mirror of
https://github.com/reactos/reactos.git
synced 2025-08-03 12:06:52 +00:00
[LIBM] Import win-libm from AMD
Source: https://github.com/amd/win-libm
This commit is contained in:
parent
081c637c06
commit
4afb647c78
82 changed files with 22392 additions and 0 deletions
340
sdk/lib/crt/math/libm_sse2/sinh.c
Normal file
340
sdk/lib/crt/math/libm_sse2/sinh.c
Normal file
|
@ -0,0 +1,340 @@
|
|||
|
||||
/*******************************************************************************
|
||||
MIT License
|
||||
-----------
|
||||
|
||||
Copyright (c) 2002-2019 Advanced Micro Devices, Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this Software and associated documentaon files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
*******************************************************************************/
|
||||
|
||||
#include "libm.h"
|
||||
#include "libm_util.h"
|
||||
|
||||
#define USE_SPLITEXP
|
||||
#define USE_SCALEDOUBLE_1
|
||||
#define USE_SCALEDOUBLE_2
|
||||
#define USE_INFINITY_WITH_FLAGS
|
||||
#define USE_VAL_WITH_FLAGS
|
||||
#define USE_HANDLE_ERROR
|
||||
#include "libm_inlines.h"
|
||||
#undef USE_SPLITEXP
|
||||
#undef USE_SCALEDOUBLE_1
|
||||
#undef USE_SCALEDOUBLE_2
|
||||
#undef USE_INFINITY_WITH_FLAGS
|
||||
#undef USE_VAL_WITH_FLAGS
|
||||
#undef USE_HANDLE_ERROR
|
||||
|
||||
#include "libm_errno.h"
|
||||
|
||||
|
||||
#pragma function(sinh)
|
||||
double sinh(double x)
|
||||
{
|
||||
/*
|
||||
After dealing with special cases the computation is split into
|
||||
regions as follows:
|
||||
|
||||
abs(x) >= max_sinh_arg:
|
||||
sinh(x) = sign(x)*Inf
|
||||
|
||||
abs(x) >= small_threshold:
|
||||
sinh(x) = sign(x)*exp(abs(x))/2 computed using the
|
||||
splitexp and scaleDouble functions as for exp_amd().
|
||||
|
||||
abs(x) < small_threshold:
|
||||
compute p = exp(y) - 1 and then z = 0.5*(p+(p/(p+1.0)))
|
||||
sinh(x) is then sign(x)*z. */
|
||||
|
||||
static const double
|
||||
max_sinh_arg = 7.10475860073943977113e+02, /* 0x408633ce8fb9f87e */
|
||||
thirtytwo_by_log2 = 4.61662413084468283841e+01, /* 0x40471547652b82fe */
|
||||
log2_by_32_lead = 2.16608493356034159660e-02, /* 0x3f962e42fe000000 */
|
||||
log2_by_32_tail = 5.68948749532545630390e-11, /* 0x3dcf473de6af278e */
|
||||
small_threshold = 8*BASEDIGITS_DP64*0.30102999566398119521373889;
|
||||
/* (8*BASEDIGITS_DP64*log10of2) ' exp(-x) insignificant c.f. exp(x) */
|
||||
|
||||
/* Lead and tail tabulated values of sinh(i) and cosh(i)
|
||||
for i = 0,...,36. The lead part has 26 leading bits. */
|
||||
|
||||
static const double sinh_lead[37] = {
|
||||
0.00000000000000000000e+00, /* 0x0000000000000000 */
|
||||
1.17520117759704589844e+00, /* 0x3ff2cd9fc0000000 */
|
||||
3.62686038017272949219e+00, /* 0x400d03cf60000000 */
|
||||
1.00178747177124023438e+01, /* 0x40240926e0000000 */
|
||||
2.72899169921875000000e+01, /* 0x403b4a3800000000 */
|
||||
7.42032089233398437500e+01, /* 0x40528d0160000000 */
|
||||
2.01713153839111328125e+02, /* 0x406936d228000000 */
|
||||
5.48316116333007812500e+02, /* 0x4081228768000000 */
|
||||
1.49047882080078125000e+03, /* 0x409749ea50000000 */
|
||||
4.05154187011718750000e+03, /* 0x40afa71570000000 */
|
||||
1.10132326660156250000e+04, /* 0x40c5829dc8000000 */
|
||||
2.99370708007812500000e+04, /* 0x40dd3c4488000000 */
|
||||
8.13773945312500000000e+04, /* 0x40f3de1650000000 */
|
||||
2.21206695312500000000e+05, /* 0x410b00b590000000 */
|
||||
6.01302140625000000000e+05, /* 0x412259ac48000000 */
|
||||
1.63450865625000000000e+06, /* 0x4138f0cca8000000 */
|
||||
4.44305525000000000000e+06, /* 0x4150f2ebd0000000 */
|
||||
1.20774762500000000000e+07, /* 0x4167093488000000 */
|
||||
3.28299845000000000000e+07, /* 0x417f4f2208000000 */
|
||||
8.92411500000000000000e+07, /* 0x419546d8f8000000 */
|
||||
2.42582596000000000000e+08, /* 0x41aceb0888000000 */
|
||||
6.59407856000000000000e+08, /* 0x41c3a6e1f8000000 */
|
||||
1.79245641600000000000e+09, /* 0x41dab5adb8000000 */
|
||||
4.87240166400000000000e+09, /* 0x41f226af30000000 */
|
||||
1.32445608960000000000e+10, /* 0x4208ab7fb0000000 */
|
||||
3.60024494080000000000e+10, /* 0x4220c3d390000000 */
|
||||
9.78648043520000000000e+10, /* 0x4236c93268000000 */
|
||||
2.66024116224000000000e+11, /* 0x424ef822f0000000 */
|
||||
7.23128516608000000000e+11, /* 0x42650bba30000000 */
|
||||
1.96566712320000000000e+12, /* 0x427c9aae40000000 */
|
||||
5.34323724288000000000e+12, /* 0x4293704708000000 */
|
||||
1.45244246507520000000e+13, /* 0x42aa6b7658000000 */
|
||||
3.94814795284480000000e+13, /* 0x42c1f43fc8000000 */
|
||||
1.07321789251584000000e+14, /* 0x42d866f348000000 */
|
||||
2.91730863685632000000e+14, /* 0x42f0953e28000000 */
|
||||
7.93006722514944000000e+14, /* 0x430689e220000000 */
|
||||
2.15561576592179200000e+15}; /* 0x431ea215a0000000 */
|
||||
|
||||
static const double sinh_tail[37] = {
|
||||
0.00000000000000000000e+00, /* 0x0000000000000000 */
|
||||
1.60467555584448807892e-08, /* 0x3e513ae6096a0092 */
|
||||
2.76742892754807136947e-08, /* 0x3e5db70cfb79a640 */
|
||||
2.09697499555224576530e-07, /* 0x3e8c2526b66dc067 */
|
||||
2.04940252448908240062e-07, /* 0x3e8b81b18647f380 */
|
||||
1.65444891522700935932e-06, /* 0x3ebbc1cdd1e1eb08 */
|
||||
3.53116789999998198721e-06, /* 0x3ecd9f201534fb09 */
|
||||
6.94023870987375490695e-06, /* 0x3edd1c064a4e9954 */
|
||||
4.98876893611587449271e-06, /* 0x3ed4eca65d06ea74 */
|
||||
3.19656024605152215752e-05, /* 0x3f00c259bcc0ecc5 */
|
||||
2.08687768377236501204e-04, /* 0x3f2b5a6647cf9016 */
|
||||
4.84668088325403796299e-05, /* 0x3f09691adefb0870 */
|
||||
1.17517985422733832468e-03, /* 0x3f53410fc29cde38 */
|
||||
6.90830086959560562415e-04, /* 0x3f46a31a50b6fb3c */
|
||||
1.45697262451506548420e-03, /* 0x3f57defc71805c40 */
|
||||
2.99859023684906737806e-02, /* 0x3f9eb49fd80e0bab */
|
||||
1.02538800507941396667e-02, /* 0x3f84fffc7bcd5920 */
|
||||
1.26787628407699110022e-01, /* 0x3fc03a93b6c63435 */
|
||||
6.86652479544033744752e-02, /* 0x3fb1940bb255fd1c */
|
||||
4.81593627621056619148e-01, /* 0x3fded26e14260b50 */
|
||||
1.70489513795397629181e+00, /* 0x3ffb47401fc9f2a2 */
|
||||
1.12416073482258713767e+01, /* 0x40267bb3f55634f1 */
|
||||
7.06579578070110514432e+00, /* 0x401c435ff8194ddc */
|
||||
5.91244512999659974639e+01, /* 0x404d8fee052ba63a */
|
||||
1.68921736147050694399e+02, /* 0x40651d7edccde3f6 */
|
||||
2.60692936262073658327e+02, /* 0x40704b1644557d1a */
|
||||
3.62419382134885609048e+02, /* 0x4076a6b5ca0a9dc4 */
|
||||
4.07689930834187271103e+03, /* 0x40afd9cc72249aba */
|
||||
1.55377375868385224749e+04, /* 0x40ce58de693edab5 */
|
||||
2.53720210371943067003e+04, /* 0x40d8c70158ac6363 */
|
||||
4.78822310734952334315e+04, /* 0x40e7614764f43e20 */
|
||||
1.81871712615542812273e+05, /* 0x4106337db36fc718 */
|
||||
5.62892347580489004031e+05, /* 0x41212d98b1f611e2 */
|
||||
6.41374032312148716301e+05, /* 0x412392bc108b37cc */
|
||||
7.57809544070145115256e+06, /* 0x415ce87bdc3473dc */
|
||||
3.64177136406482197344e+06, /* 0x414bc8d5ae99ad14 */
|
||||
7.63580561355670914054e+06}; /* 0x415d20d76744835c */
|
||||
|
||||
static const double cosh_lead[37] = {
|
||||
1.00000000000000000000e+00, /* 0x3ff0000000000000 */
|
||||
1.54308062791824340820e+00, /* 0x3ff8b07550000000 */
|
||||
3.76219564676284790039e+00, /* 0x400e18fa08000000 */
|
||||
1.00676617622375488281e+01, /* 0x402422a490000000 */
|
||||
2.73082327842712402344e+01, /* 0x403b4ee858000000 */
|
||||
7.42099475860595703125e+01, /* 0x40528d6fc8000000 */
|
||||
2.01715633392333984375e+02, /* 0x406936e678000000 */
|
||||
5.48317031860351562500e+02, /* 0x4081228948000000 */
|
||||
1.49047915649414062500e+03, /* 0x409749eaa8000000 */
|
||||
4.05154199218750000000e+03, /* 0x40afa71580000000 */
|
||||
1.10132329101562500000e+04, /* 0x40c5829dd0000000 */
|
||||
2.99370708007812500000e+04, /* 0x40dd3c4488000000 */
|
||||
8.13773945312500000000e+04, /* 0x40f3de1650000000 */
|
||||
2.21206695312500000000e+05, /* 0x410b00b590000000 */
|
||||
6.01302140625000000000e+05, /* 0x412259ac48000000 */
|
||||
1.63450865625000000000e+06, /* 0x4138f0cca8000000 */
|
||||
4.44305525000000000000e+06, /* 0x4150f2ebd0000000 */
|
||||
1.20774762500000000000e+07, /* 0x4167093488000000 */
|
||||
3.28299845000000000000e+07, /* 0x417f4f2208000000 */
|
||||
8.92411500000000000000e+07, /* 0x419546d8f8000000 */
|
||||
2.42582596000000000000e+08, /* 0x41aceb0888000000 */
|
||||
6.59407856000000000000e+08, /* 0x41c3a6e1f8000000 */
|
||||
1.79245641600000000000e+09, /* 0x41dab5adb8000000 */
|
||||
4.87240166400000000000e+09, /* 0x41f226af30000000 */
|
||||
1.32445608960000000000e+10, /* 0x4208ab7fb0000000 */
|
||||
3.60024494080000000000e+10, /* 0x4220c3d390000000 */
|
||||
9.78648043520000000000e+10, /* 0x4236c93268000000 */
|
||||
2.66024116224000000000e+11, /* 0x424ef822f0000000 */
|
||||
7.23128516608000000000e+11, /* 0x42650bba30000000 */
|
||||
1.96566712320000000000e+12, /* 0x427c9aae40000000 */
|
||||
5.34323724288000000000e+12, /* 0x4293704708000000 */
|
||||
1.45244246507520000000e+13, /* 0x42aa6b7658000000 */
|
||||
3.94814795284480000000e+13, /* 0x42c1f43fc8000000 */
|
||||
1.07321789251584000000e+14, /* 0x42d866f348000000 */
|
||||
2.91730863685632000000e+14, /* 0x42f0953e28000000 */
|
||||
7.93006722514944000000e+14, /* 0x430689e220000000 */
|
||||
2.15561576592179200000e+15}; /* 0x431ea215a0000000 */
|
||||
|
||||
static const double cosh_tail[37] = {
|
||||
0.00000000000000000000e+00, /* 0x0000000000000000 */
|
||||
6.89700037027478056904e-09, /* 0x3e3d9f5504c2bd28 */
|
||||
4.43207835591715833630e-08, /* 0x3e67cb66f0a4c9fd */
|
||||
2.33540217013828929694e-07, /* 0x3e8f58617928e588 */
|
||||
5.17452463948269748331e-08, /* 0x3e6bc7d000c38d48 */
|
||||
9.38728274131605919153e-07, /* 0x3eaf7f9d4e329998 */
|
||||
2.73012191010840495544e-06, /* 0x3ec6e6e464885269 */
|
||||
3.29486051438996307950e-06, /* 0x3ecba3a8b946c154 */
|
||||
4.75803746362771416375e-06, /* 0x3ed3f4e76110d5a4 */
|
||||
3.33050940471947692369e-05, /* 0x3f017622515a3e2b */
|
||||
9.94707313972136215365e-06, /* 0x3ee4dc4b528af3d0 */
|
||||
6.51685096227860253398e-05, /* 0x3f11156278615e10 */
|
||||
1.18132406658066663359e-03, /* 0x3f535ad50ed821f5 */
|
||||
6.93090416366541877541e-04, /* 0x3f46b61055f2935c */
|
||||
1.45780415323416845386e-03, /* 0x3f57e2794a601240 */
|
||||
2.99862082708111758744e-02, /* 0x3f9eb4b45f6aadd3 */
|
||||
1.02539925859688602072e-02, /* 0x3f85000b967b3698 */
|
||||
1.26787669807076286421e-01, /* 0x3fc03a940fadc092 */
|
||||
6.86652631843830962843e-02, /* 0x3fb1940bf3bf874c */
|
||||
4.81593633223853068159e-01, /* 0x3fded26e1a2a2110 */
|
||||
1.70489514001513020602e+00, /* 0x3ffb4740205796d6 */
|
||||
1.12416073489841270572e+01, /* 0x40267bb3f55cb85d */
|
||||
7.06579578098005001152e+00, /* 0x401c435ff81e18ac */
|
||||
5.91244513000686140458e+01, /* 0x404d8fee052bdea4 */
|
||||
1.68921736147088438429e+02, /* 0x40651d7edccde926 */
|
||||
2.60692936262087528121e+02, /* 0x40704b1644557e0e */
|
||||
3.62419382134890611269e+02, /* 0x4076a6b5ca0a9e1c */
|
||||
4.07689930834187453002e+03, /* 0x40afd9cc72249abe */
|
||||
1.55377375868385224749e+04, /* 0x40ce58de693edab5 */
|
||||
2.53720210371943103382e+04, /* 0x40d8c70158ac6364 */
|
||||
4.78822310734952334315e+04, /* 0x40e7614764f43e20 */
|
||||
1.81871712615542812273e+05, /* 0x4106337db36fc718 */
|
||||
5.62892347580489004031e+05, /* 0x41212d98b1f611e2 */
|
||||
6.41374032312148716301e+05, /* 0x412392bc108b37cc */
|
||||
7.57809544070145115256e+06, /* 0x415ce87bdc3473dc */
|
||||
3.64177136406482197344e+06, /* 0x414bc8d5ae99ad14 */
|
||||
7.63580561355670914054e+06}; /* 0x415d20d76744835c */
|
||||
|
||||
unsigned long ux, aux, xneg;
|
||||
double y, z, z1, z2;
|
||||
int m;
|
||||
|
||||
/* Special cases */
|
||||
|
||||
GET_BITS_DP64(x, ux);
|
||||
aux = ux & ~SIGNBIT_DP64;
|
||||
if (aux < 0x3e30000000000000) /* |x| small enough that sinh(x) = x */
|
||||
{
|
||||
if (aux == 0)
|
||||
/* with no inexact */
|
||||
return x;
|
||||
else
|
||||
return val_with_flags(x, AMD_F_INEXACT);
|
||||
}
|
||||
else if (aux >= 0x7ff0000000000000) /* |x| is NaN or Inf */
|
||||
{
|
||||
if (aux > 0x7ff0000000000000)
|
||||
/* x is NaN */
|
||||
return _handle_error("sinh", OP_SINH, ux|0x0008000000000000, _DOMAIN,
|
||||
0, EDOM, x, 0.0, 1);
|
||||
else
|
||||
return x + x;
|
||||
}
|
||||
|
||||
|
||||
xneg = (aux != ux);
|
||||
|
||||
y = x;
|
||||
if (xneg) y = -x;
|
||||
|
||||
if (y >= max_sinh_arg)
|
||||
{
|
||||
if (xneg)
|
||||
return _handle_error("sinh", OP_SINH, NINFBITPATT_DP64, _OVERFLOW,
|
||||
AMD_F_OVERFLOW, ERANGE, x, 0.0, 1);
|
||||
else
|
||||
return _handle_error("sinh", OP_SINH, PINFBITPATT_DP64, _OVERFLOW,
|
||||
AMD_F_OVERFLOW, ERANGE, x, 0.0, 1);
|
||||
}
|
||||
else if (y >= small_threshold)
|
||||
{
|
||||
/* In this range y is large enough so that
|
||||
the negative exponential is negligible,
|
||||
so sinh(y) is approximated by sign(x)*exp(y)/2. The
|
||||
code below is an inlined version of that from
|
||||
exp() with two changes (it operates on
|
||||
y instead of x, and the division by 2 is
|
||||
done by reducing m by 1). */
|
||||
|
||||
splitexp(y, 1.0, thirtytwo_by_log2, log2_by_32_lead,
|
||||
log2_by_32_tail, &m, &z1, &z2);
|
||||
m -= 1;
|
||||
|
||||
if (m >= EMIN_DP64 && m <= EMAX_DP64)
|
||||
z = scaleDouble_1((z1+z2),m);
|
||||
else
|
||||
z = scaleDouble_2((z1+z2),m);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* In this range we find the integer part y0 of y
|
||||
and the increment dy = y - y0. We then compute
|
||||
|
||||
z = sinh(y) = sinh(y0)cosh(dy) + cosh(y0)sinh(dy)
|
||||
|
||||
where sinh(y0) and cosh(y0) are tabulated above. */
|
||||
|
||||
int ind;
|
||||
double dy, dy2, sdy, cdy, sdy1, sdy2;
|
||||
|
||||
ind = (int)y;
|
||||
dy = y - ind;
|
||||
|
||||
dy2 = dy*dy;
|
||||
sdy = dy*dy2*(0.166666666666666667013899e0 +
|
||||
(0.833333333333329931873097e-2 +
|
||||
(0.198412698413242405162014e-3 +
|
||||
(0.275573191913636406057211e-5 +
|
||||
(0.250521176994133472333666e-7 +
|
||||
(0.160576793121939886190847e-9 +
|
||||
0.7746188980094184251527126e-12*dy2)*dy2)*dy2)*dy2)*dy2)*dy2);
|
||||
|
||||
cdy = dy2*(0.500000000000000005911074e0 +
|
||||
(0.416666666666660876512776e-1 +
|
||||
(0.138888888889814854814536e-2 +
|
||||
(0.248015872460622433115785e-4 +
|
||||
(0.275573350756016588011357e-6 +
|
||||
(0.208744349831471353536305e-8 +
|
||||
0.1163921388172173692062032e-10*dy2)*dy2)*dy2)*dy2)*dy2)*dy2);
|
||||
|
||||
/* At this point sinh(dy) is approximated by dy + sdy.
|
||||
Shift some significant bits from dy to sdy. */
|
||||
|
||||
GET_BITS_DP64(dy, ux);
|
||||
ux &= 0xfffffffff8000000;
|
||||
PUT_BITS_DP64(ux, sdy1);
|
||||
sdy2 = sdy + (dy - sdy1);
|
||||
|
||||
z = ((((((cosh_tail[ind]*sdy2 + sinh_tail[ind]*cdy)
|
||||
+ cosh_tail[ind]*sdy1) + sinh_tail[ind])
|
||||
+ cosh_lead[ind]*sdy2) + sinh_lead[ind]*cdy)
|
||||
+ cosh_lead[ind]*sdy1) + sinh_lead[ind];
|
||||
}
|
||||
|
||||
if (xneg) z = - z;
|
||||
return z;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue