for loops */
-extern const char *ix86_align_jumps_string; /* power of two alignment for non-loop jumps */
-extern const char *ix86_align_funcs_string; /* power of two alignment for functions */
-extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
-extern const char *ix86_branch_cost_string; /* values 1-5: see jump.c */
-extern int ix86_regparm; /* ix86_regparm_string as a number */
-extern int ix86_preferred_stack_boundary; /* preferred stack boundary alignment in bits */
-extern int ix86_branch_cost; /* values 1-5: see jump.c */
-extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
-// Commented out the following two lines due to lack of definition for "rtx" - Brian
-//extern rtx ix86_compare_op0; /* operand 0 for comparisons */
-//extern rtx ix86_compare_op1; /* operand 1 for comparisons */
-
-/* To properly truncate FP values into integers, we need to set i387 control
- word. We can't emit proper mode switching code before reload, as spills
- generated by reload may truncate values incorrectly, but we still can avoid
- redundant computation of new control word by the mode switching pass.
- The fldcw instructions are still emitted redundantly, but this is probably
- not going to be noticeable problem, as most CPUs do have fast path for
- the sequence.
-
- The machinery is to emit simple truncation instructions and split them
- before reload to instructions having USEs of two memory locations that
- are filled by this code to old and new control word.
-
- Post-reload pass may be later used to eliminate the redundant fildcw if
- needed. */
-
-enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
-
-/* Define this macro if the port needs extra instructions inserted
- for mode switching in an optimizing compilation. */
-
-#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
-
-/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
- initializer for an array of integers. Each initializer element N
- refers to an entity that needs mode switching, and specifies the
- number of different modes that might need to be set for this
- entity. The position of the initializer in the initializer -
- starting counting at zero - determines the integer that is used to
- refer to the mode-switched entity in question. */
-
-#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
-
-/* ENTITY is an integer specifying a mode-switched entity. If
- `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
- return an integer value not larger than the corresponding element
- in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
- must be switched into prior to the execution of INSN. */
-
-#define MODE_NEEDED(ENTITY, I) \
- (GET_CODE (I) == CALL_INSN \
- || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
- || GET_CODE (PATTERN (I)) == ASM_INPUT))\
- ? FP_CW_UNINITIALIZED \
- : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
- ? FP_CW_ANY \
- : FP_CW_STORED)
-
-/* This macro specifies the order in which modes for ENTITY are
- processed. 0 is the highest priority. */
-
-#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
-
-/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
- is the set of hard registers live at the point where the insn(s)
- are to be inserted. */
-
-#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
- ((MODE) == FP_CW_STORED \
- ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
- assign_386_stack_local (HImode, 2)), 0\
- : 0)
-
-/* Avoid renaming of stack registers, as doing so in combination with
- scheduling just increases amount of live registers at time and in
- the turn amount of fxch instructions needed.
-
- ??? Maybe Pentium chips benefits from renaming, someone can try... */
-
-#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
- ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
-
-
-/*
-Local variables:
-version-control: t
-End:
-*/
diff --git a/reactos/boot/freeldr/freeldr/math/libgcc2.c b/reactos/boot/freeldr/freeldr/math/libgcc2.c
deleted file mode 100644
index 7b8e389d610..00000000000
--- a/reactos/boot/freeldr/freeldr/math/libgcc2.c
+++ /dev/null
@@ -1,2068 +0,0 @@
-/* More subroutines needed by GCC output code on some machines. */
-/* Compile this one with gcc. */
-/* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
- 2000, 2001 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-In addition to the permissions in the GNU General Public License, the
-Free Software Foundation gives you unlimited permission to link the
-compiled version of this file into combinations with other programs,
-and to distribute those combinations without any restriction coming
-from the use of this file. (The General Public License restrictions
-do apply in other respects; for example, they cover modification of
-the file, and distribution when not linked into a combine
-executable.)
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-02111-1307, USA. */
-
-/* It is incorrect to include config.h here, because this file is being
- compiled for the target, and hence definitions concerning only the host
- do not apply. */
-
-/*
- * This file was taken from the GCC v3.1 source - Brian
- */
-#ifdef __i386__
-#include "i386.h"
-#elif defined(_M_PPC)
-#include "powerpc.h"
-#endif
-#define L_clz
-#define L_udivdi3
-#define L_umoddi3
-#include
-
-//#include "tconfig.h"
-//#include "tsystem.h"
-
-//#include "machmode.h"
-
-/* Don't use `fancy_abort' here even if config.h says to use it. */
-#ifdef abort
-#undef abort
-#endif
-
-#include "libgcc2.h"
-
-#if defined (L_negdi2) || defined (L_divdi3) || defined (L_moddi3)
-#if defined (L_divdi3) || defined (L_moddi3)
-static __inline
-#endif
-DWtype
-__negdi2 (DWtype u)
-{
- DWunion w;
- DWunion uu;
-
- uu.ll = u;
-
- w.s.low = -uu.s.low;
- w.s.high = -uu.s.high - ((UWtype) w.s.low > 0);
-
- return w.ll;
-}
-#endif
-
-#ifdef L_addvsi3
-Wtype
-__addvsi3 (Wtype a, Wtype b)
-{
- Wtype w;
-
- w = a + b;
-
- if (b >= 0 ? w < a : w > a)
- abort ();
-
- return w;
-}
-#endif
-
-#ifdef L_addvdi3
-DWtype
-__addvdi3 (DWtype a, DWtype b)
-{
- DWtype w;
-
- w = a + b;
-
- if (b >= 0 ? w < a : w > a)
- abort ();
-
- return w;
-}
-#endif
-
-#ifdef L_subvsi3
-Wtype
-__subvsi3 (Wtype a, Wtype b)
-{
-#ifdef L_addvsi3
- return __addvsi3 (a, (-b));
-#else
- DWtype w;
-
- w = a - b;
-
- if (b >= 0 ? w > a : w < a)
- abort ();
-
- return w;
-#endif
-}
-#endif
-
-#ifdef L_subvdi3
-DWtype
-__subvdi3 (DWtype a, DWtype b)
-{
-#ifdef L_addvdi3
- return (a, (-b));
-#else
- DWtype w;
-
- w = a - b;
-
- if (b >= 0 ? w > a : w < a)
- abort ();
-
- return w;
-#endif
-}
-#endif
-
-#ifdef L_mulvsi3
-Wtype
-__mulvsi3 (Wtype a, Wtype b)
-{
- DWtype w;
-
- w = a * b;
-
- if (((a >= 0) == (b >= 0)) ? w < 0 : w > 0)
- abort ();
-
- return w;
-}
-#endif
-
-#ifdef L_negvsi2
-Wtype
-__negvsi2 (Wtype a)
-{
- Wtype w;
-
- w = -a;
-
- if (a >= 0 ? w > 0 : w < 0)
- abort ();
-
- return w;
-}
-#endif
-
-#ifdef L_negvdi2
-DWtype
-__negvdi2 (DWtype a)
-{
- DWtype w;
-
- w = -a;
-
- if (a >= 0 ? w > 0 : w < 0)
- abort ();
-
- return w;
-}
-#endif
-
-#ifdef L_absvsi2
-Wtype
-__absvsi2 (Wtype a)
-{
- Wtype w = a;
-
- if (a < 0)
-#ifdef L_negvsi2
- w = __negvsi2 (a);
-#else
- w = -a;
-
- if (w < 0)
- abort ();
-#endif
-
- return w;
-}
-#endif
-
-#ifdef L_absvdi2
-DWtype
-__absvdi2 (DWtype a)
-{
- DWtype w = a;
-
- if (a < 0)
-#ifdef L_negvsi2
- w = __negvsi2 (a);
-#else
- w = -a;
-
- if (w < 0)
- abort ();
-#endif
-
- return w;
-}
-#endif
-
-#ifdef L_mulvdi3
-DWtype
-__mulvdi3 (DWtype u, DWtype v)
-{
- DWtype w;
-
- w = u * v;
-
- if (((u >= 0) == (v >= 0)) ? w < 0 : w > 0)
- abort ();
-
- return w;
-}
-#endif
-
-
-/* Unless shift functions are defined whith full ANSI prototypes,
- parameter b will be promoted to int if word_type is smaller than an int. */
-#ifdef L_lshrdi3
-DWtype
-__lshrdi3 (DWtype u, word_type b)
-{
- DWunion w;
- word_type bm;
- DWunion uu;
-
- if (b == 0)
- return u;
-
- uu.ll = u;
-
- bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
- if (bm <= 0)
- {
- w.s.high = 0;
- w.s.low = (UWtype) uu.s.high >> -bm;
- }
- else
- {
- UWtype carries = (UWtype) uu.s.high << bm;
-
- w.s.high = (UWtype) uu.s.high >> b;
- w.s.low = ((UWtype) uu.s.low >> b) | carries;
- }
-
- return w.ll;
-}
-#endif
-
-#ifdef L_ashldi3
-DWtype
-__ashldi3 (DWtype u, word_type b)
-{
- DWunion w;
- word_type bm;
- DWunion uu;
-
- if (b == 0)
- return u;
-
- uu.ll = u;
-
- bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
- if (bm <= 0)
- {
- w.s.low = 0;
- w.s.high = (UWtype) uu.s.low << -bm;
- }
- else
- {
- UWtype carries = (UWtype) uu.s.low >> bm;
-
- w.s.low = (UWtype) uu.s.low << b;
- w.s.high = ((UWtype) uu.s.high << b) | carries;
- }
-
- return w.ll;
-}
-#endif
-
-#ifdef L_ashrdi3
-DWtype
-__ashrdi3 (DWtype u, word_type b)
-{
- DWunion w;
- word_type bm;
- DWunion uu;
-
- if (b == 0)
- return u;
-
- uu.ll = u;
-
- bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
- if (bm <= 0)
- {
- /* w.s.high = 1..1 or 0..0 */
- w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
- w.s.low = uu.s.high >> -bm;
- }
- else
- {
- UWtype carries = (UWtype) uu.s.high << bm;
-
- w.s.high = uu.s.high >> b;
- w.s.low = ((UWtype) uu.s.low >> b) | carries;
- }
-
- return w.ll;
-}
-#endif
-
-#ifdef L_ffsdi2
-DWtype
-__ffsdi2 (DWtype u)
-{
- DWunion uu;
- UWtype word, count, add;
-
- uu.ll = u;
- if (uu.s.low != 0)
- word = uu.s.low, add = 0;
- else if (uu.s.high != 0)
- word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
- else
- return 0;
-
- count_trailing_zeros (count, word);
- return count + add + 1;
-}
-#endif
-
-#ifdef L_muldi3
-DWtype
-__muldi3 (DWtype u, DWtype v)
-{
- DWunion w;
- DWunion uu, vv;
-
- uu.ll = u,
- vv.ll = v;
-
- w.ll = __umulsidi3 (uu.s.low, vv.s.low);
- w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
- + (UWtype) uu.s.high * (UWtype) vv.s.low);
-
- return w.ll;
-}
-#endif
-
-#ifdef L_udiv_w_sdiv
-#if defined (sdiv_qrnnd)
-UWtype
-__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
-{
- UWtype q, r;
- UWtype c0, c1, b1;
-
- if ((Wtype) d >= 0)
- {
- if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
- {
- /* dividend, divisor, and quotient are nonnegative */
- sdiv_qrnnd (q, r, a1, a0, d);
- }
- else
- {
- /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */
- sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
- /* Divide (c1*2^32 + c0) by d */
- sdiv_qrnnd (q, r, c1, c0, d);
- /* Add 2^31 to quotient */
- q += (UWtype) 1 << (W_TYPE_SIZE - 1);
- }
- }
- else
- {
- b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
- c1 = a1 >> 1; /* A/2 */
- c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
-
- if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
- {
- sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
-
- r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
- if ((d & 1) != 0)
- {
- if (r >= q)
- r = r - q;
- else if (q - r <= d)
- {
- r = r - q + d;
- q--;
- }
- else
- {
- r = r - q + 2*d;
- q -= 2;
- }
- }
- }
- else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
- {
- c1 = (b1 - 1) - c1;
- c0 = ~c0; /* logical NOT */
-
- sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
-
- q = ~q; /* (A/2)/b1 */
- r = (b1 - 1) - r;
-
- r = 2*r + (a0 & 1); /* A/(2*b1) */
-
- if ((d & 1) != 0)
- {
- if (r >= q)
- r = r - q;
- else if (q - r <= d)
- {
- r = r - q + d;
- q--;
- }
- else
- {
- r = r - q + 2*d;
- q -= 2;
- }
- }
- }
- else /* Implies c1 = b1 */
- { /* Hence a1 = d - 1 = 2*b1 - 1 */
- if (a0 >= -d)
- {
- q = -1;
- r = a0 + d;
- }
- else
- {
- q = -2;
- r = a0 + 2*d;
- }
- }
- }
-
- *rp = r;
- return q;
-}
-#else
-/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
-UWtype
-__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
- UWtype a1 __attribute__ ((__unused__)),
- UWtype a0 __attribute__ ((__unused__)),
- UWtype d __attribute__ ((__unused__)))
-{
- return 0;
-}
-#endif
-#endif
-
-#if (defined (L_udivdi3) || defined (L_divdi3) || \
- defined (L_umoddi3) || defined (L_moddi3))
-#define L_udivmoddi4
-#endif
-
-#ifdef L_clz
-const UQItype __clz_tab[] =
-{
- 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
- 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
- 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
- 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
- 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
- 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
- 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
- 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
-};
-#endif
-
-#ifdef L_udivmoddi4
-
-#if (defined (L_udivdi3) || defined (L_divdi3) || \
- defined (L_umoddi3) || defined (L_moddi3))
-static __inline
-#endif
-UDWtype
-__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
-{
- DWunion ww;
- DWunion nn, dd;
- DWunion rr;
- UWtype d0, d1, n0, n1, n2;
- UWtype q0, q1;
- UWtype b, bm;
-
- nn.ll = n;
- dd.ll = d;
-
- d0 = dd.s.low;
- d1 = dd.s.high;
- n0 = nn.s.low;
- n1 = nn.s.high;
-
-#if !UDIV_NEEDS_NORMALIZATION
- if (d1 == 0)
- {
- if (d0 > n1)
- {
- /* 0q = nn / 0D */
-
- udiv_qrnnd (q0, n0, n1, n0, d0);
- q1 = 0;
-
- /* Remainder in n0. */
- }
- else
- {
- /* qq = NN / 0d */
-
- if (d0 == 0)
- d0 = 1 / d0; /* Divide intentionally by zero. */
-
- udiv_qrnnd (q1, n1, 0, n1, d0);
- udiv_qrnnd (q0, n0, n1, n0, d0);
-
- /* Remainder in n0. */
- }
-
- if (rp != 0)
- {
- rr.s.low = n0;
- rr.s.high = 0;
- *rp = rr.ll;
- }
- }
-
-#else /* UDIV_NEEDS_NORMALIZATION */
-
- if (d1 == 0)
- {
- if (d0 > n1)
- {
- /* 0q = nn / 0D */
-
- count_leading_zeros (bm, d0);
-
- if (bm != 0)
- {
- /* Normalize, i.e. make the most significant bit of the
- denominator set. */
-
- d0 = d0 << bm;
- n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
- n0 = n0 << bm;
- }
-
- udiv_qrnnd (q0, n0, n1, n0, d0);
- q1 = 0;
-
- /* Remainder in n0 >> bm. */
- }
- else
- {
- /* qq = NN / 0d */
-
- if (d0 == 0)
- d0 = 1 / d0; /* Divide intentionally by zero. */
-
- count_leading_zeros (bm, d0);
-
- if (bm == 0)
- {
- /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
- conclude (the most significant bit of n1 is set) /\ (the
- leading quotient digit q1 = 1).
-
- This special case is necessary, not an optimization.
- (Shifts counts of W_TYPE_SIZE are undefined.) */
-
- n1 -= d0;
- q1 = 1;
- }
- else
- {
- /* Normalize. */
-
- b = W_TYPE_SIZE - bm;
-
- d0 = d0 << bm;
- n2 = n1 >> b;
- n1 = (n1 << bm) | (n0 >> b);
- n0 = n0 << bm;
-
- udiv_qrnnd (q1, n1, n2, n1, d0);
- }
-
- /* n1 != d0... */
-
- udiv_qrnnd (q0, n0, n1, n0, d0);
-
- /* Remainder in n0 >> bm. */
- }
-
- if (rp != 0)
- {
- rr.s.low = n0 >> bm;
- rr.s.high = 0;
- *rp = rr.ll;
- }
- }
-#endif /* UDIV_NEEDS_NORMALIZATION */
-
- else
- {
- if (d1 > n1)
- {
- /* 00 = nn / DD */
-
- q0 = 0;
- q1 = 0;
-
- /* Remainder in n1n0. */
- if (rp != 0)
- {
- rr.s.low = n0;
- rr.s.high = n1;
- *rp = rr.ll;
- }
- }
- else
- {
- /* 0q = NN / dd */
-
- count_leading_zeros (bm, d1);
- if (bm == 0)
- {
- /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
- conclude (the most significant bit of n1 is set) /\ (the
- quotient digit q0 = 0 or 1).
-
- This special case is necessary, not an optimization. */
-
- /* The condition on the next line takes advantage of that
- n1 >= d1 (true due to program flow). */
- if (n1 > d1 || n0 >= d0)
- {
- q0 = 1;
- sub_ddmmss (n1, n0, n1, n0, d1, d0);
- }
- else
- q0 = 0;
-
- q1 = 0;
-
- if (rp != 0)
- {
- rr.s.low = n0;
- rr.s.high = n1;
- *rp = rr.ll;
- }
- }
- else
- {
- UWtype m1, m0;
- /* Normalize. */
-
- b = W_TYPE_SIZE - bm;
-
- d1 = (d1 << bm) | (d0 >> b);
- d0 = d0 << bm;
- n2 = n1 >> b;
- n1 = (n1 << bm) | (n0 >> b);
- n0 = n0 << bm;
-
- udiv_qrnnd (q0, n1, n2, n1, d1);
- umul_ppmm (m1, m0, q0, d0);
-
- if (m1 > n1 || (m1 == n1 && m0 > n0))
- {
- q0--;
- sub_ddmmss (m1, m0, m1, m0, d1, d0);
- }
-
- q1 = 0;
-
- /* Remainder in (n1n0 - m1m0) >> bm. */
- if (rp != 0)
- {
- sub_ddmmss (n1, n0, n1, n0, m1, m0);
- rr.s.low = (n1 << b) | (n0 >> bm);
- rr.s.high = n1 >> bm;
- *rp = rr.ll;
- }
- }
- }
- }
-
- ww.s.low = q0;
- ww.s.high = q1;
- return ww.ll;
-}
-#endif
-
-#ifdef L_divdi3
-DWtype
-__divdi3 (DWtype u, DWtype v)
-{
- word_type c = 0;
- DWunion uu, vv;
- DWtype w;
-
- uu.ll = u;
- vv.ll = v;
-
- if (uu.s.high < 0)
- c = ~c,
- uu.ll = __negdi2 (uu.ll);
- if (vv.s.high < 0)
- c = ~c,
- vv.ll = __negdi2 (vv.ll);
-
- w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
- if (c)
- w = __negdi2 (w);
-
- return w;
-}
-#endif
-
-#ifdef L_moddi3
-DWtype
-__moddi3 (DWtype u, DWtype v)
-{
- word_type c = 0;
- DWunion uu, vv;
- DWtype w;
-
- uu.ll = u;
- vv.ll = v;
-
- if (uu.s.high < 0)
- c = ~c,
- uu.ll = __negdi2 (uu.ll);
- if (vv.s.high < 0)
- vv.ll = __negdi2 (vv.ll);
-
- (void) __udivmoddi4 (uu.ll, vv.ll, &w);
- if (c)
- w = __negdi2 (w);
-
- return w;
-}
-#endif
-
-#ifdef L_umoddi3
-UDWtype
-__umoddi3 (UDWtype u, UDWtype v)
-{
- UDWtype w;
-
- (void) __udivmoddi4 (u, v, &w);
-
- return w;
-}
-#endif
-
-#ifdef L_udivdi3
-UDWtype
-__udivdi3 (UDWtype n, UDWtype d)
-{
- return __udivmoddi4 (n, d, (UDWtype *) 0);
-}
-#endif
-
-#ifdef L_cmpdi2
-word_type
-__cmpdi2 (DWtype a, DWtype b)
-{
- DWunion au, bu;
-
- au.ll = a, bu.ll = b;
-
- if (au.s.high < bu.s.high)
- return 0;
- else if (au.s.high > bu.s.high)
- return 2;
- if ((UWtype) au.s.low < (UWtype) bu.s.low)
- return 0;
- else if ((UWtype) au.s.low > (UWtype) bu.s.low)
- return 2;
- return 1;
-}
-#endif
-
-#ifdef L_ucmpdi2
-word_type
-__ucmpdi2 (DWtype a, DWtype b)
-{
- DWunion au, bu;
-
- au.ll = a, bu.ll = b;
-
- if ((UWtype) au.s.high < (UWtype) bu.s.high)
- return 0;
- else if ((UWtype) au.s.high > (UWtype) bu.s.high)
- return 2;
- if ((UWtype) au.s.low < (UWtype) bu.s.low)
- return 0;
- else if ((UWtype) au.s.low > (UWtype) bu.s.low)
- return 2;
- return 1;
-}
-#endif
-
-#if defined(L_fixunstfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
-#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
-#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
-
-DWtype
-__fixunstfDI (TFtype a)
-{
- TFtype b;
- UDWtype v;
-
- if (a < 0)
- return 0;
-
- /* Compute high word of result, as a flonum. */
- b = (a / HIGH_WORD_COEFF);
- /* Convert that to fixed (but not to DWtype!),
- and shift it into the high word. */
- v = (UWtype) b;
- v <<= WORD_SIZE;
- /* Remove high part from the TFtype, leaving the low part as flonum. */
- a -= (TFtype)v;
- /* Convert that to fixed (but not to DWtype!) and add it in.
- Sometimes A comes out negative. This is significant, since
- A has more bits than a long int does. */
- if (a < 0)
- v -= (UWtype) (- a);
- else
- v += (UWtype) a;
- return v;
-}
-#endif
-
-#if defined(L_fixtfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
-DWtype
-__fixtfdi (TFtype a)
-{
- if (a < 0)
- return - __fixunstfDI (-a);
- return __fixunstfDI (a);
-}
-#endif
-
-#if defined(L_fixunsxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
-#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
-#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
-
-DWtype
-__fixunsxfDI (XFtype a)
-{
- XFtype b;
- UDWtype v;
-
- if (a < 0)
- return 0;
-
- /* Compute high word of result, as a flonum. */
- b = (a / HIGH_WORD_COEFF);
- /* Convert that to fixed (but not to DWtype!),
- and shift it into the high word. */
- v = (UWtype) b;
- v <<= WORD_SIZE;
- /* Remove high part from the XFtype, leaving the low part as flonum. */
- a -= (XFtype)v;
- /* Convert that to fixed (but not to DWtype!) and add it in.
- Sometimes A comes out negative. This is significant, since
- A has more bits than a long int does. */
- if (a < 0)
- v -= (UWtype) (- a);
- else
- v += (UWtype) a;
- return v;
-}
-#endif
-
-#if defined(L_fixxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
-DWtype
-__fixxfdi (XFtype a)
-{
- if (a < 0)
- return - __fixunsxfDI (-a);
- return __fixunsxfDI (a);
-}
-#endif
-
-#ifdef L_fixunsdfdi
-#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
-#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
-
-DWtype
-__fixunsdfDI (DFtype a)
-{
- DFtype b;
- UDWtype v;
-
- if (a < 0)
- return 0;
-
- /* Compute high word of result, as a flonum. */
- b = (a / HIGH_WORD_COEFF);
- /* Convert that to fixed (but not to DWtype!),
- and shift it into the high word. */
- v = (UWtype) b;
- v <<= WORD_SIZE;
- /* Remove high part from the DFtype, leaving the low part as flonum. */
- a -= (DFtype)v;
- /* Convert that to fixed (but not to DWtype!) and add it in.
- Sometimes A comes out negative. This is significant, since
- A has more bits than a long int does. */
- if (a < 0)
- v -= (UWtype) (- a);
- else
- v += (UWtype) a;
- return v;
-}
-#endif
-
-#ifdef L_fixdfdi
-DWtype
-__fixdfdi (DFtype a)
-{
- if (a < 0)
- return - __fixunsdfDI (-a);
- return __fixunsdfDI (a);
-}
-#endif
-
-#ifdef L_fixunssfdi
-#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
-#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
-
-DWtype
-__fixunssfDI (SFtype original_a)
-{
- /* Convert the SFtype to a DFtype, because that is surely not going
- to lose any bits. Some day someone else can write a faster version
- that avoids converting to DFtype, and verify it really works right. */
- DFtype a = original_a;
- DFtype b;
- UDWtype v;
-
- if (a < 0)
- return 0;
-
- /* Compute high word of result, as a flonum. */
- b = (a / HIGH_WORD_COEFF);
- /* Convert that to fixed (but not to DWtype!),
- and shift it into the high word. */
- v = (UWtype) b;
- v <<= WORD_SIZE;
- /* Remove high part from the DFtype, leaving the low part as flonum. */
- a -= (DFtype) v;
- /* Convert that to fixed (but not to DWtype!) and add it in.
- Sometimes A comes out negative. This is significant, since
- A has more bits than a long int does. */
- if (a < 0)
- v -= (UWtype) (- a);
- else
- v += (UWtype) a;
- return v;
-}
-#endif
-
-#ifdef L_fixsfdi
-DWtype
-__fixsfdi (SFtype a)
-{
- if (a < 0)
- return - __fixunssfDI (-a);
- return __fixunssfDI (a);
-}
-#endif
-
-#if defined(L_floatdixf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
-#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
-#define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
-#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
-
-XFtype
-__floatdixf (DWtype u)
-{
- XFtype d;
-
- d = (Wtype) (u >> WORD_SIZE);
- d *= HIGH_HALFWORD_COEFF;
- d *= HIGH_HALFWORD_COEFF;
- d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
-
- return d;
-}
-#endif
-
-#if defined(L_floatditf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
-#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
-#define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
-#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
-
-TFtype
-__floatditf (DWtype u)
-{
- TFtype d;
-
- d = (Wtype) (u >> WORD_SIZE);
- d *= HIGH_HALFWORD_COEFF;
- d *= HIGH_HALFWORD_COEFF;
- d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
-
- return d;
-}
-#endif
-
-#ifdef L_floatdidf
-#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
-#define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
-#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
-
-DFtype
-__floatdidf (DWtype u)
-{
- DFtype d;
-
- d = (Wtype) (u >> WORD_SIZE);
- d *= HIGH_HALFWORD_COEFF;
- d *= HIGH_HALFWORD_COEFF;
- d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
-
- return d;
-}
-#endif
-
-#ifdef L_floatdisf
-#define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
-#define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
-#define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
-#define DI_SIZE (sizeof (DWtype) * BITS_PER_UNIT)
-
-/* Define codes for all the float formats that we know of. Note
- that this is copied from real.h. */
-
-#define UNKNOWN_FLOAT_FORMAT 0
-#define IEEE_FLOAT_FORMAT 1
-#define VAX_FLOAT_FORMAT 2
-#define IBM_FLOAT_FORMAT 3
-
-/* Default to IEEE float if not specified. Nearly all machines use it. */
-#ifndef HOST_FLOAT_FORMAT
-#define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT
-#endif
-
-#if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
-#define DF_SIZE 53
-#define SF_SIZE 24
-#endif
-
-#if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
-#define DF_SIZE 56
-#define SF_SIZE 24
-#endif
-
-#if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
-#define DF_SIZE 56
-#define SF_SIZE 24
-#endif
-
-SFtype
-__floatdisf (DWtype u)
-{
- /* Do the calculation in DFmode
- so that we don't lose any of the precision of the high word
- while multiplying it. */
- DFtype f;
-
- /* Protect against double-rounding error.
- Represent any low-order bits, that might be truncated in DFmode,
- by a bit that won't be lost. The bit can go in anywhere below the
- rounding position of the SFmode. A fixed mask and bit position
- handles all usual configurations. It doesn't handle the case
- of 128-bit DImode, however. */
- if (DF_SIZE < DI_SIZE
- && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE))
- {
-#define REP_BIT ((UDWtype) 1 << (DI_SIZE - DF_SIZE))
- if (! (- ((DWtype) 1 << DF_SIZE) < u
- && u < ((DWtype) 1 << DF_SIZE)))
- {
- if ((UDWtype) u & (REP_BIT - 1))
- u |= REP_BIT;
- }
- }
- f = (Wtype) (u >> WORD_SIZE);
- f *= HIGH_HALFWORD_COEFF;
- f *= HIGH_HALFWORD_COEFF;
- f += (UWtype) (u & (HIGH_WORD_COEFF - 1));
-
- return (SFtype) f;
-}
-#endif
-
-#if defined(L_fixunsxfsi) && LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96
-/* Reenable the normal types, in case limits.h needs them. */
-#undef char
-#undef short
-#undef int
-#undef long
-#undef unsigned
-#undef float
-#undef double
-#undef MIN
-#undef MAX
-#include
-
-UWtype
-__fixunsxfSI (XFtype a)
-{
- if (a >= - (DFtype) Wtype_MIN)
- return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
- return (Wtype) a;
-}
-#endif
-
-#ifdef L_fixunsdfsi
-/* Reenable the normal types, in case limits.h needs them. */
-#undef char
-#undef short
-#undef int
-#undef long
-#undef unsigned
-#undef float
-#undef double
-#undef MIN
-#undef MAX
-#include
-
-UWtype
-__fixunsdfSI (DFtype a)
-{
- if (a >= - (DFtype) Wtype_MIN)
- return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
- return (Wtype) a;
-}
-#endif
-
-#ifdef L_fixunssfsi
-/* Reenable the normal types, in case limits.h needs them. */
-#undef char
-#undef short
-#undef int
-#undef long
-#undef unsigned
-#undef float
-#undef double
-#undef MIN
-#undef MAX
-#include
-
-UWtype
-__fixunssfSI (SFtype a)
-{
- if (a >= - (SFtype) Wtype_MIN)
- return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
- return (Wtype) a;
-}
-#endif
-
-/* From here on down, the routines use normal data types. */
-
-#define SItype bogus_type
-#define USItype bogus_type
-#define DItype bogus_type
-#define UDItype bogus_type
-#define SFtype bogus_type
-#define DFtype bogus_type
-#undef Wtype
-#undef UWtype
-#undef HWtype
-#undef UHWtype
-#undef DWtype
-#undef UDWtype
-
-#undef char
-#undef short
-#undef int
-#undef long
-#undef unsigned
-#undef float
-#undef double
-
-#ifdef L__gcc_bcmp
-
-/* Like bcmp except the sign is meaningful.
- Result is negative if S1 is less than S2,
- positive if S1 is greater, 0 if S1 and S2 are equal. */
-
-int
-__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
-{
- while (size > 0)
- {
- unsigned char c1 = *s1++, c2 = *s2++;
- if (c1 != c2)
- return c1 - c2;
- size--;
- }
- return 0;
-}
-
-#endif
-
-/* __eprintf used to be used by GCC's private version of .
- We no longer provide that header, but this routine remains in libgcc.a
- for binary backward compatibility. Note that it is not included in
- the shared version of libgcc. */
-#ifdef L_eprintf
-#ifndef inhibit_libc
-
-#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
-#include
-
-void
-__eprintf (const char *string, const char *expression,
- unsigned int line, const char *filename)
-{
- fprintf (stderr, string, expression, line, filename);
- fflush (stderr);
- abort ();
-}
-
-#endif
-#endif
-
-#ifdef L_bb
-
-#if LONG_TYPE_SIZE == GCOV_TYPE_SIZE
-typedef long gcov_type;
-#else
-typedef long long gcov_type;
-#endif
-
-
-/* Structure emitted by -a */
-struct bb
-{
- long zero_word;
- const char *filename;
- gcov_type *counts;
- long ncounts;
- struct bb *next;
- const unsigned long *addresses;
-
- /* Older GCC's did not emit these fields. */
- long nwords;
- const char **functions;
- const long *line_nums;
- const char **filenames;
- char *flags;
-};
-
-#ifdef BLOCK_PROFILER_CODE
-BLOCK_PROFILER_CODE
-#else
-#ifndef inhibit_libc
-
-/* Simple minded basic block profiling output dumper for
- systems that don't provide tcov support. At present,
- it requires atexit and stdio. */
-
-#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
-#include
-
-#include "gbl-ctors.h"
-#include "gcov-io.h"
-#include
-#ifdef TARGET_HAS_F_SETLKW
-#include
-#include
-#endif
-
-static struct bb *bb_head;
-
-void
-__bb_exit_func (void)
-{
- FILE *da_file;
- int i;
- struct bb *ptr;
-
- if (bb_head == 0)
- return;
-
- i = strlen (bb_head->filename) - 3;
-
-
- for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next)
- {
- int firstchar;
-
- /* Make sure the output file exists -
- but don't clobber exiting data. */
- if ((da_file = fopen (ptr->filename, "a")) != 0)
- fclose (da_file);
-
- /* Need to re-open in order to be able to write from the start. */
- da_file = fopen (ptr->filename, "r+b");
- /* Some old systems might not allow the 'b' mode modifier.
- Therefore, try to open without it. This can lead to a race
- condition so that when you delete and re-create the file, the
- file might be opened in text mode, but then, you shouldn't
- delete the file in the first place. */
- if (da_file == 0)
- da_file = fopen (ptr->filename, "r+");
- if (da_file == 0)
- {
- fprintf (stderr, "arc profiling: Can't open output file %s.\n",
- ptr->filename);
- continue;
- }
-
- /* After a fork, another process might try to read and/or write
- the same file simultanously. So if we can, lock the file to
- avoid race conditions. */
-#if defined (TARGET_HAS_F_SETLKW)
- {
- struct flock s_flock;
-
- s_flock.l_type = F_WRLCK;
- s_flock.l_whence = SEEK_SET;
- s_flock.l_start = 0;
- s_flock.l_len = 1;
- s_flock.l_pid = getpid ();
-
- while (fcntl (fileno (da_file), F_SETLKW, &s_flock)
- && errno == EINTR);
- }
-#endif
-
- /* If the file is not empty, and the number of counts in it is the
- same, then merge them in. */
- firstchar = fgetc (da_file);
- if (firstchar == EOF)
- {
- if (ferror (da_file))
- {
- fprintf (stderr, "arc profiling: Can't read output file ");
- perror (ptr->filename);
- }
- }
- else
- {
- long n_counts = 0;
-
- if (ungetc (firstchar, da_file) == EOF)
- rewind (da_file);
- if (__read_long (&n_counts, da_file, 8) != 0)
- {
- fprintf (stderr, "arc profiling: Can't read output file %s.\n",
- ptr->filename);
- continue;
- }
-
- if (n_counts == ptr->ncounts)
- {
- int i;
-
- for (i = 0; i < n_counts; i++)
- {
- gcov_type v = 0;
-
- if (__read_gcov_type (&v, da_file, 8) != 0)
- {
- fprintf (stderr,
- "arc profiling: Can't read output file %s.\n",
- ptr->filename);
- break;
- }
- ptr->counts[i] += v;
- }
- }
-
- }
-
- rewind (da_file);
-
- /* ??? Should first write a header to the file. Preferably, a 4 byte
- magic number, 4 bytes containing the time the program was
- compiled, 4 bytes containing the last modification time of the
- source file, and 4 bytes indicating the compiler options used.
-
- That way we can easily verify that the proper source/executable/
- data file combination is being used from gcov. */
-
- if (__write_gcov_type (ptr->ncounts, da_file, 8) != 0)
- {
-
- fprintf (stderr, "arc profiling: Error writing output file %s.\n",
- ptr->filename);
- }
- else
- {
- int j;
- gcov_type *count_ptr = ptr->counts;
- int ret = 0;
- for (j = ptr->ncounts; j > 0; j--)
- {
- if (__write_gcov_type (*count_ptr, da_file, 8) != 0)
- {
- ret = 1;
- break;
- }
- count_ptr++;
- }
- if (ret)
- fprintf (stderr, "arc profiling: Error writing output file %s.\n",
- ptr->filename);
- }
-
- if (fclose (da_file) == EOF)
- fprintf (stderr, "arc profiling: Error closing output file %s.\n",
- ptr->filename);
- }
-
- return;
-}
-
-void
-__bb_init_func (struct bb *blocks)
-{
- /* User is supposed to check whether the first word is non-0,
- but just in case.... */
-
- if (blocks->zero_word)
- return;
-
- /* Initialize destructor. */
- if (!bb_head)
- atexit (__bb_exit_func);
-
- /* Set up linked list. */
- blocks->zero_word = 1;
- blocks->next = bb_head;
- bb_head = blocks;
-}
-
-/* Called before fork or exec - write out profile information gathered so
- far and reset it to zero. This avoids duplication or loss of the
- profile information gathered so far. */
-void
-__bb_fork_func (void)
-{
- struct bb *ptr;
-
- __bb_exit_func ();
- for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next)
- {
- long i;
- for (i = ptr->ncounts - 1; i >= 0; i--)
- ptr->counts[i] = 0;
- }
-}
-
-#endif /* not inhibit_libc */
-#endif /* not BLOCK_PROFILER_CODE */
-#endif /* L_bb */
-
-#ifdef L_clear_cache
-/* Clear part of an instruction cache. */
-
-#define INSN_CACHE_PLANE_SIZE (INSN_CACHE_SIZE / INSN_CACHE_DEPTH)
-
-void
-__clear_cache (char *beg __attribute__((__unused__)),
- char *end __attribute__((__unused__)))
-{
-#ifdef CLEAR_INSN_CACHE
- CLEAR_INSN_CACHE (beg, end);
-#else
-#ifdef INSN_CACHE_SIZE
- static char array[INSN_CACHE_SIZE + INSN_CACHE_PLANE_SIZE + INSN_CACHE_LINE_WIDTH];
- static int initialized;
- int offset;
- void *start_addr
- void *end_addr;
- typedef (*function_ptr) (void);
-
-#if (INSN_CACHE_SIZE / INSN_CACHE_LINE_WIDTH) < 16
- /* It's cheaper to clear the whole cache.
- Put in a series of jump instructions so that calling the beginning
- of the cache will clear the whole thing. */
-
- if (! initialized)
- {
- int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1)
- & -INSN_CACHE_LINE_WIDTH);
- int end_ptr = ptr + INSN_CACHE_SIZE;
-
- while (ptr < end_ptr)
- {
- *(INSTRUCTION_TYPE *)ptr
- = JUMP_AHEAD_INSTRUCTION + INSN_CACHE_LINE_WIDTH;
- ptr += INSN_CACHE_LINE_WIDTH;
- }
- *(INSTRUCTION_TYPE *) (ptr - INSN_CACHE_LINE_WIDTH) = RETURN_INSTRUCTION;
-
- initialized = 1;
- }
-
- /* Call the beginning of the sequence. */
- (((function_ptr) (((int) array + INSN_CACHE_LINE_WIDTH - 1)
- & -INSN_CACHE_LINE_WIDTH))
- ());
-
-#else /* Cache is large. */
-
- if (! initialized)
- {
- int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1)
- & -INSN_CACHE_LINE_WIDTH);
-
- while (ptr < (int) array + sizeof array)
- {
- *(INSTRUCTION_TYPE *)ptr = RETURN_INSTRUCTION;
- ptr += INSN_CACHE_LINE_WIDTH;
- }
-
- initialized = 1;
- }
-
- /* Find the location in array that occupies the same cache line as BEG. */
-
- offset = ((int) beg & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1);
- start_addr = (((int) (array + INSN_CACHE_PLANE_SIZE - 1)
- & -INSN_CACHE_PLANE_SIZE)
- + offset);
-
- /* Compute the cache alignment of the place to stop clearing. */
-#if 0 /* This is not needed for gcc's purposes. */
- /* If the block to clear is bigger than a cache plane,
- we clear the entire cache, and OFFSET is already correct. */
- if (end < beg + INSN_CACHE_PLANE_SIZE)
-#endif
- offset = (((int) (end + INSN_CACHE_LINE_WIDTH - 1)
- & -INSN_CACHE_LINE_WIDTH)
- & (INSN_CACHE_PLANE_SIZE - 1));
-
-#if INSN_CACHE_DEPTH > 1
- end_addr = (start_addr & -INSN_CACHE_PLANE_SIZE) + offset;
- if (end_addr <= start_addr)
- end_addr += INSN_CACHE_PLANE_SIZE;
-
- for (plane = 0; plane < INSN_CACHE_DEPTH; plane++)
- {
- int addr = start_addr + plane * INSN_CACHE_PLANE_SIZE;
- int stop = end_addr + plane * INSN_CACHE_PLANE_SIZE;
-
- while (addr != stop)
- {
- /* Call the return instruction at ADDR. */
- ((function_ptr) addr) ();
-
- addr += INSN_CACHE_LINE_WIDTH;
- }
- }
-#else /* just one plane */
- do
- {
- /* Call the return instruction at START_ADDR. */
- ((function_ptr) start_addr) ();
-
- start_addr += INSN_CACHE_LINE_WIDTH;
- }
- while ((start_addr % INSN_CACHE_SIZE) != offset);
-#endif /* just one plane */
-#endif /* Cache is large */
-#endif /* Cache exists */
-#endif /* CLEAR_INSN_CACHE */
-}
-
-#endif /* L_clear_cache */
-
-#ifdef L_trampoline
-
-/* Jump to a trampoline, loading the static chain address. */
-
-#if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
-
-long
-getpagesize (void)
-{
-#ifdef _ALPHA_
- return 8192;
-#else
- return 4096;
-#endif
-}
-
-#ifdef __i386__
-extern int VirtualProtect (char *, int, int, int *) __attribute__((NTAPI));
-#endif
-
-int
-mprotect (char *addr, int len, int prot)
-{
- int np, op;
-
- if (prot == 7)
- np = 0x40;
- else if (prot == 5)
- np = 0x20;
- else if (prot == 4)
- np = 0x10;
- else if (prot == 3)
- np = 0x04;
- else if (prot == 1)
- np = 0x02;
- else if (prot == 0)
- np = 0x01;
-
- if (VirtualProtect (addr, len, np, &op))
- return 0;
- else
- return -1;
-}
-
-#endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
-
-#ifdef TRANSFER_FROM_TRAMPOLINE
-TRANSFER_FROM_TRAMPOLINE
-#endif
-
-#if defined (NeXT) && defined (__MACH__)
-
-/* Make stack executable so we can call trampolines on stack.
- This is called from INITIALIZE_TRAMPOLINE in next.h. */
-#ifdef NeXTStep21
- #include
-#else
- #include
-#endif
-
-void
-__enable_execute_stack (char *addr)
-{
- kern_return_t r;
- char *eaddr = addr + TRAMPOLINE_SIZE;
- vm_address_t a = (vm_address_t) addr;
-
- /* turn on execute access on stack */
- r = vm_protect (task_self (), a, TRAMPOLINE_SIZE, FALSE, VM_PROT_ALL);
- if (r != KERN_SUCCESS)
- {
- mach_error("vm_protect VM_PROT_ALL", r);
- exit(1);
- }
-
- /* We inline the i-cache invalidation for speed */
-
-#ifdef CLEAR_INSN_CACHE
- CLEAR_INSN_CACHE (addr, eaddr);
-#else
- __clear_cache ((int) addr, (int) eaddr);
-#endif
-}
-
-#endif /* defined (NeXT) && defined (__MACH__) */
-
-#ifdef __convex__
-
-/* Make stack executable so we can call trampolines on stack.
- This is called from INITIALIZE_TRAMPOLINE in convex.h. */
-
-#include
-#include
-#include
-
-void
-__enable_execute_stack (void)
-{
- int fp;
- static unsigned lowest = USRSTACK;
- unsigned current = (unsigned) &fp & -NBPG;
-
- if (lowest > current)
- {
- unsigned len = lowest - current;
- mremap (current, &len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE);
- lowest = current;
- }
-
- /* Clear instruction cache in case an old trampoline is in it. */
- asm ("pich");
-}
-#endif /* __convex__ */
-
-#ifdef __sysV88__
-
-/* Modified from the convex -code above. */
-
-#include
-#include
-#include
-
-void
-__enable_execute_stack (void)
-{
- int save_errno;
- static unsigned long lowest = USRSTACK;
- unsigned long current = (unsigned long) &save_errno & -NBPC;
-
- /* Ignore errno being set. memctl sets errno to EINVAL whenever the
- address is seen as 'negative'. That is the case with the stack. */
-
- save_errno=errno;
- if (lowest > current)
- {
- unsigned len=lowest-current;
- memctl(current,len,MCT_TEXT);
- lowest = current;
- }
- else
- memctl(current,NBPC,MCT_TEXT);
- errno=save_errno;
-}
-
-#endif /* __sysV88__ */
-
-#ifdef __sysV68__
-
-#include
-#include
-
-/* Motorola forgot to put memctl.o in the libp version of libc881.a,
- so define it here, because we need it in __clear_insn_cache below */
-/* On older versions of this OS, no memctl or MCT_TEXT are defined;
- hence we enable this stuff only if MCT_TEXT is #define'd. */
-
-#ifdef MCT_TEXT
-asm("\n\
- global memctl\n\
-memctl:\n\
- movq &75,%d0\n\
- trap &0\n\
- bcc.b noerror\n\
- jmp cerror%\n\
-noerror:\n\
- movq &0,%d0\n\
- rts");
-#endif
-
-/* Clear instruction cache so we can call trampolines on stack.
- This is called from FINALIZE_TRAMPOLINE in mot3300.h. */
-
-void
-__clear_insn_cache (void)
-{
-#ifdef MCT_TEXT
- int save_errno;
-
- /* Preserve errno, because users would be surprised to have
- errno changing without explicitly calling any system-call. */
- save_errno = errno;
-
- /* Keep it simple : memctl (MCT_TEXT) always fully clears the insn cache.
- No need to use an address derived from _start or %sp, as 0 works also. */
- memctl(0, 4096, MCT_TEXT);
- errno = save_errno;
-#endif
-}
-
-#endif /* __sysV68__ */
-
-#ifdef __pyr__
-
-#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
-#include
-#include
-#include
-#include
-#include
-
-/* Modified from the convex -code above.
- mremap promises to clear the i-cache. */
-
-void
-__enable_execute_stack (void)
-{
- int fp;
- if (mprotect (((unsigned int)&fp/PAGSIZ)*PAGSIZ, PAGSIZ,
- PROT_READ|PROT_WRITE|PROT_EXEC))
- {
- perror ("mprotect in __enable_execute_stack");
- fflush (stderr);
- abort ();
- }
-}
-#endif /* __pyr__ */
-
-#if defined (sony_news) && defined (SYSTYPE_BSD)
-
-#include
-#include
-#include
-#include
-#include
-
-/* cacheflush function for NEWS-OS 4.2.
- This function is called from trampoline-initialize code
- defined in config/mips/mips.h. */
-
-void
-cacheflush (char *beg, int size, int flag)
-{
- if (syscall (SYS_sysnews, NEWS_CACHEFLUSH, beg, size, FLUSH_BCACHE))
- {
- perror ("cache_flush");
- fflush (stderr);
- abort ();
- }
-}
-
-#endif /* sony_news */
-#endif /* L_trampoline */
-
-#ifndef __CYGWIN__
-#ifdef L__main
-
-#include "gbl-ctors.h"
-/* Some systems use __main in a way incompatible with its use in gcc, in these
- cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
- give the same symbol without quotes for an alternative entry point. You
- must define both, or neither. */
-#ifndef NAME__MAIN
-#define NAME__MAIN "__main"
-#define SYMBOL__MAIN __main
-#endif
-
-#ifdef INIT_SECTION_ASM_OP
-#undef HAS_INIT_SECTION
-#define HAS_INIT_SECTION
-#endif
-
-#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
-
-/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
- code to run constructors. In that case, we need to handle EH here, too. */
-
-#ifdef EH_FRAME_SECTION_NAME
-#include "unwind-dw2-fde.h"
-extern unsigned char __EH_FRAME_BEGIN__[];
-#endif
-
-/* Run all the global destructors on exit from the program. */
-
-void
-__do_global_dtors (void)
-{
-#ifdef DO_GLOBAL_DTORS_BODY
- DO_GLOBAL_DTORS_BODY;
-#else
- static func_ptr *p = __DTOR_LIST__ + 1;
- while (*p)
- {
- p++;
- (*(p-1)) ();
- }
-#endif
-#if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
- {
- static int completed = 0;
- if (! completed)
- {
- completed = 1;
- __deregister_frame_info (__EH_FRAME_BEGIN__);
- }
- }
-#endif
-}
-#endif
-
-#ifndef HAS_INIT_SECTION
-/* Run all the global constructors on entry to the program. */
-
-void
-__do_global_ctors (void)
-{
-#ifdef EH_FRAME_SECTION_NAME
- {
- static struct object object;
- __register_frame_info (__EH_FRAME_BEGIN__, &object);
- }
-#endif
- DO_GLOBAL_CTORS_BODY;
- atexit (__do_global_dtors);
-}
-#endif /* no HAS_INIT_SECTION */
-
-#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
-/* Subroutine called automatically by `main'.
- Compiling a global function named `main'
- produces an automatic call to this function at the beginning.
-
- For many systems, this routine calls __do_global_ctors.
- For systems which support a .init section we use the .init section
- to run __do_global_ctors, so we need not do anything here. */
-
-void
-SYMBOL__MAIN ()
-{
- /* Support recursive calls to `main': run initializers just once. */
- static int initialized;
- if (! initialized)
- {
- initialized = 1;
- __do_global_ctors ();
- }
-}
-#endif /* no HAS_INIT_SECTION or INVOKE__main */
-
-#endif /* L__main */
-#endif /* __CYGWIN__ */
-
-#ifdef L_ctors
-
-#include "gbl-ctors.h"
-
-/* Provide default definitions for the lists of constructors and
- destructors, so that we don't get linker errors. These symbols are
- intentionally bss symbols, so that gld and/or collect will provide
- the right values. */
-
-/* We declare the lists here with two elements each,
- so that they are valid empty lists if no other definition is loaded.
-
- If we are using the old "set" extensions to have the gnu linker
- collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
- must be in the bss/common section.
-
- Long term no port should use those extensions. But many still do. */
-#if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
-#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
-func_ptr __CTOR_LIST__[2] = {0, 0};
-func_ptr __DTOR_LIST__[2] = {0, 0};
-#else
-func_ptr __CTOR_LIST__[2];
-func_ptr __DTOR_LIST__[2];
-#endif
-#endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
-#endif /* L_ctors */
-
-#ifdef L_exit
-
-#include "gbl-ctors.h"
-
-#ifdef NEED_ATEXIT
-
-#ifndef ON_EXIT
-
-# include
-
-static func_ptr *atexit_chain = 0;
-static long atexit_chain_length = 0;
-static volatile long last_atexit_chain_slot = -1;
-
-int
-atexit (func_ptr func)
-{
- if (++last_atexit_chain_slot == atexit_chain_length)
- {
- atexit_chain_length += 32;
- if (atexit_chain)
- atexit_chain = (func_ptr *) realloc (atexit_chain, atexit_chain_length
- * sizeof (func_ptr));
- else
- atexit_chain = (func_ptr *) malloc (atexit_chain_length
- * sizeof (func_ptr));
- if (! atexit_chain)
- {
- atexit_chain_length = 0;
- last_atexit_chain_slot = -1;
- errno = ENOMEM;
- return (-1);
- }
- }
- atexit_chain[last_atexit_chain_slot] = func;
- return (0);
-}
-
-extern void _cleanup (void);
-extern void _exit (int) __attribute__ ((__noreturn__));
-
-void
-exit (int status)
-{
- if (atexit_chain)
- {
- for ( ; last_atexit_chain_slot-- >= 0; )
- {
- (*atexit_chain[last_atexit_chain_slot + 1]) ();
- atexit_chain[last_atexit_chain_slot + 1] = 0;
- }
- free (atexit_chain);
- atexit_chain = 0;
- }
-#ifdef EXIT_BODY
- EXIT_BODY;
-#else
- _cleanup ();
-#endif
- _exit (status);
-}
-
-#else /* ON_EXIT */
-
-/* Simple; we just need a wrapper for ON_EXIT. */
-int
-atexit (func_ptr func)
-{
- return ON_EXIT (func);
-}
-
-#endif /* ON_EXIT */
-#endif /* NEED_ATEXIT */
-
-#endif /* L_exit */
diff --git a/reactos/boot/freeldr/freeldr/math/libgcc2.h b/reactos/boot/freeldr/freeldr/math/libgcc2.h
deleted file mode 100644
index 715ccfc610b..00000000000
--- a/reactos/boot/freeldr/freeldr/math/libgcc2.h
+++ /dev/null
@@ -1,301 +0,0 @@
-/* Header file for libgcc2.c. */
-/* Copyright (C) 2000, 2001
- Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-02111-1307, USA. */
-
-#ifndef GCC_LIBGCC2_H
-#define GCC_LIBGCC2_H
-
-extern int __gcc_bcmp (const unsigned char *, const unsigned char *, size_t);
-extern void __clear_cache (char *, char *);
-extern void __eprintf (const char *, const char *, unsigned int, const char *)
- __attribute__ ((__noreturn__));
-
-struct bb;
-extern void __bb_exit_func (void);
-extern void __bb_init_func (struct bb *);
-extern void __bb_fork_func (void);
-extern void __bb_trace_func (void);
-extern void __bb_trace_ret (void);
-extern void __bb_init_trace_func (struct bb *, unsigned long);
-
-struct exception_descriptor;
-extern short int __get_eh_table_language (struct exception_descriptor *);
-extern short int __get_eh_table_version (struct exception_descriptor *);
-
-/* Permit the tm.h file to select the endianness to use just for this
- file. This is used when the endianness is determined when the
- compiler is run. */
-
-#ifndef LIBGCC2_WORDS_BIG_ENDIAN
-#define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN
-#endif
-
-#ifndef LIBGCC2_LONG_DOUBLE_TYPE_SIZE
-#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE LONG_DOUBLE_TYPE_SIZE
-#endif
-
-#ifndef MIN_UNITS_PER_WORD
-#define MIN_UNITS_PER_WORD UNITS_PER_WORD
-#endif
-
-/* In the first part of this file, we are interfacing to calls generated
- by the compiler itself. These calls pass values into these routines
- which have very specific modes (rather than very specific types), and
- these compiler-generated calls also expect any return values to have
- very specific modes (rather than very specific types). Thus, we need
- to avoid using regular C language type names in this part of the file
- because the sizes for those types can be configured to be anything.
- Instead we use the following special type names. */
-
-typedef int QItype __attribute__ ((mode (QI)));
-typedef unsigned int UQItype __attribute__ ((mode (QI)));
-typedef int HItype __attribute__ ((mode (HI)));
-typedef unsigned int UHItype __attribute__ ((mode (HI)));
-#if MIN_UNITS_PER_WORD > 1
-/* These typedefs are usually forbidden on dsp's with UNITS_PER_WORD 1 */
-typedef int SItype __attribute__ ((mode (SI)));
-typedef unsigned int USItype __attribute__ ((mode (SI)));
-#if LONG_LONG_TYPE_SIZE > 32
-/* These typedefs are usually forbidden on archs with UNITS_PER_WORD 2 */
-typedef int DItype __attribute__ ((mode (DI)));
-typedef unsigned int UDItype __attribute__ ((mode (DI)));
-#if MIN_UNITS_PER_WORD > 4
-/* These typedefs are usually forbidden on archs with UNITS_PER_WORD 4 */
-typedef int TItype __attribute__ ((mode (TI)));
-typedef unsigned int UTItype __attribute__ ((mode (TI)));
-#endif
-#endif
-#endif
-
-#if BITS_PER_UNIT == 8
-
-typedef float SFtype __attribute__ ((mode (SF)));
-typedef float DFtype __attribute__ ((mode (DF)));
-
-#if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96
-typedef float XFtype __attribute__ ((mode (XF)));
-#endif
-#if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128
-typedef float TFtype __attribute__ ((mode (TF)));
-#endif
-
-#else /* BITS_PER_UNIT != 8 */
-
-/* On dsp's there are usually qf/hf/tqf modes used instead of the above.
- For now we don't support them in libgcc2.c. */
-
-#undef L_fixdfdi
-#undef L_fixsfdi
-#undef L_fixtfdi
-#undef L_fixunsdfdi
-#undef L_fixunsdfsi
-#undef L_fixunssfdi
-#undef L_fixunssfsi
-#undef L_fixunstfdi
-#undef L_fixunsxfdi
-#undef L_fixunsxfsi
-#undef L_fixxfdi
-#undef L_floatdidf
-#undef L_floatdisf
-#undef L_floatditf
-#undef L_floatdixf
-
-#endif /* BITS_PER_UNIT != 8 */
-
-typedef int word_type __attribute__ ((mode (__word__)));
-
-/* Make sure that we don't accidentally use any normal C language built-in
- type names in the first part of this file. Instead we want to use *only*
- the type names defined above. The following macro definitions insure
- that if we *do* accidentally use some normal C language built-in type name,
- we will get a syntax error. */
-
-#define char bogus_type
-#define short bogus_type
-#define int bogus_type
-#define long bogus_type
-#define unsigned bogus_type
-#define float bogus_type
-#define double bogus_type
-
-#if MIN_UNITS_PER_WORD > 4
-#define W_TYPE_SIZE (8 * BITS_PER_UNIT)
-#define Wtype DItype
-#define UWtype UDItype
-#define HWtype DItype
-#define UHWtype UDItype
-#define DWtype TItype
-#define UDWtype UTItype
-#define __NW(a,b) __ ## a ## di ## b
-#define __NDW(a,b) __ ## a ## ti ## b
-#elif MIN_UNITS_PER_WORD > 2 \
- || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32)
-#define W_TYPE_SIZE (4 * BITS_PER_UNIT)
-#define Wtype SItype
-#define UWtype USItype
-#define HWtype SItype
-#define UHWtype USItype
-#define DWtype DItype
-#define UDWtype UDItype
-#define __NW(a,b) __ ## a ## si ## b
-#define __NDW(a,b) __ ## a ## di ## b
-#elif MIN_UNITS_PER_WORD > 1
-#define W_TYPE_SIZE (2 * BITS_PER_UNIT)
-#define Wtype HItype
-#define UWtype UHItype
-#define HWtype HItype
-#define UHWtype UHItype
-#define DWtype SItype
-#define UDWtype USItype
-#define __NW(a,b) __ ## a ## hi ## b
-#define __NDW(a,b) __ ## a ## si ## b
-#else
-#define W_TYPE_SIZE BITS_PER_UNIT
-#define Wtype QItype
-#define UWtype UQItype
-#define HWtype QItype
-#define UHWtype UQItype
-#define DWtype HItype
-#define UDWtype UHItype
-#define __NW(a,b) __ ## a ## qi ## b
-#define __NDW(a,b) __ ## a ## hi ## b
-#endif
-
-#define Wtype_MAX ((Wtype)(((UWtype)1 << (W_TYPE_SIZE - 1)) - 1))
-#define Wtype_MIN (- Wtype_MAX - 1)
-
-#define __muldi3 __NDW(mul,3)
-#define __divdi3 __NDW(div,3)
-#define __udivdi3 __NDW(udiv,3)
-#define __moddi3 __NDW(mod,3)
-#define __umoddi3 __NDW(umod,3)
-#define __negdi2 __NDW(neg,2)
-#define __lshrdi3 __NDW(lshr,3)
-#define __ashldi3 __NDW(ashl,3)
-#define __ashrdi3 __NDW(ashr,3)
-#define __ffsdi2 __NDW(ffs,2)
-#define __cmpdi2 __NDW(cmp,2)
-#define __ucmpdi2 __NDW(ucmp,2)
-#define __udivmoddi4 __NDW(udivmod,4)
-#define __fixunstfDI __NDW(fixunstf,)
-#define __fixtfdi __NDW(fixtf,)
-#define __fixunsxfDI __NDW(fixunsxf,)
-#define __fixxfdi __NDW(fixxf,)
-#define __fixunsdfDI __NDW(fixunsdf,)
-#define __fixdfdi __NDW(fixdf,)
-#define __fixunssfDI __NDW(fixunssf,)
-#define __fixsfdi __NDW(fixsf,)
-#define __floatdixf __NDW(float,xf)
-#define __floatditf __NDW(float,tf)
-#define __floatdidf __NDW(float,df)
-#define __floatdisf __NDW(float,sf)
-#define __fixunsxfSI __NW(fixunsxf,)
-#define __fixunstfSI __NW(fixunstf,)
-#define __fixunsdfSI __NW(fixunsdf,)
-#define __fixunssfSI __NW(fixunssf,)
-
-extern DWtype __muldi3 (DWtype, DWtype);
-extern DWtype __divdi3 (DWtype, DWtype);
-extern UDWtype __udivdi3 (UDWtype, UDWtype);
-extern UDWtype __umoddi3 (UDWtype, UDWtype);
-extern DWtype __moddi3 (DWtype, DWtype);
-
-/* __udivmoddi4 is static inline when building other libgcc2 portions. */
-#if (!defined (L_udivdi3) && !defined (L_divdi3) && \
- !defined (L_umoddi3) && !defined (L_moddi3))
-extern UDWtype __udivmoddi4 (UDWtype, UDWtype, UDWtype *);
-#endif
-
-/* __negdi2 is static inline when building other libgcc2 portions. */
-#if !defined(L_divdi3) && !defined(L_moddi3)
-extern DWtype __negdi2 (DWtype);
-#endif
-
-extern DWtype __lshrdi3 (DWtype, word_type);
-extern DWtype __ashldi3 (DWtype, word_type);
-extern DWtype __ashrdi3 (DWtype, word_type);
-extern DWtype __ffsdi2 (DWtype);
-
-/* __udiv_w_sdiv is static inline when building other libgcc2 portions. */
-#if (!defined(L_udivdi3) && !defined(L_divdi3) && \
- !defined(L_umoddi3) && !defined(L_moddi3))
-extern UWtype __udiv_w_sdiv (UWtype *, UWtype, UWtype, UWtype);
-#endif
-
-extern word_type __cmpdi2 (DWtype, DWtype);
-extern word_type __ucmpdi2 (DWtype, DWtype);
-
-extern Wtype __absvsi2 (Wtype);
-extern DWtype __absvdi2 (DWtype);
-extern Wtype __addvsi3 (Wtype, Wtype);
-extern DWtype __addvdi3 (DWtype, DWtype);
-extern Wtype __subvsi3 (Wtype, Wtype);
-extern DWtype __subvdi3 (DWtype, DWtype);
-extern Wtype __mulvsi3 (Wtype, Wtype);
-extern DWtype __mulvdi3 (DWtype, DWtype);
-extern Wtype __negvsi2 (Wtype);
-extern DWtype __negvdi2 (DWtype);
-
-#if BITS_PER_UNIT == 8
-extern DWtype __fixdfdi (DFtype);
-extern DWtype __fixsfdi (SFtype);
-extern DFtype __floatdidf (DWtype);
-extern SFtype __floatdisf (DWtype);
-extern UWtype __fixunsdfSI (DFtype);
-extern UWtype __fixunssfSI (SFtype);
-extern DWtype __fixunsdfDI (DFtype);
-extern DWtype __fixunssfDI (SFtype);
-
-#if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96
-extern DWtype __fixxfdi (XFtype);
-extern DWtype __fixunsxfDI (XFtype);
-extern XFtype __floatdixf (DWtype);
-extern UWtype __fixunsxfSI (XFtype);
-#endif
-
-#if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128
-extern DWtype __fixunstfDI (TFtype);
-extern DWtype __fixtfdi (TFtype);
-extern TFtype __floatditf (DWtype);
-#endif
-#endif /* BITS_PER_UNIT == 8 */
-
-/* DWstructs are pairs of Wtype values in the order determined by
- LIBGCC2_WORDS_BIG_ENDIAN. */
-
-#if LIBGCC2_WORDS_BIG_ENDIAN
- struct DWstruct {Wtype high, low;};
-#else
- struct DWstruct {Wtype low, high;};
-#endif
-
-/* We need this union to unpack/pack DImode values, since we don't have
- any arithmetic yet. Incoming DImode parameters are stored into the
- `ll' field, and the unpacked result is read from the struct `s'. */
-
-typedef union
-{
- struct DWstruct s;
- DWtype ll;
-} DWunion;
-
-#include "longlong.h"
-
-#endif /* ! GCC_LIBGCC2_H */
diff --git a/reactos/boot/freeldr/freeldr/math/longlong.h b/reactos/boot/freeldr/freeldr/math/longlong.h
deleted file mode 100644
index c8b9aee1337..00000000000
--- a/reactos/boot/freeldr/freeldr/math/longlong.h
+++ /dev/null
@@ -1,1503 +0,0 @@
-/* longlong.h -- definitions for mixed size 32/64 bit arithmetic.
- Copyright (C) 1991, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000
- Free Software Foundation, Inc.
-
- This definition file is free software; you can redistribute it
- and/or modify it under the terms of the GNU General Public
- License as published by the Free Software Foundation; either
- version 2, or (at your option) any later version.
-
- This definition file is distributed in the hope that it will be
- useful, but WITHOUT ANY WARRANTY; without even the implied
- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- See the GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-/* You have to define the following before including this file:
-
- UWtype -- An unsigned type, default type for operations (typically a "word")
- UHWtype -- An unsigned type, at least half the size of UWtype.
- UDWtype -- An unsigned type, at least twice as large a UWtype
- W_TYPE_SIZE -- size in bits of UWtype
-
- UQItype -- Unsigned 8 bit type.
- SItype, USItype -- Signed and unsigned 32 bit types.
- DItype, UDItype -- Signed and unsigned 64 bit types.
-
- On a 32 bit machine UWtype should typically be USItype;
- on a 64 bit machine, UWtype should typically be UDItype.
-*/
-
-#define __BITS4 (W_TYPE_SIZE / 4)
-#define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2))
-#define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1))
-#define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2))
-
-#ifndef W_TYPE_SIZE
-#define W_TYPE_SIZE 32
-#define UWtype USItype
-#define UHWtype USItype
-#define UDWtype UDItype
-#endif
-
-/* Define auxiliary asm macros.
-
- 1) umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two
- UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype
- word product in HIGH_PROD and LOW_PROD.
-
- 2) __umulsidi3(a,b) multiplies two UWtype integers A and B, and returns a
- UDWtype product. This is just a variant of umul_ppmm.
-
- 3) udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
- denominator) divides a UDWtype, composed by the UWtype integers
- HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
- in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less
- than DENOMINATOR for correct operation. If, in addition, the most
- significant bit of DENOMINATOR must be 1, then the pre-processor symbol
- UDIV_NEEDS_NORMALIZATION is defined to 1.
-
- 4) sdiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
- denominator). Like udiv_qrnnd but the numbers are signed. The quotient
- is rounded towards 0.
-
- 5) count_leading_zeros(count, x) counts the number of zero-bits from the
- msb to the first non-zero bit in the UWtype X. This is the number of
- steps X needs to be shifted left to set the msb. Undefined for X == 0,
- unless the symbol COUNT_LEADING_ZEROS_0 is defined to some value.
-
- 6) count_trailing_zeros(count, x) like count_leading_zeros, but counts
- from the least significant end.
-
- 7) add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
- high_addend_2, low_addend_2) adds two UWtype integers, composed by
- HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
- respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow
- (i.e. carry out) is not stored anywhere, and is lost.
-
- 8) sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
- high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
- composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
- LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE
- and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere,
- and is lost.
-
- If any of these macros are left undefined for a particular CPU,
- C macros are used. */
-
-/* The CPUs come in alphabetical order below.
-
- Please add support for more CPUs here, or improve the current support
- for the CPUs below!
- (E.g. WE32100, IBM360.) */
-
-#if defined (__GNUC__) && !defined (NO_ASM)
-
-/* We sometimes need to clobber "cc" with gcc2, but that would not be
- understood by gcc1. Use cpp to avoid major code duplication. */
-#if __GNUC__ < 2
-#define __CLOBBER_CC
-#define __AND_CLOBBER_CC
-#else /* __GNUC__ >= 2 */
-#define __CLOBBER_CC : "cc"
-#define __AND_CLOBBER_CC , "cc"
-#endif /* __GNUC__ < 2 */
-
-#if (defined (__a29k__) || defined (_AM29K)) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("add %1,%4,%5\n\taddc %0,%2,%3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%r" ((USItype) (ah)), \
- "rI" ((USItype) (bh)), \
- "%r" ((USItype) (al)), \
- "rI" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("sub %1,%4,%5\n\tsubc %0,%2,%3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "r" ((USItype) (ah)), \
- "rI" ((USItype) (bh)), \
- "r" ((USItype) (al)), \
- "rI" ((USItype) (bl)))
-#define umul_ppmm(xh, xl, m0, m1) \
- do { \
- USItype __m0 = (m0), __m1 = (m1); \
- __asm__ ("multiplu %0,%1,%2" \
- : "=r" ((USItype) (xl)) \
- : "r" (__m0), \
- "r" (__m1)); \
- __asm__ ("multmu %0,%1,%2" \
- : "=r" ((USItype) (xh)) \
- : "r" (__m0), \
- "r" (__m1)); \
- } while (0)
-#define udiv_qrnnd(q, r, n1, n0, d) \
- __asm__ ("dividu %0,%3,%4" \
- : "=r" ((USItype) (q)), \
- "=q" ((USItype) (r)) \
- : "1" ((USItype) (n1)), \
- "r" ((USItype) (n0)), \
- "r" ((USItype) (d)))
-#define count_leading_zeros(count, x) \
- __asm__ ("clz %0,%1" \
- : "=r" ((USItype) (count)) \
- : "r" ((USItype) (x)))
-#define COUNT_LEADING_ZEROS_0 32
-#endif /* __a29k__ */
-
-#if defined (__alpha) && W_TYPE_SIZE == 64
-#define umul_ppmm(ph, pl, m0, m1) \
- do { \
- UDItype __m0 = (m0), __m1 = (m1); \
- __asm__ ("umulh %r1,%2,%0" \
- : "=r" ((UDItype) ph) \
- : "%rJ" (__m0), \
- "rI" (__m1)); \
- (pl) = __m0 * __m1; \
- } while (0)
-#define UMUL_TIME 46
-#ifndef LONGLONG_STANDALONE
-#define udiv_qrnnd(q, r, n1, n0, d) \
- do { UDItype __r; \
- (q) = __udiv_qrnnd (&__r, (n1), (n0), (d)); \
- (r) = __r; \
- } while (0)
-extern UDItype __udiv_qrnnd PARAMS ((UDItype *, UDItype, UDItype, UDItype));
-#define UDIV_TIME 220
-#endif /* LONGLONG_STANDALONE */
-#ifdef __alpha_cix__
-#define count_leading_zeros(COUNT,X) \
- __asm__("ctlz %1,%0" : "=r"(COUNT) : "r"(X))
-#define count_trailing_zeros(COUNT,X) \
- __asm__("cttz %1,%0" : "=r"(COUNT) : "r"(X))
-#define COUNT_LEADING_ZEROS_0 64
-#else
-extern const UQItype __clz_tab[];
-#define count_leading_zeros(COUNT,X) \
- do { \
- UDItype __xr = (X), __t, __a; \
- __asm__("cmpbge $31,%1,%0" : "=r"(__t) : "r"(__xr)); \
- __a = __clz_tab[__t ^ 0xff] - 1; \
- __asm__("extbl %1,%2,%0" : "=r"(__t) : "r"(__xr), "r"(__a)); \
- (COUNT) = 64 - (__clz_tab[__t] + __a*8); \
- } while (0)
-#define count_trailing_zeros(COUNT,X) \
- do { \
- UDItype __xr = (X), __t, __a; \
- __asm__("cmpbge $31,%1,%0" : "=r"(__t) : "r"(__xr)); \
- __t = ~__t & -~__t; \
- __a = ((__t & 0xCC) != 0) * 2; \
- __a += ((__t & 0xF0) != 0) * 4; \
- __a += ((__t & 0xAA) != 0); \
- __asm__("extbl %1,%2,%0" : "=r"(__t) : "r"(__xr), "r"(__a)); \
- __a <<= 3; \
- __t &= -__t; \
- __a += ((__t & 0xCC) != 0) * 2; \
- __a += ((__t & 0xF0) != 0) * 4; \
- __a += ((__t & 0xAA) != 0); \
- (COUNT) = __a; \
- } while (0)
-#endif /* __alpha_cix__ */
-#endif /* __alpha */
-
-#if defined (__arc__) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("add.f %1, %4, %5\n\tadc %0, %2, %3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%r" ((USItype) (ah)), \
- "rIJ" ((USItype) (bh)), \
- "%r" ((USItype) (al)), \
- "rIJ" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("sub.f %1, %4, %5\n\tsbc %0, %2, %3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "r" ((USItype) (ah)), \
- "rIJ" ((USItype) (bh)), \
- "r" ((USItype) (al)), \
- "rIJ" ((USItype) (bl)))
-/* Call libgcc routine. */
-#define umul_ppmm(w1, w0, u, v) \
-do { \
- DWunion __w; \
- __w.ll = __umulsidi3 (u, v); \
- w1 = __w.s.high; \
- w0 = __w.s.low; \
-} while (0)
-#define __umulsidi3 __umulsidi3
-UDItype __umulsidi3 (USItype, USItype);
-#endif
-
-#if defined (__arm__) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("adds %1, %4, %5\n\tadc %0, %2, %3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%r" ((USItype) (ah)), \
- "rI" ((USItype) (bh)), \
- "%r" ((USItype) (al)), \
- "rI" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("subs %1, %4, %5\n\tsbc %0, %2, %3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "r" ((USItype) (ah)), \
- "rI" ((USItype) (bh)), \
- "r" ((USItype) (al)), \
- "rI" ((USItype) (bl)))
-#define umul_ppmm(xh, xl, a, b) \
-{register USItype __t0, __t1, __t2; \
- __asm__ ("%@ Inlined umul_ppmm\n" \
- " mov %2, %5, lsr #16\n" \
- " mov %0, %6, lsr #16\n" \
- " bic %3, %5, %2, lsl #16\n" \
- " bic %4, %6, %0, lsl #16\n" \
- " mul %1, %3, %4\n" \
- " mul %4, %2, %4\n" \
- " mul %3, %0, %3\n" \
- " mul %0, %2, %0\n" \
- " adds %3, %4, %3\n" \
- " addcs %0, %0, #65536\n" \
- " adds %1, %1, %3, lsl #16\n" \
- " adc %0, %0, %3, lsr #16" \
- : "=&r" ((USItype) (xh)), \
- "=r" ((USItype) (xl)), \
- "=&r" (__t0), "=&r" (__t1), "=r" (__t2) \
- : "r" ((USItype) (a)), \
- "r" ((USItype) (b)));}
-#define UMUL_TIME 20
-#define UDIV_TIME 100
-#endif /* __arm__ */
-
-#if defined (__clipper__) && W_TYPE_SIZE == 32
-#define umul_ppmm(w1, w0, u, v) \
- ({union {UDItype __ll; \
- struct {USItype __l, __h;} __i; \
- } __xx; \
- __asm__ ("mulwux %2,%0" \
- : "=r" (__xx.__ll) \
- : "%0" ((USItype) (u)), \
- "r" ((USItype) (v))); \
- (w1) = __xx.__i.__h; (w0) = __xx.__i.__l;})
-#define smul_ppmm(w1, w0, u, v) \
- ({union {DItype __ll; \
- struct {SItype __l, __h;} __i; \
- } __xx; \
- __asm__ ("mulwx %2,%0" \
- : "=r" (__xx.__ll) \
- : "%0" ((SItype) (u)), \
- "r" ((SItype) (v))); \
- (w1) = __xx.__i.__h; (w0) = __xx.__i.__l;})
-#define __umulsidi3(u, v) \
- ({UDItype __w; \
- __asm__ ("mulwux %2,%0" \
- : "=r" (__w) \
- : "%0" ((USItype) (u)), \
- "r" ((USItype) (v))); \
- __w; })
-#endif /* __clipper__ */
-
-#if defined (__gmicro__) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("add.w %5,%1\n\taddx %3,%0" \
- : "=g" ((USItype) (sh)), \
- "=&g" ((USItype) (sl)) \
- : "%0" ((USItype) (ah)), \
- "g" ((USItype) (bh)), \
- "%1" ((USItype) (al)), \
- "g" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("sub.w %5,%1\n\tsubx %3,%0" \
- : "=g" ((USItype) (sh)), \
- "=&g" ((USItype) (sl)) \
- : "0" ((USItype) (ah)), \
- "g" ((USItype) (bh)), \
- "1" ((USItype) (al)), \
- "g" ((USItype) (bl)))
-#define umul_ppmm(ph, pl, m0, m1) \
- __asm__ ("mulx %3,%0,%1" \
- : "=g" ((USItype) (ph)), \
- "=r" ((USItype) (pl)) \
- : "%0" ((USItype) (m0)), \
- "g" ((USItype) (m1)))
-#define udiv_qrnnd(q, r, nh, nl, d) \
- __asm__ ("divx %4,%0,%1" \
- : "=g" ((USItype) (q)), \
- "=r" ((USItype) (r)) \
- : "1" ((USItype) (nh)), \
- "0" ((USItype) (nl)), \
- "g" ((USItype) (d)))
-#define count_leading_zeros(count, x) \
- __asm__ ("bsch/1 %1,%0" \
- : "=g" (count) \
- : "g" ((USItype) (x)), \
- "0" ((USItype) 0))
-#endif
-
-#if defined (__hppa) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("add %4,%5,%1\n\taddc %2,%3,%0" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%rM" ((USItype) (ah)), \
- "rM" ((USItype) (bh)), \
- "%rM" ((USItype) (al)), \
- "rM" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("sub %4,%5,%1\n\tsubb %2,%3,%0" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "rM" ((USItype) (ah)), \
- "rM" ((USItype) (bh)), \
- "rM" ((USItype) (al)), \
- "rM" ((USItype) (bl)))
-#if defined (_PA_RISC1_1)
-#define umul_ppmm(w1, w0, u, v) \
- do { \
- union \
- { \
- UDItype __f; \
- struct {USItype __w1, __w0;} __w1w0; \
- } __t; \
- __asm__ ("xmpyu %1,%2,%0" \
- : "=x" (__t.__f) \
- : "x" ((USItype) (u)), \
- "x" ((USItype) (v))); \
- (w1) = __t.__w1w0.__w1; \
- (w0) = __t.__w1w0.__w0; \
- } while (0)
-#define UMUL_TIME 8
-#else
-#define UMUL_TIME 30
-#endif
-#define UDIV_TIME 40
-#define count_leading_zeros(count, x) \
- do { \
- USItype __tmp; \
- __asm__ ( \
- "ldi 1,%0\n" \
-" extru,= %1,15,16,%%r0 ; Bits 31..16 zero?\n" \
-" extru,tr %1,15,16,%1 ; No. Shift down, skip add.\n"\
-" ldo 16(%0),%0 ; Yes. Perform add.\n" \
-" extru,= %1,23,8,%%r0 ; Bits 15..8 zero?\n" \
-" extru,tr %1,23,8,%1 ; No. Shift down, skip add.\n"\
-" ldo 8(%0),%0 ; Yes. Perform add.\n" \
-" extru,= %1,27,4,%%r0 ; Bits 7..4 zero?\n" \
-" extru,tr %1,27,4,%1 ; No. Shift down, skip add.\n"\
-" ldo 4(%0),%0 ; Yes. Perform add.\n" \
-" extru,= %1,29,2,%%r0 ; Bits 3..2 zero?\n" \
-" extru,tr %1,29,2,%1 ; No. Shift down, skip add.\n"\
-" ldo 2(%0),%0 ; Yes. Perform add.\n" \
-" extru %1,30,1,%1 ; Extract bit 1.\n" \
-" sub %0,%1,%0 ; Subtract it.\n" \
- : "=r" (count), "=r" (__tmp) : "1" (x)); \
- } while (0)
-#endif
-
-#if (defined (__i370__) || defined (__mvs__)) && W_TYPE_SIZE == 32
-#define umul_ppmm(xh, xl, m0, m1) \
- do { \
- union {UDItype __ll; \
- struct {USItype __h, __l;} __i; \
- } __xx; \
- USItype __m0 = (m0), __m1 = (m1); \
- __asm__ ("mr %0,%3" \
- : "=r" (__xx.__i.__h), \
- "=r" (__xx.__i.__l) \
- : "%1" (__m0), \
- "r" (__m1)); \
- (xh) = __xx.__i.__h; (xl) = __xx.__i.__l; \
- (xh) += ((((SItype) __m0 >> 31) & __m1) \
- + (((SItype) __m1 >> 31) & __m0)); \
- } while (0)
-#define smul_ppmm(xh, xl, m0, m1) \
- do { \
- union {DItype __ll; \
- struct {USItype __h, __l;} __i; \
- } __xx; \
- __asm__ ("mr %0,%3" \
- : "=r" (__xx.__i.__h), \
- "=r" (__xx.__i.__l) \
- : "%1" (m0), \
- "r" (m1)); \
- (xh) = __xx.__i.__h; (xl) = __xx.__i.__l; \
- } while (0)
-#define sdiv_qrnnd(q, r, n1, n0, d) \
- do { \
- union {DItype __ll; \
- struct {USItype __h, __l;} __i; \
- } __xx; \
- __xx.__i.__h = n1; __xx.__i.__l = n0; \
- __asm__ ("dr %0,%2" \
- : "=r" (__xx.__ll) \
- : "0" (__xx.__ll), "r" (d)); \
- (q) = __xx.__i.__l; (r) = __xx.__i.__h; \
- } while (0)
-#endif
-
-#if (defined (__i386__) || defined (__i486__)) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("addl %5,%1\n\tadcl %3,%0" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%0" ((USItype) (ah)), \
- "g" ((USItype) (bh)), \
- "%1" ((USItype) (al)), \
- "g" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("subl %5,%1\n\tsbbl %3,%0" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "0" ((USItype) (ah)), \
- "g" ((USItype) (bh)), \
- "1" ((USItype) (al)), \
- "g" ((USItype) (bl)))
-#define umul_ppmm(w1, w0, u, v) \
- __asm__ ("mull %3" \
- : "=a" ((USItype) (w0)), \
- "=d" ((USItype) (w1)) \
- : "%0" ((USItype) (u)), \
- "rm" ((USItype) (v)))
-#define udiv_qrnnd(q, r, n1, n0, dv) \
- __asm__ ("divl %4" \
- : "=a" ((USItype) (q)), \
- "=d" ((USItype) (r)) \
- : "0" ((USItype) (n0)), \
- "1" ((USItype) (n1)), \
- "rm" ((USItype) (dv)))
-#define count_leading_zeros(count, x) \
- do { \
- USItype __cbtmp; \
- __asm__ ("bsrl %1,%0" \
- : "=r" (__cbtmp) : "rm" ((USItype) (x))); \
- (count) = __cbtmp ^ 31; \
- } while (0)
-#define count_trailing_zeros(count, x) \
- __asm__ ("bsfl %1,%0" : "=r" (count) : "rm" ((USItype)(x)))
-#define UMUL_TIME 40
-#define UDIV_TIME 40
-#endif /* 80x86 */
-
-#if defined (__i860__) && W_TYPE_SIZE == 32
-#if 0
-/* Make sure these patterns really improve the code before
- switching them on. */
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- do { \
- union \
- { \
- DItype __ll; \
- struct {USItype __l, __h;} __i; \
- } __a, __b, __s; \
- __a.__i.__l = (al); \
- __a.__i.__h = (ah); \
- __b.__i.__l = (bl); \
- __b.__i.__h = (bh); \
- __asm__ ("fiadd.dd %1,%2,%0" \
- : "=f" (__s.__ll) \
- : "%f" (__a.__ll), "f" (__b.__ll)); \
- (sh) = __s.__i.__h; \
- (sl) = __s.__i.__l; \
- } while (0)
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- do { \
- union \
- { \
- DItype __ll; \
- struct {USItype __l, __h;} __i; \
- } __a, __b, __s; \
- __a.__i.__l = (al); \
- __a.__i.__h = (ah); \
- __b.__i.__l = (bl); \
- __b.__i.__h = (bh); \
- __asm__ ("fisub.dd %1,%2,%0" \
- : "=f" (__s.__ll) \
- : "%f" (__a.__ll), "f" (__b.__ll)); \
- (sh) = __s.__i.__h; \
- (sl) = __s.__i.__l; \
- } while (0)
-#endif
-#endif /* __i860__ */
-
-#if defined (__i960__) && W_TYPE_SIZE == 32
-#define umul_ppmm(w1, w0, u, v) \
- ({union {UDItype __ll; \
- struct {USItype __l, __h;} __i; \
- } __xx; \
- __asm__ ("emul %2,%1,%0" \
- : "=d" (__xx.__ll) \
- : "%dI" ((USItype) (u)), \
- "dI" ((USItype) (v))); \
- (w1) = __xx.__i.__h; (w0) = __xx.__i.__l;})
-#define __umulsidi3(u, v) \
- ({UDItype __w; \
- __asm__ ("emul %2,%1,%0" \
- : "=d" (__w) \
- : "%dI" ((USItype) (u)), \
- "dI" ((USItype) (v))); \
- __w; })
-#endif /* __i960__ */
-
-#if defined (__M32R__) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- /* The cmp clears the condition bit. */ \
- __asm__ ("cmp %0,%0\n\taddx %%5,%1\n\taddx %%3,%0" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%0" ((USItype) (ah)), \
- "r" ((USItype) (bh)), \
- "%1" ((USItype) (al)), \
- "r" ((USItype) (bl)) \
- : "cbit")
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- /* The cmp clears the condition bit. */ \
- __asm__ ("cmp %0,%0\n\tsubx %5,%1\n\tsubx %3,%0" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "0" ((USItype) (ah)), \
- "r" ((USItype) (bh)), \
- "1" ((USItype) (al)), \
- "r" ((USItype) (bl)) \
- : "cbit")
-#endif /* __M32R__ */
-
-#if defined (__mc68000__) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("add%.l %5,%1\n\taddx%.l %3,%0" \
- : "=d" ((USItype) (sh)), \
- "=&d" ((USItype) (sl)) \
- : "%0" ((USItype) (ah)), \
- "d" ((USItype) (bh)), \
- "%1" ((USItype) (al)), \
- "g" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("sub%.l %5,%1\n\tsubx%.l %3,%0" \
- : "=d" ((USItype) (sh)), \
- "=&d" ((USItype) (sl)) \
- : "0" ((USItype) (ah)), \
- "d" ((USItype) (bh)), \
- "1" ((USItype) (al)), \
- "g" ((USItype) (bl)))
-
-/* The '020, '030, '040 and CPU32 have 32x32->64 and 64/32->32q-32r. */
-#if defined (__mc68020__) || defined(mc68020) \
- || defined(__mc68030__) || defined(mc68030) \
- || defined(__mc68040__) || defined(mc68040) \
- || defined(__mcpu32__) || defined(mcpu32) \
- || defined(__NeXT__)
-#define umul_ppmm(w1, w0, u, v) \
- __asm__ ("mulu%.l %3,%1:%0" \
- : "=d" ((USItype) (w0)), \
- "=d" ((USItype) (w1)) \
- : "%0" ((USItype) (u)), \
- "dmi" ((USItype) (v)))
-#define UMUL_TIME 45
-#define udiv_qrnnd(q, r, n1, n0, d) \
- __asm__ ("divu%.l %4,%1:%0" \
- : "=d" ((USItype) (q)), \
- "=d" ((USItype) (r)) \
- : "0" ((USItype) (n0)), \
- "1" ((USItype) (n1)), \
- "dmi" ((USItype) (d)))
-#define UDIV_TIME 90
-#define sdiv_qrnnd(q, r, n1, n0, d) \
- __asm__ ("divs%.l %4,%1:%0" \
- : "=d" ((USItype) (q)), \
- "=d" ((USItype) (r)) \
- : "0" ((USItype) (n0)), \
- "1" ((USItype) (n1)), \
- "dmi" ((USItype) (d)))
-
-#else /* not mc68020 */
-#if !defined(__mcf5200__)
-/* %/ inserts REGISTER_PREFIX, %# inserts IMMEDIATE_PREFIX. */
-#define umul_ppmm(xh, xl, a, b) \
- __asm__ ("| Inlined umul_ppmm\n" \
- " move%.l %2,%/d0\n" \
- " move%.l %3,%/d1\n" \
- " move%.l %/d0,%/d2\n" \
- " swap %/d0\n" \
- " move%.l %/d1,%/d3\n" \
- " swap %/d1\n" \
- " move%.w %/d2,%/d4\n" \
- " mulu %/d3,%/d4\n" \
- " mulu %/d1,%/d2\n" \
- " mulu %/d0,%/d3\n" \
- " mulu %/d0,%/d1\n" \
- " move%.l %/d4,%/d0\n" \
- " eor%.w %/d0,%/d0\n" \
- " swap %/d0\n" \
- " add%.l %/d0,%/d2\n" \
- " add%.l %/d3,%/d2\n" \
- " jcc 1f\n" \
- " add%.l %#65536,%/d1\n" \
- "1: swap %/d2\n" \
- " moveq %#0,%/d0\n" \
- " move%.w %/d2,%/d0\n" \
- " move%.w %/d4,%/d2\n" \
- " move%.l %/d2,%1\n" \
- " add%.l %/d1,%/d0\n" \
- " move%.l %/d0,%0" \
- : "=g" ((USItype) (xh)), \
- "=g" ((USItype) (xl)) \
- : "g" ((USItype) (a)), \
- "g" ((USItype) (b)) \
- : "d0", "d1", "d2", "d3", "d4")
-#define UMUL_TIME 100
-#define UDIV_TIME 400
-#endif /* not mcf5200 */
-#endif /* not mc68020 */
-
-/* The '020, '030, '040 and '060 have bitfield insns. */
-#if defined (__mc68020__) || defined(mc68020) \
- || defined(__mc68030__) || defined(mc68030) \
- || defined(__mc68040__) || defined(mc68040) \
- || defined(__mc68060__) || defined(mc68060) \
- || defined(__NeXT__)
-#define count_leading_zeros(count, x) \
- __asm__ ("bfffo %1{%b2:%b2},%0" \
- : "=d" ((USItype) (count)) \
- : "od" ((USItype) (x)), "n" (0))
-#endif
-#endif /* mc68000 */
-
-#if defined (__m88000__) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("addu.co %1,%r4,%r5\n\taddu.ci %0,%r2,%r3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%rJ" ((USItype) (ah)), \
- "rJ" ((USItype) (bh)), \
- "%rJ" ((USItype) (al)), \
- "rJ" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("subu.co %1,%r4,%r5\n\tsubu.ci %0,%r2,%r3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "rJ" ((USItype) (ah)), \
- "rJ" ((USItype) (bh)), \
- "rJ" ((USItype) (al)), \
- "rJ" ((USItype) (bl)))
-#define count_leading_zeros(count, x) \
- do { \
- USItype __cbtmp; \
- __asm__ ("ff1 %0,%1" \
- : "=r" (__cbtmp) \
- : "r" ((USItype) (x))); \
- (count) = __cbtmp ^ 31; \
- } while (0)
-#define COUNT_LEADING_ZEROS_0 63 /* sic */
-#if defined (__mc88110__)
-#define umul_ppmm(wh, wl, u, v) \
- do { \
- union {UDItype __ll; \
- struct {USItype __h, __l;} __i; \
- } __xx; \
- __asm__ ("mulu.d %0,%1,%2" \
- : "=r" (__xx.__ll) \
- : "r" ((USItype) (u)), \
- "r" ((USItype) (v))); \
- (wh) = __xx.__i.__h; \
- (wl) = __xx.__i.__l; \
- } while (0)
-#define udiv_qrnnd(q, r, n1, n0, d) \
- ({union {UDItype __ll; \
- struct {USItype __h, __l;} __i; \
- } __xx; \
- USItype __q; \
- __xx.__i.__h = (n1); __xx.__i.__l = (n0); \
- __asm__ ("divu.d %0,%1,%2" \
- : "=r" (__q) \
- : "r" (__xx.__ll), \
- "r" ((USItype) (d))); \
- (r) = (n0) - __q * (d); (q) = __q; })
-#define UMUL_TIME 5
-#define UDIV_TIME 25
-#else
-#define UMUL_TIME 17
-#define UDIV_TIME 150
-#endif /* __mc88110__ */
-#endif /* __m88000__ */
-
-#if defined (__mips__) && W_TYPE_SIZE == 32
-#define umul_ppmm(w1, w0, u, v) \
- __asm__ ("multu %2,%3" \
- : "=l" ((USItype) (w0)), \
- "=h" ((USItype) (w1)) \
- : "d" ((USItype) (u)), \
- "d" ((USItype) (v)))
-#define UMUL_TIME 10
-#define UDIV_TIME 100
-#endif /* __mips__ */
-
-#if defined (__ns32000__) && W_TYPE_SIZE == 32
-#define umul_ppmm(w1, w0, u, v) \
- ({union {UDItype __ll; \
- struct {USItype __l, __h;} __i; \
- } __xx; \
- __asm__ ("meid %2,%0" \
- : "=g" (__xx.__ll) \
- : "%0" ((USItype) (u)), \
- "g" ((USItype) (v))); \
- (w1) = __xx.__i.__h; (w0) = __xx.__i.__l;})
-#define __umulsidi3(u, v) \
- ({UDItype __w; \
- __asm__ ("meid %2,%0" \
- : "=g" (__w) \
- : "%0" ((USItype) (u)), \
- "g" ((USItype) (v))); \
- __w; })
-#define udiv_qrnnd(q, r, n1, n0, d) \
- ({union {UDItype __ll; \
- struct {USItype __l, __h;} __i; \
- } __xx; \
- __xx.__i.__h = (n1); __xx.__i.__l = (n0); \
- __asm__ ("deid %2,%0" \
- : "=g" (__xx.__ll) \
- : "0" (__xx.__ll), \
- "g" ((USItype) (d))); \
- (r) = __xx.__i.__l; (q) = __xx.__i.__h; })
-#define count_trailing_zeros(count,x) \
- do {
- __asm__ ("ffsd %2,%0" \
- : "=r" ((USItype) (count)) \
- : "0" ((USItype) 0), \
- "r" ((USItype) (x))); \
- } while (0)
-#endif /* __ns32000__ */
-
-#if (defined (_ARCH_PPC) || defined (_IBMR2))
-#if W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- do { \
- if (__builtin_constant_p (bh) && (bh) == 0) \
- __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%r" ((USItype) (ah)), \
- "%r" ((USItype) (al)), \
- "rI" ((USItype) (bl))); \
- else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \
- __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%r" ((USItype) (ah)), \
- "%r" ((USItype) (al)), \
- "rI" ((USItype) (bl))); \
- else \
- __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%r" ((USItype) (ah)), \
- "r" ((USItype) (bh)), \
- "%r" ((USItype) (al)), \
- "rI" ((USItype) (bl))); \
- } while (0)
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- do { \
- if (__builtin_constant_p (ah) && (ah) == 0) \
- __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "r" ((USItype) (bh)), \
- "rI" ((USItype) (al)), \
- "r" ((USItype) (bl))); \
- else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0) \
- __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "r" ((USItype) (bh)), \
- "rI" ((USItype) (al)), \
- "r" ((USItype) (bl))); \
- else if (__builtin_constant_p (bh) && (bh) == 0) \
- __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "r" ((USItype) (ah)), \
- "rI" ((USItype) (al)), \
- "r" ((USItype) (bl))); \
- else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \
- __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "r" ((USItype) (ah)), \
- "rI" ((USItype) (al)), \
- "r" ((USItype) (bl))); \
- else \
- __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "r" ((USItype) (ah)), \
- "r" ((USItype) (bh)), \
- "rI" ((USItype) (al)), \
- "r" ((USItype) (bl))); \
- } while (0)
-#endif /* W_TYPE_SIZE */
-#define count_leading_zeros(count, x) \
- __asm__ ("{cntlz|cntlzw} %0,%1" \
- : "=r" ((USItype) (count)) \
- : "r" ((USItype) (x)))
-#define COUNT_LEADING_ZEROS_0 32
-#if defined (_ARCH_PPC)
-#define umul_ppmm(ph, pl, m0, m1) \
- do { \
- USItype __m0 = (m0), __m1 = (m1); \
- __asm__ ("mulhwu %0,%1,%2" \
- : "=r" ((USItype) ph) \
- : "%r" (__m0), \
- "r" (__m1)); \
- (pl) = __m0 * __m1; \
- } while (0)
-#define UMUL_TIME 15
-#define smul_ppmm(ph, pl, m0, m1) \
- do { \
- SItype __m0 = (m0), __m1 = (m1); \
- __asm__ ("mulhw %0,%1,%2" \
- : "=r" ((SItype) ph) \
- : "%r" (__m0), \
- "r" (__m1)); \
- (pl) = __m0 * __m1; \
- } while (0)
-#define SMUL_TIME 14
-#define UDIV_TIME 120
-#elif defined (_ARCH_PWR)
-#define umul_ppmm(xh, xl, m0, m1) \
- do { \
- USItype __m0 = (m0), __m1 = (m1); \
- __asm__ ("mul %0,%2,%3" \
- : "=r" ((USItype) (xh)), \
- "=q" ((USItype) (xl)) \
- : "r" (__m0), \
- "r" (__m1)); \
- (xh) += ((((SItype) __m0 >> 31) & __m1) \
- + (((SItype) __m1 >> 31) & __m0)); \
- } while (0)
-#define UMUL_TIME 8
-#define smul_ppmm(xh, xl, m0, m1) \
- __asm__ ("mul %0,%2,%3" \
- : "=r" ((SItype) (xh)), \
- "=q" ((SItype) (xl)) \
- : "r" (m0), \
- "r" (m1))
-#define SMUL_TIME 4
-#define sdiv_qrnnd(q, r, nh, nl, d) \
- __asm__ ("div %0,%2,%4" \
- : "=r" ((SItype) (q)), "=q" ((SItype) (r)) \
- : "r" ((SItype) (nh)), "1" ((SItype) (nl)), "r" ((SItype) (d)))
-#define UDIV_TIME 100
-#endif
-#endif /* Power architecture variants. */
-
-#if defined (__pyr__) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("addw %5,%1\n\taddwc %3,%0" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%0" ((USItype) (ah)), \
- "g" ((USItype) (bh)), \
- "%1" ((USItype) (al)), \
- "g" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("subw %5,%1\n\tsubwb %3,%0" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "0" ((USItype) (ah)), \
- "g" ((USItype) (bh)), \
- "1" ((USItype) (al)), \
- "g" ((USItype) (bl)))
-/* This insn works on Pyramids with AP, XP, or MI CPUs, but not with SP. */
-#define umul_ppmm(w1, w0, u, v) \
- ({union {UDItype __ll; \
- struct {USItype __h, __l;} __i; \
- } __xx; \
- __asm__ ("movw %1,%R0\n\tuemul %2,%0" \
- : "=&r" (__xx.__ll) \
- : "g" ((USItype) (u)), \
- "g" ((USItype) (v))); \
- (w1) = __xx.__i.__h; (w0) = __xx.__i.__l;})
-#endif /* __pyr__ */
-
-#if defined (__ibm032__) /* RT/ROMP */ && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("a %1,%5\n\tae %0,%3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%0" ((USItype) (ah)), \
- "r" ((USItype) (bh)), \
- "%1" ((USItype) (al)), \
- "r" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("s %1,%5\n\tse %0,%3" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "0" ((USItype) (ah)), \
- "r" ((USItype) (bh)), \
- "1" ((USItype) (al)), \
- "r" ((USItype) (bl)))
-#define umul_ppmm(ph, pl, m0, m1) \
- do { \
- USItype __m0 = (m0), __m1 = (m1); \
- __asm__ ( \
- "s r2,r2\n" \
-" mts r10,%2\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" m r2,%3\n" \
-" cas %0,r2,r0\n" \
-" mfs r10,%1" \
- : "=r" ((USItype) (ph)), \
- "=r" ((USItype) (pl)) \
- : "%r" (__m0), \
- "r" (__m1) \
- : "r2"); \
- (ph) += ((((SItype) __m0 >> 31) & __m1) \
- + (((SItype) __m1 >> 31) & __m0)); \
- } while (0)
-#define UMUL_TIME 20
-#define UDIV_TIME 200
-#define count_leading_zeros(count, x) \
- do { \
- if ((x) >= 0x10000) \
- __asm__ ("clz %0,%1" \
- : "=r" ((USItype) (count)) \
- : "r" ((USItype) (x) >> 16)); \
- else \
- { \
- __asm__ ("clz %0,%1" \
- : "=r" ((USItype) (count)) \
- : "r" ((USItype) (x))); \
- (count) += 16; \
- } \
- } while (0)
-#endif
-
-#if defined (__sh2__) && W_TYPE_SIZE == 32
-#define umul_ppmm(w1, w0, u, v) \
- __asm__ ( \
- "dmulu.l %2,%3\n\tsts macl,%1\n\tsts mach,%0" \
- : "=r" ((USItype)(w1)), \
- "=r" ((USItype)(w0)) \
- : "r" ((USItype)(u)), \
- "r" ((USItype)(v)) \
- : "macl", "mach")
-#define UMUL_TIME 5
-#endif
-
-#if defined (__SH5__) && __SHMEDIA__ && W_TYPE_SIZE == 32
-#define __umulsidi3(u,v) ((UDItype)(USItype)u*(USItype)v)
-#define count_leading_zeros(count, x) \
- do \
- { \
- UDItype x_ = (USItype)(x); \
- SItype c_; \
- \
- __asm__ ("nsb %1, %0" : "=r" (c_) : "r" (x_)); \
- (count) = c_ - 31; \
- } \
- while (0)
-#define COUNT_LEADING_ZEROS_0 32
-#endif
-
-#if defined (__sparc__) && !defined (__arch64__) && !defined (__sparcv9) \
- && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("addcc %r4,%5,%1\n\taddx %r2,%3,%0" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "%rJ" ((USItype) (ah)), \
- "rI" ((USItype) (bh)), \
- "%rJ" ((USItype) (al)), \
- "rI" ((USItype) (bl)) \
- __CLOBBER_CC)
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("subcc %r4,%5,%1\n\tsubx %r2,%3,%0" \
- : "=r" ((USItype) (sh)), \
- "=&r" ((USItype) (sl)) \
- : "rJ" ((USItype) (ah)), \
- "rI" ((USItype) (bh)), \
- "rJ" ((USItype) (al)), \
- "rI" ((USItype) (bl)) \
- __CLOBBER_CC)
-#if defined (__sparc_v8__)
-#define umul_ppmm(w1, w0, u, v) \
- __asm__ ("umul %2,%3,%1;rd %%y,%0" \
- : "=r" ((USItype) (w1)), \
- "=r" ((USItype) (w0)) \
- : "r" ((USItype) (u)), \
- "r" ((USItype) (v)))
-#define udiv_qrnnd(__q, __r, __n1, __n0, __d) \
- __asm__ ("mov %2,%%y;nop;nop;nop;udiv %3,%4,%0;umul %0,%4,%1;sub %3,%1,%1"\
- : "=&r" ((USItype) (__q)), \
- "=&r" ((USItype) (__r)) \
- : "r" ((USItype) (__n1)), \
- "r" ((USItype) (__n0)), \
- "r" ((USItype) (__d)))
-#else
-#if defined (__sparclite__)
-/* This has hardware multiply but not divide. It also has two additional
- instructions scan (ffs from high bit) and divscc. */
-#define umul_ppmm(w1, w0, u, v) \
- __asm__ ("umul %2,%3,%1;rd %%y,%0" \
- : "=r" ((USItype) (w1)), \
- "=r" ((USItype) (w0)) \
- : "r" ((USItype) (u)), \
- "r" ((USItype) (v)))
-#define udiv_qrnnd(q, r, n1, n0, d) \
- __asm__ ("! Inlined udiv_qrnnd\n" \
-" wr %%g0,%2,%%y ! Not a delayed write for sparclite\n" \
-" tst %%g0\n" \
-" divscc %3,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%%g1\n" \
-" divscc %%g1,%4,%0\n" \
-" rd %%y,%1\n" \
-" bl,a 1f\n" \
-" add %1,%4,%1\n" \
-"1: ! End of inline udiv_qrnnd" \
- : "=r" ((USItype) (q)), \
- "=r" ((USItype) (r)) \
- : "r" ((USItype) (n1)), \
- "r" ((USItype) (n0)), \
- "rI" ((USItype) (d)) \
- : "g1" __AND_CLOBBER_CC)
-#define UDIV_TIME 37
-#define count_leading_zeros(count, x) \
- do { \
- __asm__ ("scan %1,1,%0" \
- : "=r" ((USItype) (count)) \
- : "r" ((USItype) (x))); \
- } while (0)
-/* Early sparclites return 63 for an argument of 0, but they warn that future
- implementations might change this. Therefore, leave COUNT_LEADING_ZEROS_0
- undefined. */
-#else
-/* SPARC without integer multiplication and divide instructions.
- (i.e. at least Sun4/20,40,60,65,75,110,260,280,330,360,380,470,490) */
-#define umul_ppmm(w1, w0, u, v) \
- __asm__ ("! Inlined umul_ppmm\n" \
-" wr %%g0,%2,%%y ! SPARC has 0-3 delay insn after a wr\n"\
-" sra %3,31,%%o5 ! Don't move this insn\n" \
-" and %2,%%o5,%%o5 ! Don't move this insn\n" \
-" andcc %%g0,0,%%g1 ! Don't move this insn\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,%3,%%g1\n" \
-" mulscc %%g1,0,%%g1\n" \
-" add %%g1,%%o5,%0\n" \
-" rd %%y,%1" \
- : "=r" ((USItype) (w1)), \
- "=r" ((USItype) (w0)) \
- : "%rI" ((USItype) (u)), \
- "r" ((USItype) (v)) \
- : "g1", "o5" __AND_CLOBBER_CC)
-#define UMUL_TIME 39 /* 39 instructions */
-/* It's quite necessary to add this much assembler for the sparc.
- The default udiv_qrnnd (in C) is more than 10 times slower! */
-#define udiv_qrnnd(__q, __r, __n1, __n0, __d) \
- __asm__ ("! Inlined udiv_qrnnd\n" \
-" mov 32,%%g1\n" \
-" subcc %1,%2,%%g0\n" \
-"1: bcs 5f\n" \
-" addxcc %0,%0,%0 ! shift n1n0 and a q-bit in lsb\n" \
-" sub %1,%2,%1 ! this kills msb of n\n" \
-" addx %1,%1,%1 ! so this can't give carry\n" \
-" subcc %%g1,1,%%g1\n" \
-"2: bne 1b\n" \
-" subcc %1,%2,%%g0\n" \
-" bcs 3f\n" \
-" addxcc %0,%0,%0 ! shift n1n0 and a q-bit in lsb\n" \
-" b 3f\n" \
-" sub %1,%2,%1 ! this kills msb of n\n" \
-"4: sub %1,%2,%1\n" \
-"5: addxcc %1,%1,%1\n" \
-" bcc 2b\n" \
-" subcc %%g1,1,%%g1\n" \
-"! Got carry from n. Subtract next step to cancel this carry.\n" \
-" bne 4b\n" \
-" addcc %0,%0,%0 ! shift n1n0 and a 0-bit in lsb\n" \
-" sub %1,%2,%1\n" \
-"3: xnor %0,0,%0\n" \
-" ! End of inline udiv_qrnnd" \
- : "=&r" ((USItype) (__q)), \
- "=&r" ((USItype) (__r)) \
- : "r" ((USItype) (__d)), \
- "1" ((USItype) (__n1)), \
- "0" ((USItype) (__n0)) : "g1" __AND_CLOBBER_CC)
-#define UDIV_TIME (3+7*32) /* 7 instructions/iteration. 32 iterations. */
-#endif /* __sparclite__ */
-#endif /* __sparc_v8__ */
-#endif /* sparc32 */
-
-#if ((defined (__sparc__) && defined (__arch64__)) || defined (__sparcv9)) \
- && W_TYPE_SIZE == 64
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("addcc %r4,%5,%1\n\t" \
- "add %r2,%3,%0\n\t" \
- "bcs,a,pn %%xcc, 1f\n\t" \
- "add %0, 1, %0\n" \
- "1:" \
- : "=r" ((UDItype)(sh)), \
- "=&r" ((UDItype)(sl)) \
- : "%rJ" ((UDItype)(ah)), \
- "rI" ((UDItype)(bh)), \
- "%rJ" ((UDItype)(al)), \
- "rI" ((UDItype)(bl)) \
- __CLOBBER_CC)
-
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("subcc %r4,%5,%1\n\t" \
- "sub %r2,%3,%0\n\t" \
- "bcs,a,pn %%xcc, 1f\n\t" \
- "sub %0, 1, %0\n\t" \
- "1:" \
- : "=r" ((UDItype)(sh)), \
- "=&r" ((UDItype)(sl)) \
- : "rJ" ((UDItype)(ah)), \
- "rI" ((UDItype)(bh)), \
- "rJ" ((UDItype)(al)), \
- "rI" ((UDItype)(bl)) \
- __CLOBBER_CC)
-
-#define umul_ppmm(wh, wl, u, v) \
- do { \
- UDItype tmp1, tmp2, tmp3, tmp4; \
- __asm__ __volatile__ ( \
- "srl %7,0,%3\n\t" \
- "mulx %3,%6,%1\n\t" \
- "srlx %6,32,%2\n\t" \
- "mulx %2,%3,%4\n\t" \
- "sllx %4,32,%5\n\t" \
- "srl %6,0,%3\n\t" \
- "sub %1,%5,%5\n\t" \
- "srlx %5,32,%5\n\t" \
- "addcc %4,%5,%4\n\t" \
- "srlx %7,32,%5\n\t" \
- "mulx %3,%5,%3\n\t" \
- "mulx %2,%5,%5\n\t" \
- "sethi %%hi(0x80000000),%2\n\t" \
- "addcc %4,%3,%4\n\t" \
- "srlx %4,32,%4\n\t" \
- "add %2,%2,%2\n\t" \
- "movcc %%xcc,%%g0,%2\n\t" \
- "addcc %5,%4,%5\n\t" \
- "sllx %3,32,%3\n\t" \
- "add %1,%3,%1\n\t" \
- "add %5,%2,%0" \
- : "=r" ((UDItype)(wh)), \
- "=&r" ((UDItype)(wl)), \
- "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3), "=&r" (tmp4) \
- : "r" ((UDItype)(u)), \
- "r" ((UDItype)(v)) \
- __CLOBBER_CC); \
- } while (0)
-#define UMUL_TIME 96
-#define UDIV_TIME 230
-#endif /* sparc64 */
-
-#if defined (__vax__) && W_TYPE_SIZE == 32
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("addl2 %5,%1\n\tadwc %3,%0" \
- : "=g" ((USItype) (sh)), \
- "=&g" ((USItype) (sl)) \
- : "%0" ((USItype) (ah)), \
- "g" ((USItype) (bh)), \
- "%1" ((USItype) (al)), \
- "g" ((USItype) (bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("subl2 %5,%1\n\tsbwc %3,%0" \
- : "=g" ((USItype) (sh)), \
- "=&g" ((USItype) (sl)) \
- : "0" ((USItype) (ah)), \
- "g" ((USItype) (bh)), \
- "1" ((USItype) (al)), \
- "g" ((USItype) (bl)))
-#define umul_ppmm(xh, xl, m0, m1) \
- do { \
- union { \
- UDItype __ll; \
- struct {USItype __l, __h;} __i; \
- } __xx; \
- USItype __m0 = (m0), __m1 = (m1); \
- __asm__ ("emul %1,%2,$0,%0" \
- : "=r" (__xx.__ll) \
- : "g" (__m0), \
- "g" (__m1)); \
- (xh) = __xx.__i.__h; \
- (xl) = __xx.__i.__l; \
- (xh) += ((((SItype) __m0 >> 31) & __m1) \
- + (((SItype) __m1 >> 31) & __m0)); \
- } while (0)
-#define sdiv_qrnnd(q, r, n1, n0, d) \
- do { \
- union {DItype __ll; \
- struct {SItype __l, __h;} __i; \
- } __xx; \
- __xx.__i.__h = n1; __xx.__i.__l = n0; \
- __asm__ ("ediv %3,%2,%0,%1" \
- : "=g" (q), "=g" (r) \
- : "g" (__xx.__ll), "g" (d)); \
- } while (0)
-#endif /* __vax__ */
-
-#if defined (__z8000__) && W_TYPE_SIZE == 16
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- __asm__ ("add %H1,%H5\n\tadc %H0,%H3" \
- : "=r" ((unsigned int)(sh)), \
- "=&r" ((unsigned int)(sl)) \
- : "%0" ((unsigned int)(ah)), \
- "r" ((unsigned int)(bh)), \
- "%1" ((unsigned int)(al)), \
- "rQR" ((unsigned int)(bl)))
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- __asm__ ("sub %H1,%H5\n\tsbc %H0,%H3" \
- : "=r" ((unsigned int)(sh)), \
- "=&r" ((unsigned int)(sl)) \
- : "0" ((unsigned int)(ah)), \
- "r" ((unsigned int)(bh)), \
- "1" ((unsigned int)(al)), \
- "rQR" ((unsigned int)(bl)))
-#define umul_ppmm(xh, xl, m0, m1) \
- do { \
- union {long int __ll; \
- struct {unsigned int __h, __l;} __i; \
- } __xx; \
- unsigned int __m0 = (m0), __m1 = (m1); \
- __asm__ ("mult %S0,%H3" \
- : "=r" (__xx.__i.__h), \
- "=r" (__xx.__i.__l) \
- : "%1" (__m0), \
- "rQR" (__m1)); \
- (xh) = __xx.__i.__h; (xl) = __xx.__i.__l; \
- (xh) += ((((signed int) __m0 >> 15) & __m1) \
- + (((signed int) __m1 >> 15) & __m0)); \
- } while (0)
-#endif /* __z8000__ */
-
-#endif /* __GNUC__ */
-
-/* If this machine has no inline assembler, use C macros. */
-
-#if !defined (add_ssaaaa)
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- do { \
- UWtype __x; \
- __x = (al) + (bl); \
- (sh) = (ah) + (bh) + (__x < (al)); \
- (sl) = __x; \
- } while (0)
-#endif
-
-#if !defined (sub_ddmmss)
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- do { \
- UWtype __x; \
- __x = (al) - (bl); \
- (sh) = (ah) - (bh) - (__x > (al)); \
- (sl) = __x; \
- } while (0)
-#endif
-
-#if !defined (umul_ppmm)
-#define umul_ppmm(w1, w0, u, v) \
- do { \
- UWtype __x0, __x1, __x2, __x3; \
- UHWtype __ul, __vl, __uh, __vh; \
- \
- __ul = __ll_lowpart (u); \
- __uh = __ll_highpart (u); \
- __vl = __ll_lowpart (v); \
- __vh = __ll_highpart (v); \
- \
- __x0 = (UWtype) __ul * __vl; \
- __x1 = (UWtype) __ul * __vh; \
- __x2 = (UWtype) __uh * __vl; \
- __x3 = (UWtype) __uh * __vh; \
- \
- __x1 += __ll_highpart (__x0);/* this can't give carry */ \
- __x1 += __x2; /* but this indeed can */ \
- if (__x1 < __x2) /* did we get it? */ \
- __x3 += __ll_B; /* yes, add it in the proper pos. */ \
- \
- (w1) = __x3 + __ll_highpart (__x1); \
- (w0) = __ll_lowpart (__x1) * __ll_B + __ll_lowpart (__x0); \
- } while (0)
-#endif
-
-#if !defined (__umulsidi3)
-#define __umulsidi3(u, v) \
- ({DWunion __w; \
- umul_ppmm (__w.s.high, __w.s.low, u, v); \
- __w.ll; })
-#endif
-
-/* Define this unconditionally, so it can be used for debugging. */
-#define __udiv_qrnnd_c(q, r, n1, n0, d) \
- do { \
- UWtype __d1, __d0, __q1, __q0; \
- UWtype __r1, __r0, __m; \
- __d1 = __ll_highpart (d); \
- __d0 = __ll_lowpart (d); \
- \
- __r1 = (n1) % __d1; \
- __q1 = (n1) / __d1; \
- __m = (UWtype) __q1 * __d0; \
- __r1 = __r1 * __ll_B | __ll_highpart (n0); \
- if (__r1 < __m) \
- { \
- __q1--, __r1 += (d); \
- if (__r1 >= (d)) /* i.e. we didn't get carry when adding to __r1 */\
- if (__r1 < __m) \
- __q1--, __r1 += (d); \
- } \
- __r1 -= __m; \
- \
- __r0 = __r1 % __d1; \
- __q0 = __r1 / __d1; \
- __m = (UWtype) __q0 * __d0; \
- __r0 = __r0 * __ll_B | __ll_lowpart (n0); \
- if (__r0 < __m) \
- { \
- __q0--, __r0 += (d); \
- if (__r0 >= (d)) \
- if (__r0 < __m) \
- __q0--, __r0 += (d); \
- } \
- __r0 -= __m; \
- \
- (q) = (UWtype) __q1 * __ll_B | __q0; \
- (r) = __r0; \
- } while (0)
-
-/* If the processor has no udiv_qrnnd but sdiv_qrnnd, go through
- __udiv_w_sdiv (defined in libgcc or elsewhere). */
-#if !defined (udiv_qrnnd) && defined (sdiv_qrnnd)
-#define udiv_qrnnd(q, r, nh, nl, d) \
- do { \
- USItype __r; \
- (q) = __udiv_w_sdiv (&__r, nh, nl, d); \
- (r) = __r; \
- } while (0)
-#endif
-
-/* If udiv_qrnnd was not defined for this processor, use __udiv_qrnnd_c. */
-#if !defined (udiv_qrnnd)
-#define UDIV_NEEDS_NORMALIZATION 1
-#define udiv_qrnnd __udiv_qrnnd_c
-#endif
-
-#if !defined (count_leading_zeros)
-extern const UQItype __clz_tab[];
-#define count_leading_zeros(count, x) \
- do { \
- UWtype __xr = (x); \
- UWtype __a; \
- \
- if (W_TYPE_SIZE <= 32) \
- { \
- __a = __xr < ((UWtype)1<<2*__BITS4) \
- ? (__xr < ((UWtype)1<<__BITS4) ? 0 : __BITS4) \
- : (__xr < ((UWtype)1<<3*__BITS4) ? 2*__BITS4 : 3*__BITS4); \
- } \
- else \
- { \
- for (__a = W_TYPE_SIZE - 8; __a > 0; __a -= 8) \
- if (((__xr >> __a) & 0xff) != 0) \
- break; \
- } \
- \
- (count) = W_TYPE_SIZE - (__clz_tab[__xr >> __a] + __a); \
- } while (0)
-#define COUNT_LEADING_ZEROS_0 W_TYPE_SIZE
-#endif
-
-#if !defined (count_trailing_zeros)
-/* Define count_trailing_zeros using count_leading_zeros. The latter might be
- defined in asm, but if it is not, the C version above is good enough. */
-#define count_trailing_zeros(count, x) \
- do { \
- UWtype __ctz_x = (x); \
- UWtype __ctz_c; \
- count_leading_zeros (__ctz_c, __ctz_x & -__ctz_x); \
- (count) = W_TYPE_SIZE - 1 - __ctz_c; \
- } while (0)
-#endif
-
-#ifndef UDIV_NEEDS_NORMALIZATION
-#define UDIV_NEEDS_NORMALIZATION 0
-#endif
diff --git a/reactos/boot/freeldr/freeldr/math/powerpc.h b/reactos/boot/freeldr/freeldr/math/powerpc.h
deleted file mode 100644
index e2efe94b4e0..00000000000
--- a/reactos/boot/freeldr/freeldr/math/powerpc.h
+++ /dev/null
@@ -1,3208 +0,0 @@
-/* Definitions of target machine for GNU compiler for IA-32.
- Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
- 2001, 2002 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* The purpose of this file is to define the characteristics of the i386,
- independent of assembler syntax or operating system.
-
- Three other files build on this one to describe a specific assembler syntax:
- bsd386.h, att386.h, and sun386.h.
-
- The actual tm.h file for a particular system should include
- this file, and then the file for the appropriate assembler syntax.
-
- Many macros that specify assembler syntax are omitted entirely from
- this file because they really belong in the files for particular
- assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
- ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
- that start with ASM_ or end in ASM_OP. */
-
-/* Stubs for half-pic support if not OSF/1 reference platform. */
-
-#ifndef HALF_PIC_P
-#define HALF_PIC_P() 0
-#define HALF_PIC_NUMBER_PTRS 0
-#define HALF_PIC_NUMBER_REFS 0
-#define HALF_PIC_ENCODE(DECL)
-#define HALF_PIC_DECLARE(NAME)
-#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it")
-#define HALF_PIC_ADDRESS_P(X) 0
-#define HALF_PIC_PTR(X) (X)
-#define HALF_PIC_FINISH(STREAM)
-#endif
-
-/* Define the specific costs for a given cpu */
-
-struct processor_costs {
- const int add; /* cost of an add instruction */
- const int lea; /* cost of a lea instruction */
- const int shift_var; /* variable shift costs */
- const int shift_const; /* constant shift costs */
- const int mult_init; /* cost of starting a multiply */
- const int mult_bit; /* cost of multiply per each bit set */
- const int divide; /* cost of a divide/mod */
- int movsx; /* The cost of movsx operation. */
- int movzx; /* The cost of movzx operation. */
- const int large_insn; /* insns larger than this cost more */
- const int move_ratio; /* The threshold of number of scalar
- memory-to-memory move insns. */
- const int movzbl_load; /* cost of loading using movzbl */
- const int int_load[3]; /* cost of loading integer registers
- in QImode, HImode and SImode relative
- to reg-reg move (2). */
- const int int_store[3]; /* cost of storing integer register
- in QImode, HImode and SImode */
- const int fp_move; /* cost of reg,reg fld/fst */
- const int fp_load[3]; /* cost of loading FP register
- in SFmode, DFmode and XFmode */
- const int fp_store[3]; /* cost of storing FP register
- in SFmode, DFmode and XFmode */
- const int mmx_move; /* cost of moving MMX register. */
- const int mmx_load[2]; /* cost of loading MMX register
- in SImode and DImode */
- const int mmx_store[2]; /* cost of storing MMX register
- in SImode and DImode */
- const int sse_move; /* cost of moving SSE register. */
- const int sse_load[3]; /* cost of loading SSE register
- in SImode, DImode and TImode*/
- const int sse_store[3]; /* cost of storing SSE register
- in SImode, DImode and TImode*/
- const int mmxsse_to_integer; /* cost of moving mmxsse register to
- integer and vice versa. */
- const int prefetch_block; /* bytes moved to cache for prefetch. */
- const int simultaneous_prefetches; /* number of parallel prefetch
- operations. */
-};
-
-extern const struct processor_costs *ix86_cost;
-
-/* Run-time compilation parameters selecting different hardware subsets. */
-
-extern int target_flags;
-
-/* Macros used in the machine description to test the flags. */
-
-/* configure can arrange to make this 2, to force a 486. */
-
-#ifndef TARGET_CPU_DEFAULT
-#define TARGET_CPU_DEFAULT 0
-#endif
-
-/* Masks for the -m switches */
-#define MASK_80387 0x00000001 /* Hardware floating point */
-#define MASK_RTD 0x00000002 /* Use ret that pops args */
-#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
-#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
-#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
-#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
-#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
-#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
-#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
-#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
-#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
-#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
-#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
-#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
-#define MASK_MMX 0x00004000 /* Support MMX regs/builtins */
-#define MASK_MMX_SET 0x00008000
-#define MASK_SSE 0x00010000 /* Support SSE regs/builtins */
-#define MASK_SSE_SET 0x00020000
-#define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */
-#define MASK_SSE2_SET 0x00080000
-#define MASK_3DNOW 0x00100000 /* Support 3Dnow builtins */
-#define MASK_3DNOW_SET 0x00200000
-#define MASK_3DNOW_A 0x00400000 /* Support Athlon 3Dnow builtins */
-#define MASK_3DNOW_A_SET 0x00800000
-#define MASK_128BIT_LONG_DOUBLE 0x01000000 /* long double size is 128bit */
-#define MASK_64BIT 0x02000000 /* Produce 64bit code */
-/* ... overlap with subtarget options starts by 0x04000000. */
-#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
-
-/* Use the floating point instructions */
-#define TARGET_80387 (target_flags & MASK_80387)
-
-/* Compile using ret insn that pops args.
- This will not work unless you use prototypes at least
- for all functions that can take varying numbers of args. */
-#define TARGET_RTD (target_flags & MASK_RTD)
-
-/* Align doubles to a two word boundary. This breaks compatibility with
- the published ABI's for structures containing doubles, but produces
- faster code on the pentium. */
-#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
-
-/* Use push instructions to save outgoing args. */
-#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
-
-/* Accumulate stack adjustments to prologue/epilogue. */
-#define TARGET_ACCUMULATE_OUTGOING_ARGS \
- (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
-
-/* Put uninitialized locals into bss, not data.
- Meaningful only on svr3. */
-#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
-
-/* Use IEEE floating point comparisons. These handle correctly the cases
- where the result of a comparison is unordered. Normally SIGFPE is
- generated in such cases, in which case this isn't needed. */
-#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
-
-/* Functions that return a floating point value may return that value
- in the 387 FPU or in 386 integer registers. If set, this flag causes
- the 387 to be used, which is compatible with most calling conventions. */
-#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
-
-/* Long double is 128bit instead of 96bit, even when only 80bits are used.
- This mode wastes cache, but avoid misaligned data accesses and simplifies
- address calculations. */
-#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
-
-/* Disable generation of FP sin, cos and sqrt operations for 387.
- This is because FreeBSD lacks these in the math-emulator-code */
-#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
-
-/* Don't create frame pointers for leaf functions */
-#define TARGET_OMIT_LEAF_FRAME_POINTER \
- (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
-
-/* Debug GO_IF_LEGITIMATE_ADDRESS */
-#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
-
-/* Debug FUNCTION_ARG macros */
-#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
-
-#if 0
-/* 64bit Sledgehammer mode */
-#ifdef TARGET_BI_ARCH
-#define TARGET_64BIT (target_flags & MASK_64BIT)
-#else
-#ifdef TARGET_64BIT_DEFAULT
-#define TARGET_64BIT 1
-#else
-#define TARGET_64BIT 0
-#endif
-#endif
-
-#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
-#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
-#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
-#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
-#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
-#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
-#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
-
-#define CPUMASK (1 << ix86_cpu)
-extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
-extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
-extern const int x86_branch_hints, x86_unroll_strlen;
-extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
-extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
-extern const int x86_use_cltd, x86_read_modify_write;
-extern const int x86_read_modify, x86_split_long_moves;
-extern const int x86_promote_QImode, x86_single_stringop;
-extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
-extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
-extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
-extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
-extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
-extern const int x86_epilogue_using_move, x86_decompose_lea;
-extern const int x86_arch_always_fancy_math_387;
-extern int x86_prefetch_sse;
-
-#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
-#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
-#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
-#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
-#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
-/* For sane SSE instruction set generation we need fcomi instruction. It is
- safe to enable all CMOVE instructions. */
-#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
-#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
-#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
-#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
-#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
-#define TARGET_MOVX (x86_movx & CPUMASK)
-#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
-#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
-#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
-#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
-#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
-#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
-#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
-#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
-#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
-#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
-#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
-#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
-#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
-#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
-#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
-#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
-#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
-#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
-#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
-#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
-#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
-#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
-#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
-#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
-#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
-
-#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
-
-#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
-#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
-
-#define ASSEMBLER_DIALECT (ix86_asm_dialect)
-
-#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
-#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
-#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
-#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
- && (ix86_fpmath & FPMATH_387))
-#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
-#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
-#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
-#endif
-
-#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
-
-/* WARNING: Do not mark empty strings for translation, as calling
- gettext on an empty string does NOT return an empty
- string. */
-
-#if 0
-#define TARGET_SWITCHES \
-{ { "80387", MASK_80387, N_("Use hardware fp") }, \
- { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
- { "hard-float", MASK_80387, N_("Use hardware fp") }, \
- { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
- { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
- { "386", 0, "" /*Deprecated.*/}, \
- { "486", 0, "" /*Deprecated.*/}, \
- { "pentium", 0, "" /*Deprecated.*/}, \
- { "pentiumpro", 0, "" /*Deprecated.*/}, \
- { "intel-syntax", 0, "" /*Deprecated.*/}, \
- { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
- { "rtd", MASK_RTD, \
- N_("Alternate calling convention") }, \
- { "no-rtd", -MASK_RTD, \
- N_("Use normal calling convention") }, \
- { "align-double", MASK_ALIGN_DOUBLE, \
- N_("Align some doubles on dword boundary") }, \
- { "no-align-double", -MASK_ALIGN_DOUBLE, \
- N_("Align doubles on word boundary") }, \
- { "svr3-shlib", MASK_SVR3_SHLIB, \
- N_("Uninitialized locals in .bss") }, \
- { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
- N_("Uninitialized locals in .data") }, \
- { "ieee-fp", MASK_IEEE_FP, \
- N_("Use IEEE math for fp comparisons") }, \
- { "no-ieee-fp", -MASK_IEEE_FP, \
- N_("Do not use IEEE math for fp comparisons") }, \
- { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
- N_("Return values of functions in FPU registers") }, \
- { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
- N_("Do not return values of functions in FPU registers")}, \
- { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
- N_("Do not generate sin, cos, sqrt for FPU") }, \
- { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
- N_("Generate sin, cos, sqrt for FPU")}, \
- { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
- N_("Omit the frame pointer in leaf functions") }, \
- { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
- { "stack-arg-probe", MASK_STACK_PROBE, \
- N_("Enable stack probing") }, \
- { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
- { "windows", 0, 0 /* undocumented */ }, \
- { "dll", 0, 0 /* undocumented */ }, \
- { "align-stringops", -MASK_NO_ALIGN_STROPS, \
- N_("Align destination of the string operations") }, \
- { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
- N_("Do not align destination of the string operations") }, \
- { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
- N_("Inline all known string operations") }, \
- { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
- N_("Do not inline all known string operations") }, \
- { "push-args", -MASK_NO_PUSH_ARGS, \
- N_("Use push instructions to save outgoing arguments") }, \
- { "no-push-args", MASK_NO_PUSH_ARGS, \
- N_("Do not use push instructions to save outgoing arguments") }, \
- { "accumulate-outgoing-args", (MASK_ACCUMULATE_OUTGOING_ARGS \
- | MASK_ACCUMULATE_OUTGOING_ARGS_SET), \
- N_("Use push instructions to save outgoing arguments") }, \
- { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET, \
- N_("Do not use push instructions to save outgoing arguments") }, \
- { "mmx", MASK_MMX | MASK_MMX_SET, \
- N_("Support MMX built-in functions") }, \
- { "no-mmx", -MASK_MMX, \
- N_("Do not support MMX built-in functions") }, \
- { "no-mmx", MASK_MMX_SET, "" }, \
- { "3dnow", MASK_3DNOW | MASK_3DNOW_SET, \
- N_("Support 3DNow! built-in functions") }, \
- { "no-3dnow", -MASK_3DNOW, "" }, \
- { "no-3dnow", MASK_3DNOW_SET, \
- N_("Do not support 3DNow! built-in functions") }, \
- { "sse", MASK_SSE | MASK_SSE_SET, \
- N_("Support MMX and SSE built-in functions and code generation") }, \
- { "no-sse", -MASK_SSE, "" }, \
- { "no-sse", MASK_SSE_SET, \
- N_("Do not support MMX and SSE built-in functions and code generation") },\
- { "sse2", MASK_SSE2 | MASK_SSE2_SET, \
- N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
- { "no-sse2", -MASK_SSE2, "" }, \
- { "no-sse2", MASK_SSE2_SET, \
- N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
- { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
- N_("sizeof(long double) is 16") }, \
- { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
- N_("sizeof(long double) is 12") }, \
- { "64", MASK_64BIT, \
- N_("Generate 64bit x86-64 code") }, \
- { "32", -MASK_64BIT, \
- N_("Generate 32bit i386 code") }, \
- { "red-zone", -MASK_NO_RED_ZONE, \
- N_("Use red-zone in the x86-64 code") }, \
- { "no-red-zone", MASK_NO_RED_ZONE, \
- N_("Do not use red-zone in the x86-64 code") }, \
- SUBTARGET_SWITCHES \
- { "", TARGET_DEFAULT, 0 }}
-
-#ifdef TARGET_64BIT_DEFAULT
-#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
-#else
-#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
-#endif
-
-/* Which processor to schedule for. The cpu attribute defines a list that
- mirrors this list, so changes to i386.md must be made at the same time. */
-
-enum processor_type
-{
- PROCESSOR_I386, /* 80386 */
- PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
- PROCESSOR_PENTIUM,
- PROCESSOR_PENTIUMPRO,
- PROCESSOR_K6,
- PROCESSOR_ATHLON,
- PROCESSOR_PENTIUM4,
- PROCESSOR_max
-};
-enum fpmath_unit
-{
- FPMATH_387 = 1,
- FPMATH_SSE = 2
-};
-
-extern enum processor_type ix86_cpu;
-extern enum fpmath_unit ix86_fpmath;
-
-extern int ix86_arch;
-
-/* This macro is similar to `TARGET_SWITCHES' but defines names of
- command options that have values. Its definition is an
- initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- fixed part of the option name, and the address of a variable. The
- variable, type `char *', is set to the variable part of the given
- option if the fixed part matches. The actual option name is made
- by appending `-m' to the specified name. */
-#define TARGET_OPTIONS \
-{ { "cpu=", &ix86_cpu_string, \
- N_("Schedule code for given CPU")}, \
- { "fpmath=", &ix86_fpmath_string, \
- N_("Generate floating point mathematics using given instruction set")},\
- { "arch=", &ix86_arch_string, \
- N_("Generate code for given CPU")}, \
- { "regparm=", &ix86_regparm_string, \
- N_("Number of registers used to pass integer arguments") }, \
- { "align-loops=", &ix86_align_loops_string, \
- N_("Loop code aligned to this power of 2") }, \
- { "align-jumps=", &ix86_align_jumps_string, \
- N_("Jump targets are aligned to this power of 2") }, \
- { "align-functions=", &ix86_align_funcs_string, \
- N_("Function starts are aligned to this power of 2") }, \
- { "preferred-stack-boundary=", \
- &ix86_preferred_stack_boundary_string, \
- N_("Attempt to keep stack aligned to this power of 2") }, \
- { "branch-cost=", &ix86_branch_cost_string, \
- N_("Branches are this expensive (1-5, arbitrary units)") }, \
- { "cmodel=", &ix86_cmodel_string, \
- N_("Use given x86-64 code model") }, \
- { "debug-arg", &ix86_debug_arg_string, \
- "" /* Undocumented. */ }, \
- { "debug-addr", &ix86_debug_addr_string, \
- "" /* Undocumented. */ }, \
- { "asm=", &ix86_asm_string, \
- N_("Use given assembler dialect") }, \
- SUBTARGET_OPTIONS \
-}
-#endif
-
-/* Sometimes certain combinations of command options do not make
- sense on a particular target machine. You can define a macro
- `OVERRIDE_OPTIONS' to take account of this. This macro, if
- defined, is executed once just after all the command options have
- been parsed.
-
- Don't use this macro to turn on various extra optimizations for
- `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
-
-#define OVERRIDE_OPTIONS override_options ()
-
-/* These are meant to be redefined in the host dependent files */
-#define SUBTARGET_SWITCHES
-#define SUBTARGET_OPTIONS
-
-/* Define this to change the optimizations performed by default. */
-#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
- optimization_options ((LEVEL), (SIZE))
-
-/* Specs for the compiler proper */
-
-#if 0
-#ifndef CC1_CPU_SPEC
-#define CC1_CPU_SPEC "\
-%{!mcpu*: \
-%{m386:-mcpu=i386 \
-%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
-%{m486:-mcpu=i486 \
-%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
-%{mpentium:-mcpu=pentium \
-%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
-%{mpentiumpro:-mcpu=pentiumpro \
-%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
-%{mintel-syntax:-masm=intel \
-%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
-%{mno-intel-syntax:-masm=att \
-%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
-#endif
-
-#define TARGET_CPU_DEFAULT_i386 0
-#define TARGET_CPU_DEFAULT_i486 1
-#define TARGET_CPU_DEFAULT_pentium 2
-#define TARGET_CPU_DEFAULT_pentium_mmx 3
-#define TARGET_CPU_DEFAULT_pentiumpro 4
-#define TARGET_CPU_DEFAULT_pentium2 5
-#define TARGET_CPU_DEFAULT_pentium3 6
-#define TARGET_CPU_DEFAULT_pentium4 7
-#define TARGET_CPU_DEFAULT_k6 8
-#define TARGET_CPU_DEFAULT_k6_2 9
-#define TARGET_CPU_DEFAULT_k6_3 10
-#define TARGET_CPU_DEFAULT_athlon 11
-#define TARGET_CPU_DEFAULT_athlon_sse 12
-
-#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
- "pentiumpro", "pentium2", "pentium3", \
- "pentium4", "k6", "k6-2", "k6-3",\
- "athlon", "athlon-4"}
-#ifndef CPP_CPU_DEFAULT_SPEC
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
--D__tune_pentium2__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
--D__tune_pentium2__ -D__tune_pentium3__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
-#endif
-#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__"
-#endif
-#ifndef CPP_CPU_DEFAULT_SPEC
-#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
-#endif
-#endif /* CPP_CPU_DEFAULT_SPEC */
-
-#ifdef TARGET_BI_ARCH
-#define NO_BUILTIN_SIZE_TYPE
-#define NO_BUILTIN_PTRDIFF_TYPE
-#endif
-
-#ifdef NO_BUILTIN_SIZE_TYPE
-#define CPP_CPU32_SIZE_TYPE_SPEC \
- " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
-#define CPP_CPU64_SIZE_TYPE_SPEC \
- " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int"
-#else
-#define CPP_CPU32_SIZE_TYPE_SPEC ""
-#define CPP_CPU64_SIZE_TYPE_SPEC ""
-#endif
-
-#define CPP_CPU32_SPEC \
- "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
--D__i386__ %(cpp_cpu32sizet)"
-
-#define CPP_CPU64_SPEC \
- "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)"
-
-#define CPP_CPUCOMMON_SPEC "\
-%{march=i386:%{!mcpu*:-D__tune_i386__ }}\
-%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
-%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
- %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
-%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
- -D__pentium__mmx__ \
- %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\
-%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
- -D__pentiumpro -D__pentiumpro__ \
- %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
-%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
-%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \
- %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\
-%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \
- %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\
-%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \
- %{!mcpu*:-D__tune_athlon__ }}\
-%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \
- -D__athlon_sse__ \
- %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\
-%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
-%{m386|mcpu=i386:-D__tune_i386__ }\
-%{m486|mcpu=i486:-D__tune_i486__ }\
-%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\
-%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \
--D__tune_pentiumpro__ }\
-%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\
-%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
--D__tune_athlon__ }\
-%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
--D__tune_athlon_sse__ }\
-%{mcpu=pentium4:-D__tune_pentium4__ }\
-%{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\
--D__SSE__ }\
-%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\
-|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
-|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\
-%{march=k6-2|march=k6-3\
-|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
-|march=athlon-mp: -D__3dNOW__ }\
-%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
-|march=athlon-mp: -D__3dNOW_A__ }\
-%{march=pentium4: -D__SSE2__ }\
-%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
-
-#ifndef CPP_CPU_SPEC
-#ifdef TARGET_BI_ARCH
-#ifdef TARGET_64BIT_DEFAULT
-#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
-#else
-#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
-#endif
-#else
-#ifdef TARGET_64BIT_DEFAULT
-#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
-#else
-#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
-#endif
-#endif
-#endif
-
-#ifndef CC1_SPEC
-#define CC1_SPEC "%(cc1_cpu) "
-#endif
-
-/* This macro defines names of additional specifications to put in the
- specs that can be used in various specifications like CC1_SPEC. Its
- definition is an initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- specification name, and a string constant that used by the GNU CC driver
- program.
-
- Do not define this macro if it does not need to do anything. */
-
-#ifndef SUBTARGET_EXTRA_SPECS
-#define SUBTARGET_EXTRA_SPECS
-#endif
-
-#define EXTRA_SPECS \
- { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
- { "cpp_cpu", CPP_CPU_SPEC }, \
- { "cpp_cpu32", CPP_CPU32_SPEC }, \
- { "cpp_cpu64", CPP_CPU64_SPEC }, \
- { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC }, \
- { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC }, \
- { "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \
- { "cc1_cpu", CC1_CPU_SPEC }, \
- SUBTARGET_EXTRA_SPECS
-#endif
-
-/* target machine storage layout */
-
-/* Define for XFmode or TFmode extended real floating point support.
- This will automatically cause REAL_ARITHMETIC to be defined.
-
- The XFmode is specified by i386 ABI, while TFmode may be faster
- due to alignment and simplifications in the address calculations.
- */
-#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
-#define MAX_LONG_DOUBLE_TYPE_SIZE 64
-#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
-/* Tell real.c that this is the 80-bit Intel extended float format
- packaged in a 128-bit or 96bit entity. */
-#define INTEL_EXTENDED_IEEE_FORMAT 1
-
-
-#define SHORT_TYPE_SIZE 16
-#define INT_TYPE_SIZE 32
-#define FLOAT_TYPE_SIZE 32
-#define LONG_TYPE_SIZE BITS_PER_WORD
-#define MAX_WCHAR_TYPE_SIZE 32
-#define DOUBLE_TYPE_SIZE 64
-#define LONG_LONG_TYPE_SIZE 64
-
-#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
-#define MAX_BITS_PER_WORD 64
-#define MAX_LONG_TYPE_SIZE 64
-#else
-#define MAX_BITS_PER_WORD 32
-#define MAX_LONG_TYPE_SIZE 32
-#endif
-
-/* Define if you don't want extended real, but do want to use the
- software floating point emulator for REAL_ARITHMETIC and
- decimal <-> binary conversion. */
-/* #define REAL_ARITHMETIC */
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* That is true on the 80386. */
-
-#define BITS_BIG_ENDIAN 0
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* That is not true on the 80386. */
-#define BYTES_BIG_ENDIAN 0
-
-/* Define this if most significant word of a multiword number is the lowest
- numbered. */
-/* Not true for 80386 */
-#define WORDS_BIG_ENDIAN 0
-
-/* number of bits in an addressable storage unit */
-#define BITS_PER_UNIT 8
-
-/* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 80386, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
-#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
-
-/* Width of a word, in units (bytes). */
-#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
-#define MIN_UNITS_PER_WORD 4
-
-/* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
-#define POINTER_SIZE BITS_PER_WORD
-
-/* Allocation boundary (in *bits*) for storing arguments in argument list. */
-#define PARM_BOUNDARY BITS_PER_WORD
-
-/* Boundary (in *bits*) on which stack pointer should be aligned. */
-#define STACK_BOUNDARY BITS_PER_WORD
-
-/* Boundary (in *bits*) on which the stack pointer preferrs to be
- aligned; the compiler cannot rely on having this alignment. */
-#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
-
-/* As of July 2001, many runtimes to not align the stack properly when
- entering main. This causes expand_main_function to forcably align
- the stack, which results in aligned frames for functions called from
- main, though it does nothing for the alignment of main itself. */
-#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
- (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
-
-/* Allocation boundary for the code of a function. */
-#define FUNCTION_BOUNDARY 16
-
-/* Alignment of field after `int : 0' in a structure. */
-
-#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
-
-/* Minimum size in bits of the largest boundary to which any
- and all fundamental data types supported by the hardware
- might need to be aligned. No data type wants to be aligned
- rounder than this.
-
- Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
- and Pentium Pro XFmode values at 128 bit boundaries. */
-
-#define BIGGEST_ALIGNMENT 128
-
-/* Decide whether a variable of mode MODE must be 128 bit aligned. */
-#define ALIGN_MODE_128(MODE) \
- ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
- || (MODE) == V4SFmode || (MODE) == V4SImode)
-
-/* The published ABIs say that doubles should be aligned on word
- boundaries, so lower the aligment for structure fields unless
- -malign-double is set. */
-/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
- constant. Use the smaller value in that context. */
-#ifndef IN_TARGET_LIBS
-#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
-#else
-#define BIGGEST_FIELD_ALIGNMENT 32
-#endif
-
-/* If defined, a C expression to compute the alignment given to a
- constant that is being placed in memory. EXP is the constant
- and ALIGN is the alignment that the object would ordinarily have.
- The value of this macro is used instead of that alignment to align
- the object.
-
- If this macro is not defined, then ALIGN is used.
-
- The typical use of this macro is to increase alignment for string
- constants to be word aligned so that `strcpy' calls that copy
- constants can be done inline. */
-
-#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
-
-/* If defined, a C expression to compute the alignment for a static
- variable. TYPE is the data type, and ALIGN is the alignment that
- the object would ordinarily have. The value of this macro is used
- instead of that alignment to align the object.
-
- If this macro is not defined, then ALIGN is used.
-
- One use of this macro is to increase alignment of medium-size
- data to make it all fit in fewer cache lines. Another is to
- cause character arrays to be word-aligned so that `strcpy' calls
- that copy constants to character arrays can be done inline. */
-
-#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
-
-/* If defined, a C expression to compute the alignment for a local
- variable. TYPE is the data type, and ALIGN is the alignment that
- the object would ordinarily have. The value of this macro is used
- instead of that alignment to align the object.
-
- If this macro is not defined, then ALIGN is used.
-
- One use of this macro is to increase alignment of medium-size
- data to make it all fit in fewer cache lines. */
-
-#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
-
-/* If defined, a C expression that gives the alignment boundary, in
- bits, of an argument with the specified mode and type. If it is
- not defined, `PARM_BOUNDARY' is used for all arguments. */
-
-#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
- ix86_function_arg_boundary ((MODE), (TYPE))
-
-/* Set this non-zero if move instructions will actually fail to work
- when given unaligned data. */
-#define STRICT_ALIGNMENT 0
-
-/* If bit field type is int, don't let it cross an int,
- and give entire struct the alignment of an int. */
-/* Required on the 386 since it doesn't have bitfield insns. */
-#define PCC_BITFIELD_TYPE_MATTERS 1
-
-/* Standard register usage. */
-
-/* This processor has special stack-like registers. See reg-stack.c
- for details. */
-
-#define STACK_REGS
-#define IS_STACK_MODE(MODE) \
- ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
- || (MODE) == TFmode)
-
-/* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- In the 80386 we give the 8 general purpose registers the numbers 0-7.
- We number the floating point registers 8-15.
- Note that registers 0-7 can be accessed as a short or int,
- while only 0-3 may be used with byte `mov' instructions.
-
- Reg 16 does not correspond to any hardware register, but instead
- appears in the RTL as an argument pointer prior to reload, and is
- eliminated during reloading in favor of either the stack or frame
- pointer. */
-
-#define FIRST_PSEUDO_REGISTER 53
-
-/* Number of hardware registers that go into the DWARF-2 unwind info.
- If not defined, equals FIRST_PSEUDO_REGISTER. */
-
-#define DWARF_FRAME_REGISTERS 17
-
-/* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the 80386, the stack pointer is such, as is the arg pointer.
-
- The value is an mask - bit 1 is set for fixed registers
- for 32bit target, while 2 is set for fixed registers for 64bit.
- Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
- */
-#define FIXED_REGISTERS \
-/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
-{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
-/*arg,flags,fpsr,dir,frame*/ \
- 3, 3, 3, 3, 3, \
-/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
-/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
-/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
- 1, 1, 1, 1, 1, 1, 1, 1, \
-/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
- 1, 1, 1, 1, 1, 1, 1, 1}
-
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like.
-
- The value is an mask - bit 1 is set for call used
- for 32bit target, while 2 is set for call used for 64bit.
- Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
-*/
-#define CALL_USED_REGISTERS \
-/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
-{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
-/*arg,flags,fpsr,dir,frame*/ \
- 3, 3, 3, 3, 3, \
-/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
- 3, 3, 3, 3, 3, 3, 3, 3, \
-/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
- 3, 3, 3, 3, 3, 3, 3, 3, \
-/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
- 3, 3, 3, 3, 1, 1, 1, 1, \
-/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
- 3, 3, 3, 3, 3, 3, 3, 3} \
-
-/* Order in which to allocate registers. Each register must be
- listed once, even those in FIXED_REGISTERS. List frame pointer
- late and fixed registers last. Note that, in general, we prefer
- registers listed in CALL_USED_REGISTERS, keeping the others
- available for storage of persistent values.
-
- The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
- so this is just empty initializer for array. */
-
-#define REG_ALLOC_ORDER \
-{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
- 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
- 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
- 48, 49, 50, 51, 52 }
-
-/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
- to be rearranged based on a particular function. When using sse math,
- we want to allocase SSE before x87 registers and vice vera. */
-
-#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
-
-
-/* Macro to conditionally modify fixed_regs/call_used_regs. */
-#define CONDITIONAL_REGISTER_USAGE \
-do { \
- int i; \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- { \
- fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
- call_used_regs[i] = (call_used_regs[i] \
- & (TARGET_64BIT ? 2 : 1)) != 0; \
- } \
- if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
- { \
- fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- } \
- if (! TARGET_MMX) \
- { \
- int i; \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- if (! TARGET_SSE) \
- { \
- int i; \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
- { \
- int i; \
- HARD_REG_SET x; \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- } while (0)
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- Actually there are no two word move instructions for consecutive
- registers. And only registers 0-3 may have mov byte instructions
- applied to them.
- */
-
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
- ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
- : ((MODE) == TFmode \
- ? (TARGET_64BIT ? 2 : 3) \
- : (MODE) == TCmode \
- ? (TARGET_64BIT ? 4 : 6) \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
-
-#define VALID_SSE_REG_MODE(MODE) \
- ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
- || (MODE) == SFmode \
- || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
-
-#define VALID_MMX_REG_MODE_3DNOW(MODE) \
- ((MODE) == V2SFmode || (MODE) == SFmode)
-
-#define VALID_MMX_REG_MODE(MODE) \
- ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
- || (MODE) == V2SImode || (MODE) == SImode)
-
-#define VECTOR_MODE_SUPPORTED_P(MODE) \
- (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
- : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
- : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
-
-#define VALID_FP_MODE_P(MODE) \
- ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
- || (!TARGET_64BIT && (MODE) == XFmode) \
- || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
- || (!TARGET_64BIT && (MODE) == XCmode))
-
-#define VALID_INT_MODE_P(MODE) \
- ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
- || (MODE) == DImode \
- || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
- || (MODE) == CDImode \
- || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
-
-/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
-
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ix86_hard_regno_mode_ok ((REGNO), (MODE))
-
-/* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-
-#define MODES_TIEABLE_P(MODE1, MODE2) \
- ((MODE1) == (MODE2) \
- || (((MODE1) == HImode || (MODE1) == SImode \
- || ((MODE1) == QImode \
- && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
- || ((MODE1) == DImode && TARGET_64BIT)) \
- && ((MODE2) == HImode || (MODE2) == SImode \
- || ((MODE1) == QImode \
- && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
- || ((MODE2) == DImode && TARGET_64BIT))))
-
-
-/* Specify the modes required to caller save a given hard regno.
- We do this on i386 to prevent flags from being saved at all.
-
- Kill any attempts to combine saving of modes. */
-
-#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
- (CC_REGNO_P (REGNO) ? VOIDmode \
- : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
- : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
- : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
- : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
- : (MODE))
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* on the 386 the pc register is %eip, and is not usable as a general
- register. The ordinary mov instructions won't work */
-/* #define PC_REGNUM */
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 7
-
-/* Base register for access to local variables of the function. */
-#define HARD_FRAME_POINTER_REGNUM 6
-
-/* Base register for access to local variables of the function. */
-#define FRAME_POINTER_REGNUM 20
-
-/* First floating point reg */
-#define FIRST_FLOAT_REG 8
-
-/* First & last stack-like regs */
-#define FIRST_STACK_REG FIRST_FLOAT_REG
-#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
-
-#define FLAGS_REG 17
-#define FPSR_REG 18
-#define DIRFLAG_REG 19
-
-#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
-#define LAST_SSE_REG (FIRST_SSE_REG + 7)
-
-#define FIRST_MMX_REG (LAST_SSE_REG + 1)
-#define LAST_MMX_REG (FIRST_MMX_REG + 7)
-
-#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
-#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
-
-#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
-#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
-
-/* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
-#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
-
-/* Override this in other tm.h files to cope with various OS losage
- requiring a frame pointer. */
-#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
-#define SUBTARGET_FRAME_POINTER_REQUIRED 0
-#endif
-
-/* Make sure we can access arbitrary call frames. */
-#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
-
-/* Base register for access to arguments of the function. */
-#define ARG_POINTER_REGNUM 16
-
-/* Register in which static-chain is passed to a function.
- We do use ECX as static chain register for 32 bit ABI. On the
- 64bit ABI, ECX is an argument register, so we use R10 instead. */
-#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
-
-/* Register to hold the addressing base for position independent
- code access to data items. We don't use PIC pointer for 64bit
- mode. Define the regnum to dummy value to prevent gcc from
- pessimizing code dealing with EBX. */
-#define PIC_OFFSET_TABLE_REGNUM \
- (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3)
-
-/* Register in which address to store a structure value
- arrives in the function. On the 386, the prologue
- copies this from the stack to register %eax. */
-#define STRUCT_VALUE_INCOMING 0
-
-/* Place in which caller passes the structure value address.
- 0 means push the value on the stack like an argument. */
-#define STRUCT_VALUE 0
-
-/* A C expression which can inhibit the returning of certain function
- values in registers, based on the type of value. A nonzero value
- says to return the function value in memory, just as large
- structures are always returned. Here TYPE will be a C expression
- of type `tree', representing the data type of the value.
-
- Note that values of mode `BLKmode' must be explicitly handled by
- this macro. Also, the option `-fpcc-struct-return' takes effect
- regardless of this macro. On most systems, it is possible to
- leave the macro undefined; this causes a default definition to be
- used, whose value is the constant 1 for `BLKmode' values, and 0
- otherwise.
-
- Do not use this macro to indicate that structures and unions
- should always be returned in memory. You should instead use
- `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
-
-#define RETURN_IN_MEMORY(TYPE) \
- ix86_return_in_memory (TYPE)
-
-
-/* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union.
-
- It might seem that class BREG is unnecessary, since no useful 386
- opcode needs reg %ebx. But some systems pass args to the OS in ebx,
- and the "b" register constraint is useful in asms for syscalls.
-
- The flags and fpsr registers are in no class. */
-
-enum reg_class
-{
- NO_REGS,
- AREG, DREG, CREG, BREG, SIREG, DIREG,
- AD_REGS, /* %eax/%edx for DImode */
- Q_REGS, /* %eax %ebx %ecx %edx */
- NON_Q_REGS, /* %esi %edi %ebp %esp */
- INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
- LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
- GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
- FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
- FLOAT_REGS,
- SSE_REGS,
- MMX_REGS,
- FP_TOP_SSE_REGS,
- FP_SECOND_SSE_REGS,
- FLOAT_SSE_REGS,
- FLOAT_INT_REGS,
- INT_SSE_REGS,
- FLOAT_INT_SSE_REGS,
- ALL_REGS, LIM_REG_CLASSES
-};
-
-#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
-
-#define INTEGER_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), GENERAL_REGS)
-#define FLOAT_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), FLOAT_REGS)
-#define SSE_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), SSE_REGS)
-#define MMX_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), MMX_REGS)
-#define MAYBE_INTEGER_CLASS_P(CLASS) \
- reg_classes_intersect_p ((CLASS), GENERAL_REGS)
-#define MAYBE_FLOAT_CLASS_P(CLASS) \
- reg_classes_intersect_p ((CLASS), FLOAT_REGS)
-#define MAYBE_SSE_CLASS_P(CLASS) \
- reg_classes_intersect_p (SSE_REGS, (CLASS))
-#define MAYBE_MMX_CLASS_P(CLASS) \
- reg_classes_intersect_p (MMX_REGS, (CLASS))
-
-#define Q_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), Q_REGS)
-
-/* Give names of register classes as strings for dump file. */
-
-#define REG_CLASS_NAMES \
-{ "NO_REGS", \
- "AREG", "DREG", "CREG", "BREG", \
- "SIREG", "DIREG", \
- "AD_REGS", \
- "Q_REGS", "NON_Q_REGS", \
- "INDEX_REGS", \
- "LEGACY_REGS", \
- "GENERAL_REGS", \
- "FP_TOP_REG", "FP_SECOND_REG", \
- "FLOAT_REGS", \
- "SSE_REGS", \
- "MMX_REGS", \
- "FP_TOP_SSE_REGS", \
- "FP_SECOND_SSE_REGS", \
- "FLOAT_SSE_REGS", \
- "FLOAT_INT_REGS", \
- "INT_SSE_REGS", \
- "FLOAT_INT_SSE_REGS", \
- "ALL_REGS" }
-
-/* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
-#define REG_CLASS_CONTENTS \
-{ { 0x00, 0x0 }, \
- { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
- { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
- { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
- { 0x03, 0x0 }, /* AD_REGS */ \
- { 0x0f, 0x0 }, /* Q_REGS */ \
- { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
- { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
- { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
- { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
- { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
- { 0xff00, 0x0 }, /* FLOAT_REGS */ \
-{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
-{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
-{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
-{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
-{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
- { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
-{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
-{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
-{ 0xffffffff,0x1fffff } \
-}
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
-#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
-
-/* When defined, the compiler allows registers explicitly used in the
- rtl to be used as spill registers but prevents the compiler from
- extending the lifetime of these registers. */
-
-#define SMALL_REGISTER_CLASSES 1
-
-#define QI_REG_P(X) \
- (REG_P (X) && REGNO (X) < 4)
-
-#define GENERAL_REGNO_P(N) \
- ((N) < 8 || REX_INT_REGNO_P (N))
-
-#define GENERAL_REG_P(X) \
- (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
-
-#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
-
-#define NON_QI_REG_P(X) \
- (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
-
-#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
-#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
-
-#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
-#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
-#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
-#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
-
-#define SSE_REGNO_P(N) \
- (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
- || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
-
-#define SSE_REGNO(N) \
- ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
-#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
-
-#define SSE_FLOAT_MODE_P(MODE) \
- ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
-
-#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
-#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
-
-#define STACK_REG_P(XOP) \
- (REG_P (XOP) && \
- REGNO (XOP) >= FIRST_STACK_REG && \
- REGNO (XOP) <= LAST_STACK_REG)
-
-#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
-
-#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
-
-#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
-#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
-
-/* Indicate whether hard register numbered REG_NO should be converted
- to SSA form. */
-#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
- ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
-
-/* The class value for index registers, and the one for base regs. */
-
-#define INDEX_REG_CLASS INDEX_REGS
-#define BASE_REG_CLASS GENERAL_REGS
-
-/* Get reg_class from a letter such as appears in the machine description. */
-
-#define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'r' ? GENERAL_REGS : \
- (C) == 'R' ? LEGACY_REGS : \
- (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
- (C) == 'Q' ? Q_REGS : \
- (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FLOAT_REGS \
- : NO_REGS) : \
- (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FP_TOP_REG \
- : NO_REGS) : \
- (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FP_SECOND_REG \
- : NO_REGS) : \
- (C) == 'a' ? AREG : \
- (C) == 'b' ? BREG : \
- (C) == 'c' ? CREG : \
- (C) == 'd' ? DREG : \
- (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
- (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
- (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
- (C) == 'A' ? AD_REGS : \
- (C) == 'D' ? DIREG : \
- (C) == 'S' ? SIREG : NO_REGS)
-
-/* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- I is for non-DImode shifts.
- J is for DImode shifts.
- K is for signed imm8 operands.
- L is for andsi as zero-extending move.
- M is for shifts that can be executed by the "lea" opcode.
- N is for immedaite operands for out/in instructions (0-255)
- */
-
-#define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
- : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
- : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
- : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
- : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
- : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
- : 0)
-
-/* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
- TARGET_387 isn't set, because the stack register converter may need to
- load 0.0 into the function value register. */
-
-#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? standard_80387_constant_p (VALUE) \
- : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
-
-/* A C expression that defines the optional machine-dependent
- constraint letters that can be used to segregate specific types of
- operands, usually memory references, for the target machine. Any
- letter that is not elsewhere defined and not matched by
- `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
- be defined.
-
- If it is required for a particular target machine, it should
- return 1 if VALUE corresponds to the operand type represented by
- the constraint letter C. If C is not defined as an extra
- constraint, the value returned should be 0 regardless of VALUE. */
-
-#define EXTRA_CONSTRAINT(VALUE, C) \
- ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \
- : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \
- : 0)
-
-/* Place additional restrictions on the register class to use when it
- is necessary to be able to hold a value of mode MODE in a reload
- register for which class CLASS would ordinarily be used. */
-
-#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
- ((MODE) == QImode && !TARGET_64BIT \
- && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
- || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
- ? Q_REGS : (CLASS))
-
-/* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
- On the 80386 series, we prevent floating constants from being
- reloaded into floating registers (since no move-insn can do that)
- and we ensure that QImodes aren't reloaded into the esi or edi reg. */
-
-/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
- QImode must go into class Q_REGS.
- Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
- movdf to do mem-to-mem moves through integer regs. */
-
-#define PREFERRED_RELOAD_CLASS(X, CLASS) \
- ix86_preferred_reload_class ((X), (CLASS))
-
-/* If we are copying between general and FP registers, we need a memory
- location. The same is true for SSE and MMX registers. */
-#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
- ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
-
-/* QImode spills from non-QI registers need a scratch. This does not
- happen often -- the only example so far requires an uninitialized
- pseudo. */
-
-#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
- (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
- || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
- ? Q_REGS : NO_REGS)
-
-/* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
-/* On the 80386, this is the size of MODE in words,
- except in the FP regs, where a single reg is always enough.
- The TFmodes are really just 80bit values, so we use only 3 registers
- to hold them, instead of 4, as the size would suggest.
- */
-#define CLASS_MAX_NREGS(CLASS, MODE) \
- (!MAYBE_INTEGER_CLASS_P (CLASS) \
- ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
- : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
- + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
-/* A C expression whose value is nonzero if pseudos that have been
- assigned to registers of class CLASS would likely be spilled
- because registers of CLASS are needed for spill registers.
-
- The default value of this macro returns 1 if CLASS has exactly one
- register and zero otherwise. On most machines, this default
- should be used. Only define this macro to some other expression
- if pseudo allocated by `local-alloc.c' end up in memory because
- their hard registers were needed for spill registers. If this
- macro returns nonzero for those classes, those pseudos will only
- be allocated by `global.c', which knows how to reallocate the
- pseudo to another register. If there would not be another
- register available for reallocation, you should not change the
- definition of this macro since the only effect of such a
- definition would be to slow down register allocation. */
-
-#define CLASS_LIKELY_SPILLED_P(CLASS) \
- (((CLASS) == AREG) \
- || ((CLASS) == DREG) \
- || ((CLASS) == CREG) \
- || ((CLASS) == BREG) \
- || ((CLASS) == AD_REGS) \
- || ((CLASS) == SIREG) \
- || ((CLASS) == DIREG))
-
-/* A C statement that adds to CLOBBERS any hard regs the port wishes
- to automatically clobber for all asms.
-
- We do this in the new i386 backend to maintain source compatibility
- with the old cc0-based compiler. */
-
-#define MD_ASM_CLOBBERS(CLOBBERS) \
- do { \
- (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
- (CLOBBERS)); \
- (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
- (CLOBBERS)); \
- (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
- (CLOBBERS)); \
- } while (0)
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-#define STACK_GROWS_DOWNWARD
-
-/* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
-#define FRAME_GROWS_DOWNWARD
-
-/* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
-#define STARTING_FRAME_OFFSET 0
-
-/* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On 386 pushw decrements by exactly 2 no matter what the position was.
- On the 386 there is no pushb; we use pushw instead, and this
- has the effect of rounding up to 2.
-
- For 64bit ABI we round up to 8 bytes.
- */
-
-#define PUSH_ROUNDING(BYTES) \
- (TARGET_64BIT \
- ? (((BYTES) + 7) & (-8)) \
- : (((BYTES) + 1) & (-2)))
-
-/* If defined, the maximum amount of space required for outgoing arguments will
- be computed and placed into the variable
- `current_function_outgoing_args_size'. No space will be pushed onto the
- stack for each call; instead, the function prologue should increase the stack
- frame size by this amount. */
-
-#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
-
-/* If defined, a C expression whose value is nonzero when we want to use PUSH
- instructions to pass outgoing arguments. */
-
-#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
-
-/* Offset of first parameter from the argument pointer register value. */
-#define FIRST_PARM_OFFSET(FNDECL) 0
-
-/* Define this macro if functions should assume that stack space has been
- allocated for arguments even when their values are passed in registers.
-
- The value of this macro is the size, in bytes, of the area reserved for
- arguments passed in registers for the function represented by FNDECL.
-
- This space can be allocated by the caller, or be a part of the
- machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
- which. */
-#define REG_PARM_STACK_SPACE(FNDECL) 0
-
-/* Define as a C expression that evaluates to nonzero if we do not know how
- to pass TYPE solely in registers. The file expr.h defines a
- definition that is usually appropriate, refer to expr.h for additional
- documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
- computed in the stack and then loaded into a register. */
-#define MUST_PASS_IN_STACK(MODE, TYPE) \
- ((TYPE) != 0 \
- && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
- || TREE_ADDRESSABLE (TYPE) \
- || ((MODE) == TImode) \
- || ((MODE) == BLKmode \
- && ! ((TYPE) != 0 \
- && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
- && 0 == (int_size_in_bytes (TYPE) \
- % (PARM_BOUNDARY / BITS_PER_UNIT))) \
- && (FUNCTION_ARG_PADDING (MODE, TYPE) \
- == (BYTES_BIG_ENDIAN ? upward : downward)))))
-
-/* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNDECL is the declaration node of the function (as a tree),
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the 80386, the RTD insn may be used to pop them if the number
- of args is fixed, but if the number is variable then the caller
- must pop them all. RTD can't be used for library calls now
- because the library is compiled with the Unix compiler.
- Use of RTD is a selectable option, since it is incompatible with
- standard Unix calling sequences. If the option is not selected,
- the caller must always pop the args.
-
- The attribute NTAPI is equivalent to RTD on a per module basis. */
-
-#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
- ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
-
-/* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-#define FUNCTION_VALUE(VALTYPE, FUNC) \
- ix86_function_value (VALTYPE)
-
-#define FUNCTION_VALUE_REGNO_P(N) \
- ix86_function_value_regno_p (N)
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
-#define LIBCALL_VALUE(MODE) \
- ix86_libcall_value (MODE)
-
-/* Define the size of the result block used for communication between
- untyped_call and untyped_return. The block contains a DImode value
- followed by the block used by fnsave and frstor. */
-
-#define APPLY_RESULT_SIZE (8+108)
-
-/* 1 if N is a possible register number for function argument passing. */
-#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
-
-/* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go. */
-
-typedef struct ix86_args {
- int words; /* # words passed so far */
- int nregs; /* # registers available for passing */
- int regno; /* next available register number */
- int sse_words; /* # sse words passed so far */
- int sse_nregs; /* # sse registers available for passing */
- int sse_regno; /* next available sse register number */
- int maybe_vaarg; /* true for calls to possibly vardic fncts. */
-} CUMULATIVE_ARGS;
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0. */
-
-#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
- init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
-#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
-
-/* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- function_arg (&(CUM), (MODE), (TYPE), (NAMED))
-
-/* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
-#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
-
-/* If PIC, we cannot make sibling calls to global functions
- because the PLT requires %ebx live.
- If we are returning floats on the register stack, we cannot make
- sibling calls to functions that return floats. (The stack adjust
- instruction will wind up after the sibcall jump, and not be executed.) */
-#define FUNCTION_OK_FOR_SIBCALL(DECL) \
- ((DECL) \
- && (! flag_pic || ! TREE_PUBLIC (DECL)) \
- && (! TARGET_FLOAT_RETURNS_IN_80387 \
- || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
- || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
-
-/* Perform any needed actions needed for a function that is receiving a
- variable number of arguments.
-
- CUM is as above.
-
- MODE and TYPE are the mode and type of the current parameter.
-
- PRETEND_SIZE is a variable that should be set to the amount of stack
- that must be pushed by the prolog to pretend that our caller pushed
- it.
-
- Normally, this macro will push all remaining incoming registers on the
- stack and set PRETEND_SIZE to the length of the registers pushed. */
-
-#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
- ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
- (NO_RTL))
-
-/* Define the `__builtin_va_list' type for the ABI. */
-#define BUILD_VA_LIST_TYPE(VALIST) \
- ((VALIST) = ix86_build_va_list ())
-
-/* Implement `va_start' for varargs and stdarg. */
-#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
- ix86_va_start ((STDARG), (VALIST), (NEXTARG))
-
-/* Implement `va_arg'. */
-#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
- ix86_va_arg ((VALIST), (TYPE))
-
-/* This macro is invoked at the end of compilation. It is used here to
- output code for -fpic that will load the return address into %ebx. */
-
-#undef ASM_FILE_END
-#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
-
-/* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
-#define FUNCTION_PROFILER(FILE, LABELNO) \
-do { \
- if (flag_pic) \
- { \
- fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
- LPREFIX, (LABELNO)); \
- fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \
- } \
- else \
- { \
- fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
- fprintf ((FILE), "\tcall\t_mcount\n"); \
- } \
-} while (0)
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-/* Note on the 386 it might be more efficient not to define this since
- we have to restore it ourselves from the frame pointer, in order to
- use pop */
-
-#define EXIT_IGNORE_STACK 1
-
-/* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts. */
-
-/* On the 386, the trampoline contains two instructions:
- mov #STATIC,ecx
- jmp FUNCTION
- The trampoline is generated entirely at runtime. The operand of JMP
- is the address of FUNCTION relative to the instruction following the
- JMP (which is 5 bytes long). */
-
-/* Length in units of the trampoline for entering a nested function. */
-
-#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
-
-/* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
-#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
-
-/* Definitions for register eliminations.
-
- This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference.
-
- There are two registers that can always be eliminated on the i386.
- The frame pointer and the arg pointer can be replaced by either the
- hard frame pointer or to the stack pointer, depending upon the
- circumstances. The hard frame pointer is not used before reload and
- so it is not eligible for elimination. */
-
-#define ELIMINABLE_REGS \
-{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
-
-/* Given FROM and TO register numbers, say whether this elimination is
- allowed. Frame pointer elimination is automatically handled.
-
- All other eliminations are valid. */
-
-#define CAN_ELIMINATE(FROM, TO) \
- ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
-
-/* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
-
-#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
-
-/* Addressing modes, and classification of registers for them. */
-
-/* #define HAVE_POST_INCREMENT 0 */
-/* #define HAVE_POST_DECREMENT 0 */
-
-/* #define HAVE_PRE_DECREMENT 0 */
-/* #define HAVE_PRE_INCREMENT 0 */
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
-#define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < STACK_POINTER_REGNUM \
- || (REGNO >= FIRST_REX_INT_REG \
- && (REGNO) <= LAST_REX_INT_REG) \
- || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
- && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
- || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
-
-#define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) <= STACK_POINTER_REGNUM \
- || (REGNO) == ARG_POINTER_REGNUM \
- || (REGNO) == FRAME_POINTER_REGNUM \
- || (REGNO >= FIRST_REX_INT_REG \
- && (REGNO) <= LAST_REX_INT_REG) \
- || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
- && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
- || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
-
-#define REGNO_OK_FOR_SIREG_P(REGNO) \
- ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
-#define REGNO_OK_FOR_DIREG_P(REGNO) \
- ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
-
-/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
-
-/* Non strict versions, pseudos are ok */
-#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
- (REGNO (X) < STACK_POINTER_REGNUM \
- || (REGNO (X) >= FIRST_REX_INT_REG \
- && REGNO (X) <= LAST_REX_INT_REG) \
- || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
- (REGNO (X) <= STACK_POINTER_REGNUM \
- || REGNO (X) == ARG_POINTER_REGNUM \
- || REGNO (X) == FRAME_POINTER_REGNUM \
- || (REGNO (X) >= FIRST_REX_INT_REG \
- && REGNO (X) <= LAST_REX_INT_REG) \
- || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-/* Strict versions, hard registers only */
-#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
-#ifndef REG_OK_STRICT
-#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
-#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
-
-#else
-#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
-#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
-#endif
-
-/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
- except for CONSTANT_ADDRESS_P which is usually machine-independent.
-
- See legitimize_pic_address in i386.c for details as to what
- constitutes a legitimate address when -fpic is used. */
-
-#define MAX_REGS_PER_ADDRESS 2
-
-#define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == CONST_DOUBLE)
-
-/* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
-#define LEGITIMATE_CONSTANT_P(X) 1
-
-#ifdef REG_OK_STRICT
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
-do { \
- if (legitimate_address_p ((MODE), (X), 1)) \
- goto ADDR; \
-} while (0)
-
-#else
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
-do { \
- if (legitimate_address_p ((MODE), (X), 0)) \
- goto ADDR; \
-} while (0)
-
-#endif
-
-/* If defined, a C expression to determine the base term of address X.
- This macro is used in only one place: `find_base_term' in alias.c.
-
- It is always safe for this macro to not be defined. It exists so
- that alias analysis can understand machine-dependent addresses.
-
- The typical use of this macro is to handle addresses containing
- a label_ref or symbol_ref within an UNSPEC. */
-
-#define FIND_BASE_TERM(X) ix86_find_base_term (X)
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the 80386, we handle X+REG by loading X into a register R and
- using R+REG. R will go in a general reg and indexing will be used.
- However, if REG is a broken-out memory address or multiplication,
- nothing needs to be done because REG can certainly go in a general reg.
-
- When -fpic is used, special handling is needed for symbolic references.
- See comments by legitimize_pic_address in i386.c for details. */
-
-#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
-do { \
- (X) = legitimize_address ((X), (OLDX), (MODE)); \
- if (memory_address_p ((MODE), (X))) \
- goto WIN; \
-} while (0)
-
-#define REWRITE_ADDRESS(X) rewrite_address (X)
-
-/* Nonzero if the constant value X is a legitimate general operand
- when generating PIC code. It is given that flag_pic is on and
- that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
-#define LEGITIMATE_PIC_OPERAND_P(X) \
- (! SYMBOLIC_CONST (X) \
- || legitimate_pic_address_disp_p (X))
-
-#define SYMBOLIC_CONST(X) \
- (GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == LABEL_REF \
- || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
-
-/* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the 80386, only postdecrement and postincrement address depend thus
- (the amount of decrement or increment being the length of the operand). */
-#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
-do { \
- if (GET_CODE (ADDR) == POST_INC \
- || GET_CODE (ADDR) == POST_DEC) \
- goto LABEL; \
-} while (0)
-
-/* Codes for all the SSE/MMX builtins. */
-enum ix86_builtins
-{
- IX86_BUILTIN_ADDPS,
- IX86_BUILTIN_ADDSS,
- IX86_BUILTIN_DIVPS,
- IX86_BUILTIN_DIVSS,
- IX86_BUILTIN_MULPS,
- IX86_BUILTIN_MULSS,
- IX86_BUILTIN_SUBPS,
- IX86_BUILTIN_SUBSS,
-
- IX86_BUILTIN_CMPEQPS,
- IX86_BUILTIN_CMPLTPS,
- IX86_BUILTIN_CMPLEPS,
- IX86_BUILTIN_CMPGTPS,
- IX86_BUILTIN_CMPGEPS,
- IX86_BUILTIN_CMPNEQPS,
- IX86_BUILTIN_CMPNLTPS,
- IX86_BUILTIN_CMPNLEPS,
- IX86_BUILTIN_CMPNGTPS,
- IX86_BUILTIN_CMPNGEPS,
- IX86_BUILTIN_CMPORDPS,
- IX86_BUILTIN_CMPUNORDPS,
- IX86_BUILTIN_CMPNEPS,
- IX86_BUILTIN_CMPEQSS,
- IX86_BUILTIN_CMPLTSS,
- IX86_BUILTIN_CMPLESS,
- IX86_BUILTIN_CMPGTSS,
- IX86_BUILTIN_CMPGESS,
- IX86_BUILTIN_CMPNEQSS,
- IX86_BUILTIN_CMPNLTSS,
- IX86_BUILTIN_CMPNLESS,
- IX86_BUILTIN_CMPNGTSS,
- IX86_BUILTIN_CMPNGESS,
- IX86_BUILTIN_CMPORDSS,
- IX86_BUILTIN_CMPUNORDSS,
- IX86_BUILTIN_CMPNESS,
-
- IX86_BUILTIN_COMIEQSS,
- IX86_BUILTIN_COMILTSS,
- IX86_BUILTIN_COMILESS,
- IX86_BUILTIN_COMIGTSS,
- IX86_BUILTIN_COMIGESS,
- IX86_BUILTIN_COMINEQSS,
- IX86_BUILTIN_UCOMIEQSS,
- IX86_BUILTIN_UCOMILTSS,
- IX86_BUILTIN_UCOMILESS,
- IX86_BUILTIN_UCOMIGTSS,
- IX86_BUILTIN_UCOMIGESS,
- IX86_BUILTIN_UCOMINEQSS,
-
- IX86_BUILTIN_CVTPI2PS,
- IX86_BUILTIN_CVTPS2PI,
- IX86_BUILTIN_CVTSI2SS,
- IX86_BUILTIN_CVTSS2SI,
- IX86_BUILTIN_CVTTPS2PI,
- IX86_BUILTIN_CVTTSS2SI,
-
- IX86_BUILTIN_MAXPS,
- IX86_BUILTIN_MAXSS,
- IX86_BUILTIN_MINPS,
- IX86_BUILTIN_MINSS,
-
- IX86_BUILTIN_LOADAPS,
- IX86_BUILTIN_LOADUPS,
- IX86_BUILTIN_STOREAPS,
- IX86_BUILTIN_STOREUPS,
- IX86_BUILTIN_LOADSS,
- IX86_BUILTIN_STORESS,
- IX86_BUILTIN_MOVSS,
-
- IX86_BUILTIN_MOVHLPS,
- IX86_BUILTIN_MOVLHPS,
- IX86_BUILTIN_LOADHPS,
- IX86_BUILTIN_LOADLPS,
- IX86_BUILTIN_STOREHPS,
- IX86_BUILTIN_STORELPS,
-
- IX86_BUILTIN_MASKMOVQ,
- IX86_BUILTIN_MOVMSKPS,
- IX86_BUILTIN_PMOVMSKB,
-
- IX86_BUILTIN_MOVNTPS,
- IX86_BUILTIN_MOVNTQ,
-
- IX86_BUILTIN_PACKSSWB,
- IX86_BUILTIN_PACKSSDW,
- IX86_BUILTIN_PACKUSWB,
-
- IX86_BUILTIN_PADDB,
- IX86_BUILTIN_PADDW,
- IX86_BUILTIN_PADDD,
- IX86_BUILTIN_PADDSB,
- IX86_BUILTIN_PADDSW,
- IX86_BUILTIN_PADDUSB,
- IX86_BUILTIN_PADDUSW,
- IX86_BUILTIN_PSUBB,
- IX86_BUILTIN_PSUBW,
- IX86_BUILTIN_PSUBD,
- IX86_BUILTIN_PSUBSB,
- IX86_BUILTIN_PSUBSW,
- IX86_BUILTIN_PSUBUSB,
- IX86_BUILTIN_PSUBUSW,
-
- IX86_BUILTIN_PAND,
- IX86_BUILTIN_PANDN,
- IX86_BUILTIN_POR,
- IX86_BUILTIN_PXOR,
-
- IX86_BUILTIN_PAVGB,
- IX86_BUILTIN_PAVGW,
-
- IX86_BUILTIN_PCMPEQB,
- IX86_BUILTIN_PCMPEQW,
- IX86_BUILTIN_PCMPEQD,
- IX86_BUILTIN_PCMPGTB,
- IX86_BUILTIN_PCMPGTW,
- IX86_BUILTIN_PCMPGTD,
-
- IX86_BUILTIN_PEXTRW,
- IX86_BUILTIN_PINSRW,
-
- IX86_BUILTIN_PMADDWD,
-
- IX86_BUILTIN_PMAXSW,
- IX86_BUILTIN_PMAXUB,
- IX86_BUILTIN_PMINSW,
- IX86_BUILTIN_PMINUB,
-
- IX86_BUILTIN_PMULHUW,
- IX86_BUILTIN_PMULHW,
- IX86_BUILTIN_PMULLW,
-
- IX86_BUILTIN_PSADBW,
- IX86_BUILTIN_PSHUFW,
-
- IX86_BUILTIN_PSLLW,
- IX86_BUILTIN_PSLLD,
- IX86_BUILTIN_PSLLQ,
- IX86_BUILTIN_PSRAW,
- IX86_BUILTIN_PSRAD,
- IX86_BUILTIN_PSRLW,
- IX86_BUILTIN_PSRLD,
- IX86_BUILTIN_PSRLQ,
- IX86_BUILTIN_PSLLWI,
- IX86_BUILTIN_PSLLDI,
- IX86_BUILTIN_PSLLQI,
- IX86_BUILTIN_PSRAWI,
- IX86_BUILTIN_PSRADI,
- IX86_BUILTIN_PSRLWI,
- IX86_BUILTIN_PSRLDI,
- IX86_BUILTIN_PSRLQI,
-
- IX86_BUILTIN_PUNPCKHBW,
- IX86_BUILTIN_PUNPCKHWD,
- IX86_BUILTIN_PUNPCKHDQ,
- IX86_BUILTIN_PUNPCKLBW,
- IX86_BUILTIN_PUNPCKLWD,
- IX86_BUILTIN_PUNPCKLDQ,
-
- IX86_BUILTIN_SHUFPS,
-
- IX86_BUILTIN_RCPPS,
- IX86_BUILTIN_RCPSS,
- IX86_BUILTIN_RSQRTPS,
- IX86_BUILTIN_RSQRTSS,
- IX86_BUILTIN_SQRTPS,
- IX86_BUILTIN_SQRTSS,
-
- IX86_BUILTIN_UNPCKHPS,
- IX86_BUILTIN_UNPCKLPS,
-
- IX86_BUILTIN_ANDPS,
- IX86_BUILTIN_ANDNPS,
- IX86_BUILTIN_ORPS,
- IX86_BUILTIN_XORPS,
-
- IX86_BUILTIN_EMMS,
- IX86_BUILTIN_LDMXCSR,
- IX86_BUILTIN_STMXCSR,
- IX86_BUILTIN_SFENCE,
-
- /* 3DNow! Original */
- IX86_BUILTIN_FEMMS,
- IX86_BUILTIN_PAVGUSB,
- IX86_BUILTIN_PF2ID,
- IX86_BUILTIN_PFACC,
- IX86_BUILTIN_PFADD,
- IX86_BUILTIN_PFCMPEQ,
- IX86_BUILTIN_PFCMPGE,
- IX86_BUILTIN_PFCMPGT,
- IX86_BUILTIN_PFMAX,
- IX86_BUILTIN_PFMIN,
- IX86_BUILTIN_PFMUL,
- IX86_BUILTIN_PFRCP,
- IX86_BUILTIN_PFRCPIT1,
- IX86_BUILTIN_PFRCPIT2,
- IX86_BUILTIN_PFRSQIT1,
- IX86_BUILTIN_PFRSQRT,
- IX86_BUILTIN_PFSUB,
- IX86_BUILTIN_PFSUBR,
- IX86_BUILTIN_PI2FD,
- IX86_BUILTIN_PMULHRW,
-
- /* 3DNow! Athlon Extensions */
- IX86_BUILTIN_PF2IW,
- IX86_BUILTIN_PFNACC,
- IX86_BUILTIN_PFPNACC,
- IX86_BUILTIN_PI2FW,
- IX86_BUILTIN_PSWAPDSI,
- IX86_BUILTIN_PSWAPDSF,
-
- IX86_BUILTIN_SSE_ZERO,
- IX86_BUILTIN_MMX_ZERO,
-
- IX86_BUILTIN_MAX
-};
-
-/* Define this macro if references to a symbol must be treated
- differently depending on something about the variable or
- function named by the symbol (such as what section it is in).
-
- On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
- so that we may access it directly in the GOT. */
-
-#define ENCODE_SECTION_INFO(DECL) \
-do { \
- if (flag_pic) \
- { \
- rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
- ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
- \
- if (GET_CODE (rtl) == MEM) \
- { \
- if (TARGET_DEBUG_ADDR \
- && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
- { \
- fprintf (stderr, "Encode %s, public = %d\n", \
- IDENTIFIER_POINTER (DECL_NAME (DECL)), \
- TREE_PUBLIC (DECL)); \
- } \
- \
- SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
- = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
- || ! TREE_PUBLIC (DECL)); \
- } \
- } \
-} while (0)
-
-/* The `FINALIZE_PIC' macro serves as a hook to emit these special
- codes once the function is being compiled into assembly code, but
- not before. (It is not done before, because in the case of
- compiling an inline function, it would lead to multiple PIC
- prologues being included in functions which used inline functions
- and were compiled to assembly language.) */
-
-#define FINALIZE_PIC \
- (current_function_uses_pic_offset_table |= current_function_profile)
-
-
-/* Max number of args passed in registers. If this is more than 3, we will
- have problems with ebx (register #4), since it is a caller save register and
- is also used as the pic register in ELF. So for now, don't allow more than
- 3 registers to be passed in registers. */
-
-#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
-
-#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
-
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
-
-/* Define as C expression which evaluates to nonzero if the tablejump
- instruction expects the table to contain offsets from the address of the
- table.
- Do not define this if the table should contain absolute addresses. */
-/* #define CASE_VECTOR_PC_RELATIVE 1 */
-
-/* Define this as 1 if `char' should by default be signed; else as 0. */
-#define DEFAULT_SIGNED_CHAR 1
-
-/* Number of bytes moved into a data cache for a single prefetch operation. */
-#define PREFETCH_BLOCK ix86_cost->prefetch_block
-
-/* Number of prefetch operations that can be done in parallel. */
-#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
-
-/* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
-#define MOVE_MAX 16
-
-/* MOVE_MAX_PIECES is the number of bytes at a time which we can
- move efficiently, as opposed to MOVE_MAX which is the maximum
- number of bytes we can move with a single instruction. */
-#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
-
-/* If a memory-to-memory move would take MOVE_RATIO or more simple
- move-instruction pairs, we will do a movstr or libcall instead.
- Increasing the value will always make code faster, but eventually
- incurs high cost in increased code size.
-
- If you don't define this, a reasonable default is used. */
-
-#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
-
-/* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
-/* On i386, shifts do truncate the count. But bit opcodes don't. */
-
-/* #define SHIFT_COUNT_TRUNCATED */
-
-/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-/* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
-#define STORE_FLAG_VALUE 1
-
-/* When a prototype says `char' or `short', really pass an `int'.
- (The 386 can't easily push less than an int.) */
-
-#define PROMOTE_PROTOTYPES (!TARGET_64BIT)
-
-/* A macro to update M and UNSIGNEDP when an object whose type is
- TYPE and which has the specified mode and signedness is to be
- stored in a register. This macro is only called when TYPE is a
- scalar type.
-
- On i386 it is sometimes useful to promote HImode and QImode
- quantities to SImode. The choice depends on target type. */
-
-#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
-do { \
- if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
- || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
- (MODE) = SImode; \
-} while (0)
-
-/* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
-#define Pmode (TARGET_64BIT ? DImode : SImode)
-
-/* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
-#define FUNCTION_MODE QImode
-
-/* A part of a C `switch' statement that describes the relative costs
- of constant RTL expressions. It must contain `case' labels for
- expression codes `const_int', `const', `symbol_ref', `label_ref'
- and `const_double'. Each case must ultimately reach a `return'
- statement to return the relative cost of the use of that kind of
- constant value in an expression. The cost may depend on the
- precise value of the constant, which is available for examination
- in X, and the rtx code of the expression in which it is contained,
- found in OUTER_CODE.
-
- CODE is the expression code--redundant, since it can be obtained
- with `GET_CODE (X)'. */
-
-#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
- case CONST_INT: \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
- return 3; \
- if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
- return 2; \
- return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
- \
- case CONST_DOUBLE: \
- { \
- int code; \
- if (GET_MODE (RTX) == VOIDmode) \
- return 0; \
- \
- code = standard_80387_constant_p (RTX); \
- return code == 1 ? 1 : \
- code == 2 ? 2 : \
- 3; \
- }
-
-/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
-#define TOPLEVEL_COSTS_N_INSNS(N) \
- do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
-
-/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
- This can be used, for example, to indicate how costly a multiply
- instruction is. In writing this macro, you can use the construct
- `COSTS_N_INSNS (N)' to specify a cost equal to N fast
- instructions. OUTER_CODE is the code of the expression in which X
- is contained.
-
- This macro is optional; do not define it if the default cost
- assumptions are adequate for the target machine. */
-
-#define RTX_COSTS(X, CODE, OUTER_CODE) \
- case ZERO_EXTEND: \
- /* The zero extensions is often completely free on x86_64, so make \
- it as cheap as possible. */ \
- if (TARGET_64BIT && GET_MODE (X) == DImode \
- && GET_MODE (XEXP (X, 0)) == SImode) \
- { \
- total = 1; goto egress_rtx_costs; \
- } \
- else \
- TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
- ix86_cost->add : ix86_cost->movzx); \
- break; \
- case SIGN_EXTEND: \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
- break; \
- case ASHIFT: \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
- { \
- HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
- if (value == 1) \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
- if ((value == 2 || value == 3) \
- && !TARGET_DECOMPOSE_LEA \
- && ix86_cost->lea <= ix86_cost->shift_const) \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
- } \
- /* fall through */ \
- \
- case ROTATE: \
- case ASHIFTRT: \
- case LSHIFTRT: \
- case ROTATERT: \
- if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
- { \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
- { \
- if (INTVAL (XEXP (X, 1)) > 32) \
- TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
- else \
- TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
- } \
- else \
- { \
- if (GET_CODE (XEXP (X, 1)) == AND) \
- TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
- else \
- TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
- } \
- } \
- else \
- { \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
- else \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
- } \
- break; \
- \
- case MULT: \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
- { \
- unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
- int nbits = 0; \
- \
- while (value != 0) \
- { \
- nbits++; \
- value >>= 1; \
- } \
- \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
- + nbits * ix86_cost->mult_bit); \
- } \
- else /* This is arbitrary */ \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
- + 7 * ix86_cost->mult_bit); \
- \
- case DIV: \
- case UDIV: \
- case MOD: \
- case UMOD: \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
- \
- case PLUS: \
- if (!TARGET_DECOMPOSE_LEA \
- && INTEGRAL_MODE_P (GET_MODE (X)) \
- && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
- { \
- if (GET_CODE (XEXP (X, 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
- && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
- && CONSTANT_P (XEXP (X, 1))) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
- if (val == 2 || val == 4 || val == 8) \
- { \
- return (COSTS_N_INSNS (ix86_cost->lea) \
- + rtx_cost (XEXP (XEXP (X, 0), 1), \
- (OUTER_CODE)) \
- + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
- (OUTER_CODE)) \
- + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
- } \
- } \
- else if (GET_CODE (XEXP (X, 0)) == MULT \
- && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
- if (val == 2 || val == 4 || val == 8) \
- { \
- return (COSTS_N_INSNS (ix86_cost->lea) \
- + rtx_cost (XEXP (XEXP (X, 0), 0), \
- (OUTER_CODE)) \
- + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
- } \
- } \
- else if (GET_CODE (XEXP (X, 0)) == PLUS) \
- { \
- return (COSTS_N_INSNS (ix86_cost->lea) \
- + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
- + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
- + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
- } \
- } \
- \
- /* fall through */ \
- case AND: \
- case IOR: \
- case XOR: \
- case MINUS: \
- if (!TARGET_64BIT && GET_MODE (X) == DImode) \
- return (COSTS_N_INSNS (ix86_cost->add) * 2 \
- + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
- << (GET_MODE (XEXP (X, 0)) != DImode)) \
- + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
- << (GET_MODE (XEXP (X, 1)) != DImode))); \
- \
- /* fall through */ \
- case NEG: \
- case NOT: \
- if (!TARGET_64BIT && GET_MODE (X) == DImode) \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
- \
- egress_rtx_costs: \
- break;
-
-
-/* An expression giving the cost of an addressing mode that contains
- ADDRESS. If not defined, the cost is computed from the ADDRESS
- expression and the `CONST_COSTS' values.
-
- For most CISC machines, the default cost is a good approximation
- of the true cost of the addressing mode. However, on RISC
- machines, all instructions normally have the same length and
- execution time. Hence all addresses will have equal costs.
-
- In cases where more than one form of an address is known, the form
- with the lowest cost will be used. If multiple forms have the
- same, lowest, cost, the one that is the most complex will be used.
-
- For example, suppose an address that is equal to the sum of a
- register and a constant is used twice in the same basic block.
- When this macro is not defined, the address will be computed in a
- register and memory references will be indirect through that
- register. On machines where the cost of the addressing mode
- containing the sum is no higher than that of a simple indirect
- reference, this will produce an additional instruction and
- possibly require an additional register. Proper specification of
- this macro eliminates this overhead for such machines.
-
- Similar use of this macro is made in strength reduction of loops.
-
- ADDRESS need not be valid as an address. In such a case, the cost
- is not relevant and can be any value; invalid addresses need not be
- assigned a different cost.
-
- On machines where an address involving more than one register is as
- cheap as an address computation involving only one register,
- defining `ADDRESS_COST' to reflect this can cause two registers to
- be live over a region of code where only one would have been if
- `ADDRESS_COST' were not defined in that manner. This effect should
- be considered in the definition of this macro. Equivalent costs
- should probably only be given to addresses with different numbers
- of registers on machines with lots of registers.
-
- This macro will normally either not be defined or be defined as a
- constant.
-
- For i386, it is better to use a complex address than let gcc copy
- the address into a reg and make a new pseudo. But not if the address
- requires to two regs - that would mean more pseudos with longer
- lifetimes. */
-
-#define ADDRESS_COST(RTX) \
- ix86_address_cost (RTX)
-
-/* A C expression for the cost of moving data from a register in class FROM to
- one in class TO. The classes are expressed using the enumeration values
- such as `GENERAL_REGS'. A value of 2 is the default; other values are
- interpreted relative to that.
-
- It is not required that the cost always equal 2 when FROM is the same as TO;
- on some machines it is expensive to move between registers if they are not
- general registers. */
-
-#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
- ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
-
-/* A C expression for the cost of moving data of mode M between a
- register and memory. A value of 2 is the default; this cost is
- relative to those in `REGISTER_MOVE_COST'.
-
- If moving between registers and memory is more expensive than
- between two registers, you should define this macro to express the
- relative cost. */
-
-#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
- ix86_memory_move_cost ((MODE), (CLASS), (IN))
-
-/* A C expression for the cost of a branch instruction. A value of 1
- is the default; other values are interpreted relative to that. */
-
-#define BRANCH_COST ix86_branch_cost
-
-/* Define this macro as a C expression which is nonzero if accessing
- less than a word of memory (i.e. a `char' or a `short') is no
- faster than accessing a word of memory, i.e., if such access
- require more than one instruction or if there is no difference in
- cost between byte and (aligned) word loads.
-
- When this macro is not defined, the compiler will access a field by
- finding the smallest containing object; when it is defined, a
- fullword load will be used if alignment permits. Unless bytes
- accesses are faster than word accesses, using word accesses is
- preferable since it may eliminate subsequent memory access if
- subsequent accesses occur to other fields in the same word of the
- structure, but to different bytes. */
-
-#define SLOW_BYTE_ACCESS 0
-
-/* Nonzero if access to memory by shorts is slow and undesirable. */
-#define SLOW_SHORT_ACCESS 0
-
-/* Define this macro to be the value 1 if unaligned accesses have a
- cost many times greater than aligned accesses, for example if they
- are emulated in a trap handler.
-
- When this macro is non-zero, the compiler will act as if
- `STRICT_ALIGNMENT' were non-zero when generating code for block
- moves. This can cause significantly more instructions to be
- produced. Therefore, do not set this macro non-zero if unaligned
- accesses only add a cycle or two to the time for a memory access.
-
- If the value of this macro is always zero, it need not be defined. */
-
-/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
-
-/* Define this macro to inhibit strength reduction of memory
- addresses. (On some machines, such strength reduction seems to do
- harm rather than good.) */
-
-/* #define DONT_REDUCE_ADDR */
-
-/* Define this macro if it is as good or better to call a constant
- function address than to call an address kept in a register.
-
- Desirable on the 386 because a CALL with a constant address is
- faster than one with a register address. */
-
-#define NO_FUNCTION_CSE
-
-/* Define this macro if it is as good or better for a function to call
- itself with an explicit address than to call an address kept in a
- register. */
-
-#define NO_RECURSIVE_FUNCTION_CSE
-
-/* Add any extra modes needed to represent the condition code.
-
- For the i386, we need separate modes when floating-point
- equality comparisons are being done.
-
- Add CCNO to indicate comparisons against zero that requires
- Overflow flag to be unset. Sign bit test is used instead and
- thus can be used to form "a&b>0" type of tests.
-
- Add CCGC to indicate comparisons agains zero that allows
- unspecified garbage in the Carry flag. This mode is used
- by inc/dec instructions.
-
- Add CCGOC to indicate comparisons agains zero that allows
- unspecified garbage in the Carry and Overflow flag. This
- mode is used to simulate comparisons of (a-b) and (a+b)
- against zero using sub/cmp/add operations.
-
- Add CCZ to indicate that only the Zero flag is valid. */
-
-#define EXTRA_CC_MODES \
- CC (CCGCmode, "CCGC") \
- CC (CCGOCmode, "CCGOC") \
- CC (CCNOmode, "CCNO") \
- CC (CCZmode, "CCZ") \
- CC (CCFPmode, "CCFP") \
- CC (CCFPUmode, "CCFPU")
-
-/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison.
-
- For floating-point equality comparisons, CCFPEQmode should be used.
- VOIDmode should be used in all other cases.
-
- For integer comparisons against zero, reduce to CCNOmode or CCZmode if
- possible, to allow for more combinations. */
-
-#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
-
-/* Return non-zero if MODE implies a floating point inequality can be
- reversed. */
-
-#define REVERSIBLE_CC_MODE(MODE) 1
-
-/* A C expression whose value is reversed condition code of the CODE for
- comparison done in CC_MODE mode. */
-#define REVERSE_CONDITION(CODE, MODE) \
- ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
- : reverse_condition_maybe_unordered (CODE))
-
-
-/* Control the assembler format that we output, to the extent
- this does not vary between assemblers. */
-
-/* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
-/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
- For non floating point regs, the following are the HImode names.
-
- For float regs, the stack top is sometimes referred to as "%st(0)"
- instead of just "%st". PRINT_REG handles this with the "y" code. */
-
-#undef HI_REGISTER_NAMES
-#define HI_REGISTER_NAMES \
-{"ax","dx","cx","bx","si","di","bp","sp", \
- "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
- "flags","fpsr", "dirflag", "frame", \
- "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
- "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
- "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
-
-#define REGISTER_NAMES HI_REGISTER_NAMES
-
-/* Table of additional register names to use in user input. */
-
-#define ADDITIONAL_REGISTER_NAMES \
-{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
- { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
- { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
- { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
- { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
- { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
- { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
- { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
-
-/* Note we are omitting these since currently I don't know how
-to get gcc to use these, since they want the same but different
-number as al, and ax.
-*/
-
-#define QI_REGISTER_NAMES \
-{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
-
-/* These parallel the array above, and can be used to access bits 8:15
- of regs 0 through 3. */
-
-#define QI_HIGH_REGISTER_NAMES \
-{"ah", "dh", "ch", "bh", }
-
-/* How to renumber registers for dbx and gdb. */
-
-#define DBX_REGISTER_NUMBER(N) \
- (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
-
-extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
-extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
-extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
-
-/* Before the prologue, RA is at 0(%esp). */
-#define INCOMING_RETURN_ADDR_RTX \
- gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
-
-/* After the prologue, RA is at -4(AP) in the current frame. */
-#define RETURN_ADDR_RTX(COUNT, FRAME) \
- ((COUNT) == 0 \
- ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
- : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
-
-/* PC is dbx register 8; let's use that column for RA. */
-#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
-
-/* Before the prologue, the top of the frame is at 4(%esp). */
-#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
-
-/* Describe how we implement __builtin_eh_return. */
-#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
-#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
-
-
-/* Select a format to encode pointers in exception handling data. CODE
- is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
- true if the symbol may be affected by dynamic relocations.
-
- ??? All x86 object file formats are capable of representing this.
- After all, the relocation needed is the same as for the call insn.
- Whether or not a particular assembler allows us to enter such, I
- guess we'll have to see. */
-#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
- (flag_pic \
- ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
- : DW_EH_PE_absptr)
-
-/* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
-#define ASM_OUTPUT_LABEL(FILE, NAME) \
- (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
-
-/* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
-#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
-( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
-/* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
- asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)])
-
-/* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
- asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)])
-
-/* This is how to output an element of a case-vector that is absolute. */
-
-#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- ix86_output_addr_vec_elt ((FILE), (VALUE))
-
-/* This is how to output an element of a case-vector that is relative. */
-
-#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
- ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
-
-/* Under some conditions we need jump tables in the text section, because
- the assembler cannot handle label differences between sections. */
-
-#define JUMP_TABLES_IN_TEXT_SECTION \
- (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
-
-/* A C statement that outputs an address constant appropriate to
- for DWARF debugging. */
-
-#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
- i386_dwarf_output_addr_const ((FILE), (X))
-
-/* Either simplify a location expression, or return the original. */
-
-#define ASM_SIMPLIFY_DWARF_ADDR(X) \
- i386_simplify_dwarf_addr (X)
-
-/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
- and switch back. For x86 we do this only to save a few bytes that
- would otherwise be unused in the text section. */
-#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
- asm (SECTION_OP "\n\t" \
- "call " USER_LABEL_PREFIX #FUNC "\n" \
- TEXT_SECTION_ASM_OP);
-
-/* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- Effect of various CODE letters is described in i386.c near
- print_operand function. */
-
-#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '*' || (CODE) == '+')
-
-/* Print the name of a register based on its machine mode and number.
- If CODE is 'w', pretend the mode is HImode.
- If CODE is 'b', pretend the mode is QImode.
- If CODE is 'k', pretend the mode is SImode.
- If CODE is 'q', pretend the mode is DImode.
- If CODE is 'h', pretend the reg is the `high' byte register.
- If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
-
-#define PRINT_REG(X, CODE, FILE) \
- print_reg ((X), (CODE), (FILE))
-
-#define PRINT_OPERAND(FILE, X, CODE) \
- print_operand ((FILE), (X), (CODE))
-
-#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- print_operand_address ((FILE), (ADDR))
-
-/* Print the name of a register for based on its machine mode and number.
- This macro is used to print debugging output.
- This macro is different from PRINT_REG in that it may be used in
- programs that are not linked with aux-output.o. */
-
-#define DEBUG_PRINT_REG(X, CODE, FILE) \
- do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
- static const char * const qi_name[] = QI_REGISTER_NAMES; \
- fprintf ((FILE), "%d ", REGNO (X)); \
- if (REGNO (X) == FLAGS_REG) \
- { fputs ("flags", (FILE)); break; } \
- if (REGNO (X) == DIRFLAG_REG) \
- { fputs ("dirflag", (FILE)); break; } \
- if (REGNO (X) == FPSR_REG) \
- { fputs ("fpsr", (FILE)); break; } \
- if (REGNO (X) == ARG_POINTER_REGNUM) \
- { fputs ("argp", (FILE)); break; } \
- if (REGNO (X) == FRAME_POINTER_REGNUM) \
- { fputs ("frame", (FILE)); break; } \
- if (STACK_TOP_P (X)) \
- { fputs ("st(0)", (FILE)); break; } \
- if (FP_REG_P (X)) \
- { fputs (hi_name[REGNO(X)], (FILE)); break; } \
- if (REX_INT_REG_P (X)) \
- { \
- switch (GET_MODE_SIZE (GET_MODE (X))) \
- { \
- default: \
- case 8: \
- fprintf ((FILE), "r%i", REGNO (X) \
- - FIRST_REX_INT_REG + 8); \
- break; \
- case 4: \
- fprintf ((FILE), "r%id", REGNO (X) \
- - FIRST_REX_INT_REG + 8); \
- break; \
- case 2: \
- fprintf ((FILE), "r%iw", REGNO (X) \
- - FIRST_REX_INT_REG + 8); \
- break; \
- case 1: \
- fprintf ((FILE), "r%ib", REGNO (X) \
- - FIRST_REX_INT_REG + 8); \
- break; \
- } \
- break; \
- } \
- switch (GET_MODE_SIZE (GET_MODE (X))) \
- { \
- case 8: \
- fputs ("r", (FILE)); \
- fputs (hi_name[REGNO (X)], (FILE)); \
- break; \
- default: \
- fputs ("e", (FILE)); \
- case 2: \
- fputs (hi_name[REGNO (X)], (FILE)); \
- break; \
- case 1: \
- fputs (qi_name[REGNO (X)], (FILE)); \
- break; \
- } \
- } while (0)
-
-/* a letter which is not needed by the normal asm syntax, which
- we can use for operand syntax in the extended asm */
-
-#define ASM_OPERAND_LETTER '#'
-#define RET return ""
-#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
-
-/* Define the codes that are matched by predicates in i386.c. */
-
-#define PREDICATE_CODES \
- {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
- SYMBOL_REF, LABEL_REF, CONST}}, \
- {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
- SYMBOL_REF, LABEL_REF}}, \
- {"shiftdi_operand", {SUBREG, REG, MEM}}, \
- {"const_int_1_operand", {CONST_INT}}, \
- {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
- {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
- LABEL_REF, SUBREG, REG, MEM}}, \
- {"pic_symbolic_operand", {CONST}}, \
- {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
- {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
- {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
- {"const1_operand", {CONST_INT}}, \
- {"const248_operand", {CONST_INT}}, \
- {"incdec_operand", {CONST_INT}}, \
- {"mmx_reg_operand", {REG}}, \
- {"reg_no_sp_operand", {SUBREG, REG}}, \
- {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
- SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
- {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
- {"q_regs_operand", {SUBREG, REG}}, \
- {"non_q_regs_operand", {SUBREG, REG}}, \
- {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
- ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
- GE, UNGE, LTGT, UNEQ}}, \
- {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
- ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
- }}, \
- {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
- GTU, UNORDERED, ORDERED, UNLE, UNLT, \
- UNGE, UNGT, LTGT, UNEQ }}, \
- {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
- {"ext_register_operand", {SUBREG, REG}}, \
- {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
- {"mult_operator", {MULT}}, \
- {"div_operator", {DIV}}, \
- {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
- UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
- UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
- LSHIFTRT, ROTATERT}}, \
- {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
- {"memory_displacement_operand", {MEM}}, \
- {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
- LABEL_REF, SUBREG, REG, MEM, AND}}, \
- {"long_memory_operand", {MEM}},
-
-/* A list of predicates that do special things with modes, and so
- should not elicit warnings for VOIDmode match_operand. */
-
-#define SPECIAL_MODE_PREDICATES \
- "ext_register_operand",
-
-/* CM_32 is used by 32bit ABI
- CM_SMALL is small model assuming that all code and data fits in the first
- 31bits of address space.
- CM_KERNEL is model assuming that all code and data fits in the negative
- 31bits of address space.
- CM_MEDIUM is model assuming that code fits in the first 31bits of address
- space. Size of data is unlimited.
- CM_LARGE is model making no assumptions about size of particular sections.
-
- CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
- tables first in 31bits of address space.
- */
-enum cmodel {
- CM_32,
- CM_SMALL,
- CM_KERNEL,
- CM_MEDIUM,
- CM_LARGE,
- CM_SMALL_PIC
-};
-
-/* Size of the RED_ZONE area. */
-#define RED_ZONE_SIZE 128
-/* Reserved area of the red zone for temporaries. */
-#define RED_ZONE_RESERVE 8
-extern const char *ix86_debug_arg_string, *ix86_debug_addr_string;
-
-enum asm_dialect {
- ASM_ATT,
- ASM_INTEL
-};
-extern const char *ix86_asm_string;
-extern enum asm_dialect ix86_asm_dialect;
-/* Value of -mcmodel specified by user. */
-extern const char *ix86_cmodel_string;
-extern enum cmodel ix86_cmodel;
-
-/* Variables in i386.c */
-extern const char *ix86_cpu_string; /* for -mcpu= */
-extern const char *ix86_arch_string; /* for -march= */
-extern const char *ix86_fpmath_string; /* for -mfpmath= */
-extern const char *ix86_regparm_string; /* # registers to use to pass args */
-extern const char *ix86_align_loops_string; /* power of two alignment for loops */
-extern const char *ix86_align_jumps_string; /* power of two alignment for non-loop jumps */
-extern const char *ix86_align_funcs_string; /* power of two alignment for functions */
-extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
-extern const char *ix86_branch_cost_string; /* values 1-5: see jump.c */
-extern int ix86_regparm; /* ix86_regparm_string as a number */
-extern int ix86_preferred_stack_boundary; /* preferred stack boundary alignment in bits */
-extern int ix86_branch_cost; /* values 1-5: see jump.c */
-extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
-// Commented out the following two lines due to lack of definition for "rtx" - Brian
-//extern rtx ix86_compare_op0; /* operand 0 for comparisons */
-//extern rtx ix86_compare_op1; /* operand 1 for comparisons */
-
-/* To properly truncate FP values into integers, we need to set i387 control
- word. We can't emit proper mode switching code before reload, as spills
- generated by reload may truncate values incorrectly, but we still can avoid
- redundant computation of new control word by the mode switching pass.
- The fldcw instructions are still emitted redundantly, but this is probably
- not going to be noticeable problem, as most CPUs do have fast path for
- the sequence.
-
- The machinery is to emit simple truncation instructions and split them
- before reload to instructions having USEs of two memory locations that
- are filled by this code to old and new control word.
-
- Post-reload pass may be later used to eliminate the redundant fildcw if
- needed. */
-
-enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
-
-/* Define this macro if the port needs extra instructions inserted
- for mode switching in an optimizing compilation. */
-
-#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
-
-/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
- initializer for an array of integers. Each initializer element N
- refers to an entity that needs mode switching, and specifies the
- number of different modes that might need to be set for this
- entity. The position of the initializer in the initializer -
- starting counting at zero - determines the integer that is used to
- refer to the mode-switched entity in question. */
-
-#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
-
-/* ENTITY is an integer specifying a mode-switched entity. If
- `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
- return an integer value not larger than the corresponding element
- in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
- must be switched into prior to the execution of INSN. */
-
-#define MODE_NEEDED(ENTITY, I) \
- (GET_CODE (I) == CALL_INSN \
- || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
- || GET_CODE (PATTERN (I)) == ASM_INPUT))\
- ? FP_CW_UNINITIALIZED \
- : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
- ? FP_CW_ANY \
- : FP_CW_STORED)
-
-/* This macro specifies the order in which modes for ENTITY are
- processed. 0 is the highest priority. */
-
-#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
-
-/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
- is the set of hard registers live at the point where the insn(s)
- are to be inserted. */
-
-#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
- ((MODE) == FP_CW_STORED \
- ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
- assign_386_stack_local (HImode, 2)), 0\
- : 0)
-
-/* Avoid renaming of stack registers, as doing so in combination with
- scheduling just increases amount of live registers at time and in
- the turn amount of fxch instructions needed.
-
- ??? Maybe Pentium chips benefits from renaming, someone can try... */
-
-#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
- ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
-
-
-/*
-Local variables:
-version-control: t
-End:
-*/
diff --git a/reactos/boot/freeldr/freeldr/rtl/bget.c b/reactos/boot/freeldr/freeldr/rtl/bget.c
index f290a708afa..cff04fa7204 100644
--- a/reactos/boot/freeldr/freeldr/rtl/bget.c
+++ b/reactos/boot/freeldr/freeldr/rtl/bget.c
@@ -445,6 +445,9 @@
#include
+int TuiPrintf(const char *format, ... );
+#define printf TuiPrintf
+
#ifdef lint
#define NDEBUG /* Exits in asserts confuse lint */
/* LINTLIBRARY */ /* Don't complain about def, no ref */
diff --git a/reactos/boot/freeldr/freeldr/setupldr.rbuild b/reactos/boot/freeldr/freeldr/setupldr.rbuild
index 2a2fd72747c..acd2166b655 100644
--- a/reactos/boot/freeldr/freeldr/setupldr.rbuild
+++ b/reactos/boot/freeldr/freeldr/setupldr.rbuild
@@ -11,4 +11,7 @@
cmlib
rtl
libcntpr
+ -nostartfiles
+ -nostdlib
+ -lgcc
diff --git a/reactos/boot/freeldr/freeldr/ui/tui.c b/reactos/boot/freeldr/freeldr/ui/tui.c
index d0e79427ffc..94e89acba13 100644
--- a/reactos/boot/freeldr/freeldr/ui/tui.c
+++ b/reactos/boot/freeldr/freeldr/ui/tui.c
@@ -25,7 +25,7 @@ PVOID TextVideoBuffer = NULL;
* printf() - prints formatted text to stdout
* originally from GRUB
*/
-int printf(const char *format, ... )
+int TuiPrintf(const char *format, ... )
{
va_list ap;
va_start(ap,format);
diff --git a/reactos/boot/freeldr/freeldr/windows/winldr.c b/reactos/boot/freeldr/freeldr/windows/winldr.c
index 881302e0621..c2cdbec621c 100644
--- a/reactos/boot/freeldr/freeldr/windows/winldr.c
+++ b/reactos/boot/freeldr/freeldr/windows/winldr.c
@@ -259,7 +259,7 @@ WinLdrLoadDeviceDriver(PLOADER_PARAMETER_BLOCK LoaderBlock,
PVOID DriverBase;
// Separate the path to file name and directory path
- sprintf(DriverPath, "%wZ", FilePath);
+ sprintf(DriverPath, "%S", FilePath->Buffer);
DriverNamePos = strrchr(DriverPath, '\\');
if (DriverNamePos != NULL)
{
@@ -282,7 +282,7 @@ WinLdrLoadDeviceDriver(PLOADER_PARAMETER_BLOCK LoaderBlock,
}
// It's not loaded, we have to load it
- sprintf(FullPath,"%s%wZ", BootPath, FilePath);
+ sprintf(FullPath,"%s%S", BootPath, FilePath->Buffer);
Status = WinLdrLoadImage(FullPath, LoaderBootDriver, &DriverBase);
if (!Status)
return FALSE;
@@ -586,3 +586,4 @@ WinLdrpDumpArcDisks(PLOADER_PARAMETER_BLOCK LoaderBlock)
}
}
+
diff --git a/reactos/tools/rbuild/backend/mingw/modulehandler.cpp b/reactos/tools/rbuild/backend/mingw/modulehandler.cpp
index 7a40a022438..87901b84594 100644
--- a/reactos/tools/rbuild/backend/mingw/modulehandler.cpp
+++ b/reactos/tools/rbuild/backend/mingw/modulehandler.cpp
@@ -3547,11 +3547,11 @@ MingwBootLoaderModuleHandler::GenerateBootLoaderModuleTarget ()
fprintf ( fMakefile, "\t$(ECHO_LD)\n" );
fprintf ( fMakefile,
- "\t${ld} %s -N -Ttext=0x8000 -o %s %s %s\n",
- GetLinkerMacro ().c_str (),
+ "\t${gcc} -Wl,--subsystem,native -Wl,-Ttext,0x8000 -o %s %s %s %s\n",
backend->GetFullName ( junk_tmp ).c_str (),
objectsMacro.c_str (),
- linkDepsMacro.c_str () );
+ linkDepsMacro.c_str (),
+ GetLinkerMacro ().c_str ());
fprintf ( fMakefile,
"\t${objcopy} -O binary %s $@\n",
backend->GetFullName ( junk_tmp ).c_str () );