From 3a1a462a26da07994aca7ab8023c7b8b797b4b19 Mon Sep 17 00:00:00 2001 From: Art Yerkes Date: Fri, 1 Apr 2005 00:17:10 +0000 Subject: [PATCH] Powerpc math header. svn path=/trunk/; revision=14398 --- reactos/boot/freeldr/freeldr/math/libgcc2.c | 2 + reactos/boot/freeldr/freeldr/math/powerpc.h | 3208 +++++++++++++++++++ 2 files changed, 3210 insertions(+) create mode 100644 reactos/boot/freeldr/freeldr/math/powerpc.h diff --git a/reactos/boot/freeldr/freeldr/math/libgcc2.c b/reactos/boot/freeldr/freeldr/math/libgcc2.c index 7dbb41d21d1..7fcd53ca3ff 100644 --- a/reactos/boot/freeldr/freeldr/math/libgcc2.c +++ b/reactos/boot/freeldr/freeldr/math/libgcc2.c @@ -38,6 +38,8 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA */ #ifdef __i386__ #include "i386.h" +#elif defined(_M_PPC) +#include "powerpc.h" #endif #define L_clz #define L_udivdi3 diff --git a/reactos/boot/freeldr/freeldr/math/powerpc.h b/reactos/boot/freeldr/freeldr/math/powerpc.h new file mode 100644 index 00000000000..ba13f91f057 --- /dev/null +++ b/reactos/boot/freeldr/freeldr/math/powerpc.h @@ -0,0 +1,3208 @@ +/* Definitions of target machine for GNU compiler for IA-32. + Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, + 2001, 2002 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +/* The purpose of this file is to define the characteristics of the i386, + independent of assembler syntax or operating system. + + Three other files build on this one to describe a specific assembler syntax: + bsd386.h, att386.h, and sun386.h. + + The actual tm.h file for a particular system should include + this file, and then the file for the appropriate assembler syntax. + + Many macros that specify assembler syntax are omitted entirely from + this file because they really belong in the files for particular + assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR, + ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many + that start with ASM_ or end in ASM_OP. */ + +/* Stubs for half-pic support if not OSF/1 reference platform. */ + +#ifndef HALF_PIC_P +#define HALF_PIC_P() 0 +#define HALF_PIC_NUMBER_PTRS 0 +#define HALF_PIC_NUMBER_REFS 0 +#define HALF_PIC_ENCODE(DECL) +#define HALF_PIC_DECLARE(NAME) +#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it") +#define HALF_PIC_ADDRESS_P(X) 0 +#define HALF_PIC_PTR(X) (X) +#define HALF_PIC_FINISH(STREAM) +#endif + +/* Define the specific costs for a given cpu */ + +struct processor_costs { + const int add; /* cost of an add instruction */ + const int lea; /* cost of a lea instruction */ + const int shift_var; /* variable shift costs */ + const int shift_const; /* constant shift costs */ + const int mult_init; /* cost of starting a multiply */ + const int mult_bit; /* cost of multiply per each bit set */ + const int divide; /* cost of a divide/mod */ + int movsx; /* The cost of movsx operation. */ + int movzx; /* The cost of movzx operation. */ + const int large_insn; /* insns larger than this cost more */ + const int move_ratio; /* The threshold of number of scalar + memory-to-memory move insns. */ + const int movzbl_load; /* cost of loading using movzbl */ + const int int_load[3]; /* cost of loading integer registers + in QImode, HImode and SImode relative + to reg-reg move (2). */ + const int int_store[3]; /* cost of storing integer register + in QImode, HImode and SImode */ + const int fp_move; /* cost of reg,reg fld/fst */ + const int fp_load[3]; /* cost of loading FP register + in SFmode, DFmode and XFmode */ + const int fp_store[3]; /* cost of storing FP register + in SFmode, DFmode and XFmode */ + const int mmx_move; /* cost of moving MMX register. */ + const int mmx_load[2]; /* cost of loading MMX register + in SImode and DImode */ + const int mmx_store[2]; /* cost of storing MMX register + in SImode and DImode */ + const int sse_move; /* cost of moving SSE register. */ + const int sse_load[3]; /* cost of loading SSE register + in SImode, DImode and TImode*/ + const int sse_store[3]; /* cost of storing SSE register + in SImode, DImode and TImode*/ + const int mmxsse_to_integer; /* cost of moving mmxsse register to + integer and vice versa. */ + const int prefetch_block; /* bytes moved to cache for prefetch. */ + const int simultaneous_prefetches; /* number of parallel prefetch + operations. */ +}; + +extern const struct processor_costs *ix86_cost; + +/* Run-time compilation parameters selecting different hardware subsets. */ + +extern int target_flags; + +/* Macros used in the machine description to test the flags. */ + +/* configure can arrange to make this 2, to force a 486. */ + +#ifndef TARGET_CPU_DEFAULT +#define TARGET_CPU_DEFAULT 0 +#endif + +/* Masks for the -m switches */ +#define MASK_80387 0x00000001 /* Hardware floating point */ +#define MASK_RTD 0x00000002 /* Use ret that pops args */ +#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */ +#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */ +#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */ +#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */ +#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */ +#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */ +#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */ +#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */ +#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */ +#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */ +#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */ +#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000 +#define MASK_MMX 0x00004000 /* Support MMX regs/builtins */ +#define MASK_MMX_SET 0x00008000 +#define MASK_SSE 0x00010000 /* Support SSE regs/builtins */ +#define MASK_SSE_SET 0x00020000 +#define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */ +#define MASK_SSE2_SET 0x00080000 +#define MASK_3DNOW 0x00100000 /* Support 3Dnow builtins */ +#define MASK_3DNOW_SET 0x00200000 +#define MASK_3DNOW_A 0x00400000 /* Support Athlon 3Dnow builtins */ +#define MASK_3DNOW_A_SET 0x00800000 +#define MASK_128BIT_LONG_DOUBLE 0x01000000 /* long double size is 128bit */ +#define MASK_64BIT 0x02000000 /* Produce 64bit code */ +/* ... overlap with subtarget options starts by 0x04000000. */ +#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */ + +/* Use the floating point instructions */ +#define TARGET_80387 (target_flags & MASK_80387) + +/* Compile using ret insn that pops args. + This will not work unless you use prototypes at least + for all functions that can take varying numbers of args. */ +#define TARGET_RTD (target_flags & MASK_RTD) + +/* Align doubles to a two word boundary. This breaks compatibility with + the published ABI's for structures containing doubles, but produces + faster code on the pentium. */ +#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE) + +/* Use push instructions to save outgoing args. */ +#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS)) + +/* Accumulate stack adjustments to prologue/epilogue. */ +#define TARGET_ACCUMULATE_OUTGOING_ARGS \ + (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS) + +/* Put uninitialized locals into bss, not data. + Meaningful only on svr3. */ +#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB) + +/* Use IEEE floating point comparisons. These handle correctly the cases + where the result of a comparison is unordered. Normally SIGFPE is + generated in such cases, in which case this isn't needed. */ +#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP) + +/* Functions that return a floating point value may return that value + in the 387 FPU or in 386 integer registers. If set, this flag causes + the 387 to be used, which is compatible with most calling conventions. */ +#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS) + +/* Long double is 128bit instead of 96bit, even when only 80bits are used. + This mode wastes cache, but avoid misaligned data accesses and simplifies + address calculations. */ +#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE) + +/* Disable generation of FP sin, cos and sqrt operations for 387. + This is because FreeBSD lacks these in the math-emulator-code */ +#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387) + +/* Don't create frame pointers for leaf functions */ +#define TARGET_OMIT_LEAF_FRAME_POINTER \ + (target_flags & MASK_OMIT_LEAF_FRAME_POINTER) + +/* Debug GO_IF_LEGITIMATE_ADDRESS */ +#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0) + +/* Debug FUNCTION_ARG macros */ +#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0) + +#if 0 +/* 64bit Sledgehammer mode */ +#ifdef TARGET_BI_ARCH +#define TARGET_64BIT (target_flags & MASK_64BIT) +#else +#ifdef TARGET_64BIT_DEFAULT +#define TARGET_64BIT 1 +#else +#define TARGET_64BIT 0 +#endif +#endif + +#define TARGET_386 (ix86_cpu == PROCESSOR_I386) +#define TARGET_486 (ix86_cpu == PROCESSOR_I486) +#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM) +#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO) +#define TARGET_K6 (ix86_cpu == PROCESSOR_K6) +#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON) +#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4) + +#define CPUMASK (1 << ix86_cpu) +extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and; +extern const int x86_use_bit_test, x86_cmove, x86_deep_branch; +extern const int x86_branch_hints, x86_unroll_strlen; +extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx; +extern const int x86_use_loop, x86_use_fiop, x86_use_mov0; +extern const int x86_use_cltd, x86_read_modify_write; +extern const int x86_read_modify, x86_split_long_moves; +extern const int x86_promote_QImode, x86_single_stringop; +extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs; +extern const int x86_promote_hi_regs, x86_integer_DFmode_moves; +extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8; +extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall; +extern const int x86_accumulate_outgoing_args, x86_prologue_using_move; +extern const int x86_epilogue_using_move, x86_decompose_lea; +extern const int x86_arch_always_fancy_math_387; +extern int x86_prefetch_sse; + +#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK) +#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK) +#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK) +#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK) +#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK) +/* For sane SSE instruction set generation we need fcomi instruction. It is + safe to enable all CMOVE instructions. */ +#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE) +#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK) +#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK) +#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK) +#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT) +#define TARGET_MOVX (x86_movx & CPUMASK) +#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK) +#define TARGET_USE_LOOP (x86_use_loop & CPUMASK) +#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK) +#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK) +#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK) +#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK) +#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK) +#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK) +#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK) +#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK) +#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK) +#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK) +#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK) +#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK) +#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK) +#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK) +#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK) +#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK) +#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK) +#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK) +#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK) +#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK) +#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK) +#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK) +#define TARGET_PREFETCH_SSE (x86_prefetch_sse) + +#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE) + +#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS)) +#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS) + +#define ASSEMBLER_DIALECT (ix86_asm_dialect) + +#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0) +#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0) +#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0) +#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \ + && (ix86_fpmath & FPMATH_387)) +#define TARGET_MMX ((target_flags & MASK_MMX) != 0) +#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0) +#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0) +#endif + +#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE)) + +/* WARNING: Do not mark empty strings for translation, as calling + gettext on an empty string does NOT return an empty + string. */ + +#if 0 +#define TARGET_SWITCHES \ +{ { "80387", MASK_80387, N_("Use hardware fp") }, \ + { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \ + { "hard-float", MASK_80387, N_("Use hardware fp") }, \ + { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \ + { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \ + { "386", 0, "" /*Deprecated.*/}, \ + { "486", 0, "" /*Deprecated.*/}, \ + { "pentium", 0, "" /*Deprecated.*/}, \ + { "pentiumpro", 0, "" /*Deprecated.*/}, \ + { "intel-syntax", 0, "" /*Deprecated.*/}, \ + { "no-intel-syntax", 0, "" /*Deprecated.*/}, \ + { "rtd", MASK_RTD, \ + N_("Alternate calling convention") }, \ + { "no-rtd", -MASK_RTD, \ + N_("Use normal calling convention") }, \ + { "align-double", MASK_ALIGN_DOUBLE, \ + N_("Align some doubles on dword boundary") }, \ + { "no-align-double", -MASK_ALIGN_DOUBLE, \ + N_("Align doubles on word boundary") }, \ + { "svr3-shlib", MASK_SVR3_SHLIB, \ + N_("Uninitialized locals in .bss") }, \ + { "no-svr3-shlib", -MASK_SVR3_SHLIB, \ + N_("Uninitialized locals in .data") }, \ + { "ieee-fp", MASK_IEEE_FP, \ + N_("Use IEEE math for fp comparisons") }, \ + { "no-ieee-fp", -MASK_IEEE_FP, \ + N_("Do not use IEEE math for fp comparisons") }, \ + { "fp-ret-in-387", MASK_FLOAT_RETURNS, \ + N_("Return values of functions in FPU registers") }, \ + { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \ + N_("Do not return values of functions in FPU registers")}, \ + { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \ + N_("Do not generate sin, cos, sqrt for FPU") }, \ + { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \ + N_("Generate sin, cos, sqrt for FPU")}, \ + { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \ + N_("Omit the frame pointer in leaf functions") }, \ + { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \ + { "stack-arg-probe", MASK_STACK_PROBE, \ + N_("Enable stack probing") }, \ + { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \ + { "windows", 0, 0 /* undocumented */ }, \ + { "dll", 0, 0 /* undocumented */ }, \ + { "align-stringops", -MASK_NO_ALIGN_STROPS, \ + N_("Align destination of the string operations") }, \ + { "no-align-stringops", MASK_NO_ALIGN_STROPS, \ + N_("Do not align destination of the string operations") }, \ + { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \ + N_("Inline all known string operations") }, \ + { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \ + N_("Do not inline all known string operations") }, \ + { "push-args", -MASK_NO_PUSH_ARGS, \ + N_("Use push instructions to save outgoing arguments") }, \ + { "no-push-args", MASK_NO_PUSH_ARGS, \ + N_("Do not use push instructions to save outgoing arguments") }, \ + { "accumulate-outgoing-args", (MASK_ACCUMULATE_OUTGOING_ARGS \ + | MASK_ACCUMULATE_OUTGOING_ARGS_SET), \ + N_("Use push instructions to save outgoing arguments") }, \ + { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET, \ + N_("Do not use push instructions to save outgoing arguments") }, \ + { "mmx", MASK_MMX | MASK_MMX_SET, \ + N_("Support MMX built-in functions") }, \ + { "no-mmx", -MASK_MMX, \ + N_("Do not support MMX built-in functions") }, \ + { "no-mmx", MASK_MMX_SET, "" }, \ + { "3dnow", MASK_3DNOW | MASK_3DNOW_SET, \ + N_("Support 3DNow! built-in functions") }, \ + { "no-3dnow", -MASK_3DNOW, "" }, \ + { "no-3dnow", MASK_3DNOW_SET, \ + N_("Do not support 3DNow! built-in functions") }, \ + { "sse", MASK_SSE | MASK_SSE_SET, \ + N_("Support MMX and SSE built-in functions and code generation") }, \ + { "no-sse", -MASK_SSE, "" }, \ + { "no-sse", MASK_SSE_SET, \ + N_("Do not support MMX and SSE built-in functions and code generation") },\ + { "sse2", MASK_SSE2 | MASK_SSE2_SET, \ + N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \ + { "no-sse2", -MASK_SSE2, "" }, \ + { "no-sse2", MASK_SSE2_SET, \ + N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \ + { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \ + N_("sizeof(long double) is 16") }, \ + { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \ + N_("sizeof(long double) is 12") }, \ + { "64", MASK_64BIT, \ + N_("Generate 64bit x86-64 code") }, \ + { "32", -MASK_64BIT, \ + N_("Generate 32bit i386 code") }, \ + { "red-zone", -MASK_NO_RED_ZONE, \ + N_("Use red-zone in the x86-64 code") }, \ + { "no-red-zone", MASK_NO_RED_ZONE, \ + N_("Do not use red-zone in the x86-64 code") }, \ + SUBTARGET_SWITCHES \ + { "", TARGET_DEFAULT, 0 }} + +#ifdef TARGET_64BIT_DEFAULT +#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT) +#else +#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT +#endif + +/* Which processor to schedule for. The cpu attribute defines a list that + mirrors this list, so changes to i386.md must be made at the same time. */ + +enum processor_type +{ + PROCESSOR_I386, /* 80386 */ + PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */ + PROCESSOR_PENTIUM, + PROCESSOR_PENTIUMPRO, + PROCESSOR_K6, + PROCESSOR_ATHLON, + PROCESSOR_PENTIUM4, + PROCESSOR_max +}; +enum fpmath_unit +{ + FPMATH_387 = 1, + FPMATH_SSE = 2 +}; + +extern enum processor_type ix86_cpu; +extern enum fpmath_unit ix86_fpmath; + +extern int ix86_arch; + +/* This macro is similar to `TARGET_SWITCHES' but defines names of + command options that have values. Its definition is an + initializer with a subgrouping for each command option. + + Each subgrouping contains a string constant, that defines the + fixed part of the option name, and the address of a variable. The + variable, type `char *', is set to the variable part of the given + option if the fixed part matches. The actual option name is made + by appending `-m' to the specified name. */ +#define TARGET_OPTIONS \ +{ { "cpu=", &ix86_cpu_string, \ + N_("Schedule code for given CPU")}, \ + { "fpmath=", &ix86_fpmath_string, \ + N_("Generate floating point mathematics using given instruction set")},\ + { "arch=", &ix86_arch_string, \ + N_("Generate code for given CPU")}, \ + { "regparm=", &ix86_regparm_string, \ + N_("Number of registers used to pass integer arguments") }, \ + { "align-loops=", &ix86_align_loops_string, \ + N_("Loop code aligned to this power of 2") }, \ + { "align-jumps=", &ix86_align_jumps_string, \ + N_("Jump targets are aligned to this power of 2") }, \ + { "align-functions=", &ix86_align_funcs_string, \ + N_("Function starts are aligned to this power of 2") }, \ + { "preferred-stack-boundary=", \ + &ix86_preferred_stack_boundary_string, \ + N_("Attempt to keep stack aligned to this power of 2") }, \ + { "branch-cost=", &ix86_branch_cost_string, \ + N_("Branches are this expensive (1-5, arbitrary units)") }, \ + { "cmodel=", &ix86_cmodel_string, \ + N_("Use given x86-64 code model") }, \ + { "debug-arg", &ix86_debug_arg_string, \ + "" /* Undocumented. */ }, \ + { "debug-addr", &ix86_debug_addr_string, \ + "" /* Undocumented. */ }, \ + { "asm=", &ix86_asm_string, \ + N_("Use given assembler dialect") }, \ + SUBTARGET_OPTIONS \ +} +#endif + +/* Sometimes certain combinations of command options do not make + sense on a particular target machine. You can define a macro + `OVERRIDE_OPTIONS' to take account of this. This macro, if + defined, is executed once just after all the command options have + been parsed. + + Don't use this macro to turn on various extra optimizations for + `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ + +#define OVERRIDE_OPTIONS override_options () + +/* These are meant to be redefined in the host dependent files */ +#define SUBTARGET_SWITCHES +#define SUBTARGET_OPTIONS + +/* Define this to change the optimizations performed by default. */ +#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \ + optimization_options ((LEVEL), (SIZE)) + +/* Specs for the compiler proper */ + +#if 0 +#ifndef CC1_CPU_SPEC +#define CC1_CPU_SPEC "\ +%{!mcpu*: \ +%{m386:-mcpu=i386 \ +%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \ +%{m486:-mcpu=i486 \ +%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \ +%{mpentium:-mcpu=pentium \ +%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \ +%{mpentiumpro:-mcpu=pentiumpro \ +%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \ +%{mintel-syntax:-masm=intel \ +%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \ +%{mno-intel-syntax:-masm=att \ +%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}" +#endif + +#define TARGET_CPU_DEFAULT_i386 0 +#define TARGET_CPU_DEFAULT_i486 1 +#define TARGET_CPU_DEFAULT_pentium 2 +#define TARGET_CPU_DEFAULT_pentium_mmx 3 +#define TARGET_CPU_DEFAULT_pentiumpro 4 +#define TARGET_CPU_DEFAULT_pentium2 5 +#define TARGET_CPU_DEFAULT_pentium3 6 +#define TARGET_CPU_DEFAULT_pentium4 7 +#define TARGET_CPU_DEFAULT_k6 8 +#define TARGET_CPU_DEFAULT_k6_2 9 +#define TARGET_CPU_DEFAULT_k6_3 10 +#define TARGET_CPU_DEFAULT_athlon 11 +#define TARGET_CPU_DEFAULT_athlon_sse 12 + +#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\ + "pentiumpro", "pentium2", "pentium3", \ + "pentium4", "k6", "k6-2", "k6-3",\ + "athlon", "athlon-4"} +#ifndef CPP_CPU_DEFAULT_SPEC +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486 +#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium +#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx +#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro +#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2 +#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\ +-D__tune_pentium2__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3 +#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\ +-D__tune_pentium2__ -D__tune_pentium3__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4 +#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6 +#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2 +#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3 +#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon +#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__" +#endif +#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse +#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__" +#endif +#ifndef CPP_CPU_DEFAULT_SPEC +#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__" +#endif +#endif /* CPP_CPU_DEFAULT_SPEC */ + +#ifdef TARGET_BI_ARCH +#define NO_BUILTIN_SIZE_TYPE +#define NO_BUILTIN_PTRDIFF_TYPE +#endif + +#ifdef NO_BUILTIN_SIZE_TYPE +#define CPP_CPU32_SIZE_TYPE_SPEC \ + " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int" +#define CPP_CPU64_SIZE_TYPE_SPEC \ + " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int" +#else +#define CPP_CPU32_SIZE_TYPE_SPEC "" +#define CPP_CPU64_SIZE_TYPE_SPEC "" +#endif + +#define CPP_CPU32_SPEC \ + "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \ +-D__i386__ %(cpp_cpu32sizet)" + +#define CPP_CPU64_SPEC \ + "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)" + +#define CPP_CPUCOMMON_SPEC "\ +%{march=i386:%{!mcpu*:-D__tune_i386__ }}\ +%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\ +%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \ + %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\ +%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \ + -D__pentium__mmx__ \ + %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\ +%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \ + -D__pentiumpro -D__pentiumpro__ \ + %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\ +%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\ +%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \ + %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\ +%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \ + %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\ +%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \ + %{!mcpu*:-D__tune_athlon__ }}\ +%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \ + -D__athlon_sse__ \ + %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\ +%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\ +%{m386|mcpu=i386:-D__tune_i386__ }\ +%{m486|mcpu=i486:-D__tune_i486__ }\ +%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\ +%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \ +-D__tune_pentiumpro__ }\ +%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\ +%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\ +-D__tune_athlon__ }\ +%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\ +-D__tune_athlon_sse__ }\ +%{mcpu=pentium4:-D__tune_pentium4__ }\ +%{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\ +-D__SSE__ }\ +%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\ +|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\ +|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\ +%{march=k6-2|march=k6-3\ +|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\ +|march=athlon-mp: -D__3dNOW__ }\ +%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\ +|march=athlon-mp: -D__3dNOW_A__ }\ +%{march=pentium4: -D__SSE2__ }\ +%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}" + +#ifndef CPP_CPU_SPEC +#ifdef TARGET_BI_ARCH +#ifdef TARGET_64BIT_DEFAULT +#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)" +#else +#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)" +#endif +#else +#ifdef TARGET_64BIT_DEFAULT +#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)" +#else +#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)" +#endif +#endif +#endif + +#ifndef CC1_SPEC +#define CC1_SPEC "%(cc1_cpu) " +#endif + +/* This macro defines names of additional specifications to put in the + specs that can be used in various specifications like CC1_SPEC. Its + definition is an initializer with a subgrouping for each command option. + + Each subgrouping contains a string constant, that defines the + specification name, and a string constant that used by the GNU CC driver + program. + + Do not define this macro if it does not need to do anything. */ + +#ifndef SUBTARGET_EXTRA_SPECS +#define SUBTARGET_EXTRA_SPECS +#endif + +#define EXTRA_SPECS \ + { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \ + { "cpp_cpu", CPP_CPU_SPEC }, \ + { "cpp_cpu32", CPP_CPU32_SPEC }, \ + { "cpp_cpu64", CPP_CPU64_SPEC }, \ + { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC }, \ + { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC }, \ + { "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \ + { "cc1_cpu", CC1_CPU_SPEC }, \ + SUBTARGET_EXTRA_SPECS +#endif + +/* target machine storage layout */ + +/* Define for XFmode or TFmode extended real floating point support. + This will automatically cause REAL_ARITHMETIC to be defined. + + The XFmode is specified by i386 ABI, while TFmode may be faster + due to alignment and simplifications in the address calculations. + */ +#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96) +#define MAX_LONG_DOUBLE_TYPE_SIZE 64 +#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64 +/* Tell real.c that this is the 80-bit Intel extended float format + packaged in a 128-bit or 96bit entity. */ +#define INTEL_EXTENDED_IEEE_FORMAT 1 + + +#define SHORT_TYPE_SIZE 16 +#define INT_TYPE_SIZE 32 +#define FLOAT_TYPE_SIZE 32 +#define LONG_TYPE_SIZE BITS_PER_WORD +#define MAX_WCHAR_TYPE_SIZE 32 +#define DOUBLE_TYPE_SIZE 64 +#define LONG_LONG_TYPE_SIZE 64 + +#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT) +#define MAX_BITS_PER_WORD 64 +#define MAX_LONG_TYPE_SIZE 64 +#else +#define MAX_BITS_PER_WORD 32 +#define MAX_LONG_TYPE_SIZE 32 +#endif + +/* Define if you don't want extended real, but do want to use the + software floating point emulator for REAL_ARITHMETIC and + decimal <-> binary conversion. */ +/* #define REAL_ARITHMETIC */ + +/* Define this if most significant byte of a word is the lowest numbered. */ +/* That is true on the 80386. */ + +#define BITS_BIG_ENDIAN 0 + +/* Define this if most significant byte of a word is the lowest numbered. */ +/* That is not true on the 80386. */ +#define BYTES_BIG_ENDIAN 0 + +/* Define this if most significant word of a multiword number is the lowest + numbered. */ +/* Not true for 80386 */ +#define WORDS_BIG_ENDIAN 0 + +/* number of bits in an addressable storage unit */ +#define BITS_PER_UNIT 8 + +/* Width in bits of a "word", which is the contents of a machine register. + Note that this is not necessarily the width of data type `int'; + if using 16-bit ints on a 80386, this would still be 32. + But on a machine with 16-bit registers, this would be 16. */ +#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32) + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) +#define MIN_UNITS_PER_WORD 4 + +/* Width in bits of a pointer. + See also the macro `Pmode' defined below. */ +#define POINTER_SIZE BITS_PER_WORD + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY BITS_PER_WORD + +/* Boundary (in *bits*) on which stack pointer should be aligned. */ +#define STACK_BOUNDARY BITS_PER_WORD + +/* Boundary (in *bits*) on which the stack pointer preferrs to be + aligned; the compiler cannot rely on having this alignment. */ +#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary + +/* As of July 2001, many runtimes to not align the stack properly when + entering main. This causes expand_main_function to forcably align + the stack, which results in aligned frames for functions called from + main, though it does nothing for the alignment of main itself. */ +#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \ + (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT) + +/* Allocation boundary for the code of a function. */ +#define FUNCTION_BOUNDARY 16 + +/* Alignment of field after `int : 0' in a structure. */ + +#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD + +/* Minimum size in bits of the largest boundary to which any + and all fundamental data types supported by the hardware + might need to be aligned. No data type wants to be aligned + rounder than this. + + Pentium+ preferrs DFmode values to be aligned to 64 bit boundary + and Pentium Pro XFmode values at 128 bit boundaries. */ + +#define BIGGEST_ALIGNMENT 128 + +/* Decide whether a variable of mode MODE must be 128 bit aligned. */ +#define ALIGN_MODE_128(MODE) \ + ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \ + || (MODE) == V4SFmode || (MODE) == V4SImode) + +/* The published ABIs say that doubles should be aligned on word + boundaries, so lower the aligment for structure fields unless + -malign-double is set. */ +/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be + constant. Use the smaller value in that context. */ +#ifndef IN_TARGET_LIBS +#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32)) +#else +#define BIGGEST_FIELD_ALIGNMENT 32 +#endif + +/* If defined, a C expression to compute the alignment given to a + constant that is being placed in memory. EXP is the constant + and ALIGN is the alignment that the object would ordinarily have. + The value of this macro is used instead of that alignment to align + the object. + + If this macro is not defined, then ALIGN is used. + + The typical use of this macro is to increase alignment for string + constants to be word aligned so that `strcpy' calls that copy + constants can be done inline. */ + +#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN)) + +/* If defined, a C expression to compute the alignment for a static + variable. TYPE is the data type, and ALIGN is the alignment that + the object would ordinarily have. The value of this macro is used + instead of that alignment to align the object. + + If this macro is not defined, then ALIGN is used. + + One use of this macro is to increase alignment of medium-size + data to make it all fit in fewer cache lines. Another is to + cause character arrays to be word-aligned so that `strcpy' calls + that copy constants to character arrays can be done inline. */ + +#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN)) + +/* If defined, a C expression to compute the alignment for a local + variable. TYPE is the data type, and ALIGN is the alignment that + the object would ordinarily have. The value of this macro is used + instead of that alignment to align the object. + + If this macro is not defined, then ALIGN is used. + + One use of this macro is to increase alignment of medium-size + data to make it all fit in fewer cache lines. */ + +#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN)) + +/* If defined, a C expression that gives the alignment boundary, in + bits, of an argument with the specified mode and type. If it is + not defined, `PARM_BOUNDARY' is used for all arguments. */ + +#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ + ix86_function_arg_boundary ((MODE), (TYPE)) + +/* Set this non-zero if move instructions will actually fail to work + when given unaligned data. */ +#define STRICT_ALIGNMENT 0 + +/* If bit field type is int, don't let it cross an int, + and give entire struct the alignment of an int. */ +/* Required on the 386 since it doesn't have bitfield insns. */ +#define PCC_BITFIELD_TYPE_MATTERS 1 + +/* Standard register usage. */ + +/* This processor has special stack-like registers. See reg-stack.c + for details. */ + +#define STACK_REGS +#define IS_STACK_MODE(MODE) \ + ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \ + || (MODE) == TFmode) + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. + + In the 80386 we give the 8 general purpose registers the numbers 0-7. + We number the floating point registers 8-15. + Note that registers 0-7 can be accessed as a short or int, + while only 0-3 may be used with byte `mov' instructions. + + Reg 16 does not correspond to any hardware register, but instead + appears in the RTL as an argument pointer prior to reload, and is + eliminated during reloading in favor of either the stack or frame + pointer. */ + +#define FIRST_PSEUDO_REGISTER 53 + +/* Number of hardware registers that go into the DWARF-2 unwind info. + If not defined, equals FIRST_PSEUDO_REGISTER. */ + +#define DWARF_FRAME_REGISTERS 17 + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. + On the 80386, the stack pointer is such, as is the arg pointer. + + The value is an mask - bit 1 is set for fixed registers + for 32bit target, while 2 is set for fixed registers for 64bit. + Proper value is computed in the CONDITIONAL_REGISTER_USAGE. + */ +#define FIXED_REGISTERS \ +/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ +{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \ +/*arg,flags,fpsr,dir,frame*/ \ + 3, 3, 3, 3, 3, \ +/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ + 0, 0, 0, 0, 0, 0, 0, 0, \ +/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \ + 0, 0, 0, 0, 0, 0, 0, 0, \ +/* r8, r9, r10, r11, r12, r13, r14, r15*/ \ + 1, 1, 1, 1, 1, 1, 1, 1, \ +/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ + 1, 1, 1, 1, 1, 1, 1, 1} + + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. + + The value is an mask - bit 1 is set for call used + for 32bit target, while 2 is set for call used for 64bit. + Proper value is computed in the CONDITIONAL_REGISTER_USAGE. +*/ +#define CALL_USED_REGISTERS \ +/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ +{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \ +/*arg,flags,fpsr,dir,frame*/ \ + 3, 3, 3, 3, 3, \ +/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ + 3, 3, 3, 3, 3, 3, 3, 3, \ +/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \ + 3, 3, 3, 3, 3, 3, 3, 3, \ +/* r8, r9, r10, r11, r12, r13, r14, r15*/ \ + 3, 3, 3, 3, 1, 1, 1, 1, \ +/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ + 3, 3, 3, 3, 3, 3, 3, 3} \ + +/* Order in which to allocate registers. Each register must be + listed once, even those in FIXED_REGISTERS. List frame pointer + late and fixed registers last. Note that, in general, we prefer + registers listed in CALL_USED_REGISTERS, keeping the others + available for storage of persistent values. + + The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order, + so this is just empty initializer for array. */ + +#define REG_ALLOC_ORDER \ +{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\ + 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \ + 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \ + 48, 49, 50, 51, 52 } + +/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order + to be rearranged based on a particular function. When using sse math, + we want to allocase SSE before x87 registers and vice vera. */ + +#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc () + + +/* Macro to conditionally modify fixed_regs/call_used_regs. */ +#define CONDITIONAL_REGISTER_USAGE \ +do { \ + int i; \ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ + { \ + fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \ + call_used_regs[i] = (call_used_regs[i] \ + & (TARGET_64BIT ? 2 : 1)) != 0; \ + } \ + if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \ + { \ + fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ + call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ + } \ + if (! TARGET_MMX) \ + { \ + int i; \ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ + if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \ + fixed_regs[i] = call_used_regs[i] = 1; \ + } \ + if (! TARGET_SSE) \ + { \ + int i; \ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ + if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \ + fixed_regs[i] = call_used_regs[i] = 1; \ + } \ + if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \ + { \ + int i; \ + HARD_REG_SET x; \ + COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ + if (TEST_HARD_REG_BIT (x, i)) \ + fixed_regs[i] = call_used_regs[i] = 1; \ + } \ + } while (0) + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. + This is ordinarily the length in words of a value of mode MODE + but can be less for certain modes in special long registers. + + Actually there are no two word move instructions for consecutive + registers. And only registers 0-3 may have mov byte instructions + applied to them. + */ + +#define HARD_REGNO_NREGS(REGNO, MODE) \ + (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \ + ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ + : ((MODE) == TFmode \ + ? (TARGET_64BIT ? 2 : 3) \ + : (MODE) == TCmode \ + ? (TARGET_64BIT ? 4 : 6) \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))) + +#define VALID_SSE_REG_MODE(MODE) \ + ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \ + || (MODE) == SFmode \ + || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE)))) + +#define VALID_MMX_REG_MODE_3DNOW(MODE) \ + ((MODE) == V2SFmode || (MODE) == SFmode) + +#define VALID_MMX_REG_MODE(MODE) \ + ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \ + || (MODE) == V2SImode || (MODE) == SImode) + +#define VECTOR_MODE_SUPPORTED_P(MODE) \ + (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \ + : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \ + : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0) + +#define VALID_FP_MODE_P(MODE) \ + ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \ + || (!TARGET_64BIT && (MODE) == XFmode) \ + || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \ + || (!TARGET_64BIT && (MODE) == XCmode)) + +#define VALID_INT_MODE_P(MODE) \ + ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \ + || (MODE) == DImode \ + || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \ + || (MODE) == CDImode \ + || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode))) + +/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */ + +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ + ix86_hard_regno_mode_ok ((REGNO), (MODE)) + +/* Value is 1 if it is a good idea to tie two pseudo registers + when one has mode MODE1 and one has mode MODE2. + If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, + for any hard reg, then this must be 0 for correct output. */ + +#define MODES_TIEABLE_P(MODE1, MODE2) \ + ((MODE1) == (MODE2) \ + || (((MODE1) == HImode || (MODE1) == SImode \ + || ((MODE1) == QImode \ + && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \ + || ((MODE1) == DImode && TARGET_64BIT)) \ + && ((MODE2) == HImode || (MODE2) == SImode \ + || ((MODE1) == QImode \ + && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \ + || ((MODE2) == DImode && TARGET_64BIT)))) + + +/* Specify the modes required to caller save a given hard regno. + We do this on i386 to prevent flags from being saved at all. + + Kill any attempts to combine saving of modes. */ + +#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ + (CC_REGNO_P (REGNO) ? VOIDmode \ + : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \ + : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \ + : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \ + : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \ + : (MODE)) +/* Specify the registers used for certain standard purposes. + The values of these macros are register numbers. */ + +/* on the 386 the pc register is %eip, and is not usable as a general + register. The ordinary mov instructions won't work */ +/* #define PC_REGNUM */ + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM 7 + +/* Base register for access to local variables of the function. */ +#define HARD_FRAME_POINTER_REGNUM 6 + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM 20 + +/* First floating point reg */ +#define FIRST_FLOAT_REG 8 + +/* First & last stack-like regs */ +#define FIRST_STACK_REG FIRST_FLOAT_REG +#define LAST_STACK_REG (FIRST_FLOAT_REG + 7) + +#define FLAGS_REG 17 +#define FPSR_REG 18 +#define DIRFLAG_REG 19 + +#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1) +#define LAST_SSE_REG (FIRST_SSE_REG + 7) + +#define FIRST_MMX_REG (LAST_SSE_REG + 1) +#define LAST_MMX_REG (FIRST_MMX_REG + 7) + +#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) +#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7) + +#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) +#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7) + +/* Value should be nonzero if functions must have frame pointers. + Zero means the frame pointer need not be set up (and parms + may be accessed via the stack pointer) in functions that seem suitable. + This is computed in `reload', in reload1.c. */ +#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required () + +/* Override this in other tm.h files to cope with various OS losage + requiring a frame pointer. */ +#ifndef SUBTARGET_FRAME_POINTER_REQUIRED +#define SUBTARGET_FRAME_POINTER_REQUIRED 0 +#endif + +/* Make sure we can access arbitrary call frames. */ +#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses () + +/* Base register for access to arguments of the function. */ +#define ARG_POINTER_REGNUM 16 + +/* Register in which static-chain is passed to a function. + We do use ECX as static chain register for 32 bit ABI. On the + 64bit ABI, ECX is an argument register, so we use R10 instead. */ +#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2) + +/* Register to hold the addressing base for position independent + code access to data items. We don't use PIC pointer for 64bit + mode. Define the regnum to dummy value to prevent gcc from + pessimizing code dealing with EBX. */ +#define PIC_OFFSET_TABLE_REGNUM \ + (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3) + +/* Register in which address to store a structure value + arrives in the function. On the 386, the prologue + copies this from the stack to register %eax. */ +#define STRUCT_VALUE_INCOMING 0 + +/* Place in which caller passes the structure value address. + 0 means push the value on the stack like an argument. */ +#define STRUCT_VALUE 0 + +/* A C expression which can inhibit the returning of certain function + values in registers, based on the type of value. A nonzero value + says to return the function value in memory, just as large + structures are always returned. Here TYPE will be a C expression + of type `tree', representing the data type of the value. + + Note that values of mode `BLKmode' must be explicitly handled by + this macro. Also, the option `-fpcc-struct-return' takes effect + regardless of this macro. On most systems, it is possible to + leave the macro undefined; this causes a default definition to be + used, whose value is the constant 1 for `BLKmode' values, and 0 + otherwise. + + Do not use this macro to indicate that structures and unions + should always be returned in memory. You should instead use + `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */ + +#define RETURN_IN_MEMORY(TYPE) \ + ix86_return_in_memory (TYPE) + + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. + + It might seem that class BREG is unnecessary, since no useful 386 + opcode needs reg %ebx. But some systems pass args to the OS in ebx, + and the "b" register constraint is useful in asms for syscalls. + + The flags and fpsr registers are in no class. */ + +enum reg_class +{ + NO_REGS, + AREG, DREG, CREG, BREG, SIREG, DIREG, + AD_REGS, /* %eax/%edx for DImode */ + Q_REGS, /* %eax %ebx %ecx %edx */ + NON_Q_REGS, /* %esi %edi %ebp %esp */ + INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */ + LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */ + GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/ + FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */ + FLOAT_REGS, + SSE_REGS, + MMX_REGS, + FP_TOP_SSE_REGS, + FP_SECOND_SSE_REGS, + FLOAT_SSE_REGS, + FLOAT_INT_REGS, + INT_SSE_REGS, + FLOAT_INT_SSE_REGS, + ALL_REGS, LIM_REG_CLASSES +}; + +#define N_REG_CLASSES ((int) LIM_REG_CLASSES) + +#define INTEGER_CLASS_P(CLASS) \ + reg_class_subset_p ((CLASS), GENERAL_REGS) +#define FLOAT_CLASS_P(CLASS) \ + reg_class_subset_p ((CLASS), FLOAT_REGS) +#define SSE_CLASS_P(CLASS) \ + reg_class_subset_p ((CLASS), SSE_REGS) +#define MMX_CLASS_P(CLASS) \ + reg_class_subset_p ((CLASS), MMX_REGS) +#define MAYBE_INTEGER_CLASS_P(CLASS) \ + reg_classes_intersect_p ((CLASS), GENERAL_REGS) +#define MAYBE_FLOAT_CLASS_P(CLASS) \ + reg_classes_intersect_p ((CLASS), FLOAT_REGS) +#define MAYBE_SSE_CLASS_P(CLASS) \ + reg_classes_intersect_p (SSE_REGS, (CLASS)) +#define MAYBE_MMX_CLASS_P(CLASS) \ + reg_classes_intersect_p (MMX_REGS, (CLASS)) + +#define Q_CLASS_P(CLASS) \ + reg_class_subset_p ((CLASS), Q_REGS) + +/* Give names of register classes as strings for dump file. */ + +#define REG_CLASS_NAMES \ +{ "NO_REGS", \ + "AREG", "DREG", "CREG", "BREG", \ + "SIREG", "DIREG", \ + "AD_REGS", \ + "Q_REGS", "NON_Q_REGS", \ + "INDEX_REGS", \ + "LEGACY_REGS", \ + "GENERAL_REGS", \ + "FP_TOP_REG", "FP_SECOND_REG", \ + "FLOAT_REGS", \ + "SSE_REGS", \ + "MMX_REGS", \ + "FP_TOP_SSE_REGS", \ + "FP_SECOND_SSE_REGS", \ + "FLOAT_SSE_REGS", \ + "FLOAT_INT_REGS", \ + "INT_SSE_REGS", \ + "FLOAT_INT_SSE_REGS", \ + "ALL_REGS" } + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS \ +{ { 0x00, 0x0 }, \ + { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \ + { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \ + { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \ + { 0x03, 0x0 }, /* AD_REGS */ \ + { 0x0f, 0x0 }, /* Q_REGS */ \ + { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \ + { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \ + { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \ + { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \ + { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\ + { 0xff00, 0x0 }, /* FLOAT_REGS */ \ +{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \ +{ 0xe0000000, 0x1f }, /* MMX_REGS */ \ +{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \ +{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \ +{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \ + { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \ +{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \ +{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \ +{ 0xffffffff,0x1fffff } \ +} + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) + +/* When defined, the compiler allows registers explicitly used in the + rtl to be used as spill registers but prevents the compiler from + extending the lifetime of these registers. */ + +#define SMALL_REGISTER_CLASSES 1 + +#define QI_REG_P(X) \ + (REG_P (X) && REGNO (X) < 4) + +#define GENERAL_REGNO_P(N) \ + ((N) < 8 || REX_INT_REGNO_P (N)) + +#define GENERAL_REG_P(X) \ + (REG_P (X) && GENERAL_REGNO_P (REGNO (X))) + +#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X)) + +#define NON_QI_REG_P(X) \ + (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER) + +#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG) +#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X))) + +#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X))) +#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG) +#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X))) +#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N)) + +#define SSE_REGNO_P(N) \ + (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \ + || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)) + +#define SSE_REGNO(N) \ + ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8) +#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N))) + +#define SSE_FLOAT_MODE_P(MODE) \ + ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode)) + +#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG) +#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP))) + +#define STACK_REG_P(XOP) \ + (REG_P (XOP) && \ + REGNO (XOP) >= FIRST_STACK_REG && \ + REGNO (XOP) <= LAST_STACK_REG) + +#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP)) + +#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG) + +#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X))) +#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG) + +/* Indicate whether hard register numbered REG_NO should be converted + to SSA form. */ +#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \ + ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM) + +/* The class value for index registers, and the one for base regs. */ + +#define INDEX_REG_CLASS INDEX_REGS +#define BASE_REG_CLASS GENERAL_REGS + +/* Get reg_class from a letter such as appears in the machine description. */ + +#define REG_CLASS_FROM_LETTER(C) \ + ((C) == 'r' ? GENERAL_REGS : \ + (C) == 'R' ? LEGACY_REGS : \ + (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \ + (C) == 'Q' ? Q_REGS : \ + (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ + ? FLOAT_REGS \ + : NO_REGS) : \ + (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ + ? FP_TOP_REG \ + : NO_REGS) : \ + (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ + ? FP_SECOND_REG \ + : NO_REGS) : \ + (C) == 'a' ? AREG : \ + (C) == 'b' ? BREG : \ + (C) == 'c' ? CREG : \ + (C) == 'd' ? DREG : \ + (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \ + (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \ + (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \ + (C) == 'A' ? AD_REGS : \ + (C) == 'D' ? DIREG : \ + (C) == 'S' ? SIREG : NO_REGS) + +/* The letters I, J, K, L and M in a register constraint string + can be used to stand for particular ranges of immediate operands. + This macro defines what the ranges are. + C is the letter, and VALUE is a constant value. + Return 1 if VALUE is in the range specified by C. + + I is for non-DImode shifts. + J is for DImode shifts. + K is for signed imm8 operands. + L is for andsi as zero-extending move. + M is for shifts that can be executed by the "lea" opcode. + N is for immedaite operands for out/in instructions (0-255) + */ + +#define CONST_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \ + : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \ + : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \ + : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \ + : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \ + : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \ + : 0) + +/* Similar, but for floating constants, and defining letters G and H. + Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if + TARGET_387 isn't set, because the stack register converter may need to + load 0.0 into the function value register. */ + +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'G' ? standard_80387_constant_p (VALUE) \ + : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0)) + +/* A C expression that defines the optional machine-dependent + constraint letters that can be used to segregate specific types of + operands, usually memory references, for the target machine. Any + letter that is not elsewhere defined and not matched by + `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not + be defined. + + If it is required for a particular target machine, it should + return 1 if VALUE corresponds to the operand type represented by + the constraint letter C. If C is not defined as an extra + constraint, the value returned should be 0 regardless of VALUE. */ + +#define EXTRA_CONSTRAINT(VALUE, C) \ + ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \ + : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \ + : 0) + +/* Place additional restrictions on the register class to use when it + is necessary to be able to hold a value of mode MODE in a reload + register for which class CLASS would ordinarily be used. */ + +#define LIMIT_RELOAD_CLASS(MODE, CLASS) \ + ((MODE) == QImode && !TARGET_64BIT \ + && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \ + || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \ + ? Q_REGS : (CLASS)) + +/* Given an rtx X being reloaded into a reg required to be + in class CLASS, return the class of reg to actually use. + In general this is just CLASS; but on some machines + in some cases it is preferable to use a more restrictive class. + On the 80386 series, we prevent floating constants from being + reloaded into floating registers (since no move-insn can do that) + and we ensure that QImodes aren't reloaded into the esi or edi reg. */ + +/* Put float CONST_DOUBLE in the constant pool instead of fp regs. + QImode must go into class Q_REGS. + Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and + movdf to do mem-to-mem moves through integer regs. */ + +#define PREFERRED_RELOAD_CLASS(X, CLASS) \ + ix86_preferred_reload_class ((X), (CLASS)) + +/* If we are copying between general and FP registers, we need a memory + location. The same is true for SSE and MMX registers. */ +#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ + ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1) + +/* QImode spills from non-QI registers need a scratch. This does not + happen often -- the only example so far requires an uninitialized + pseudo. */ + +#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \ + (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \ + || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \ + ? Q_REGS : NO_REGS) + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. */ +/* On the 80386, this is the size of MODE in words, + except in the FP regs, where a single reg is always enough. + The TFmodes are really just 80bit values, so we use only 3 registers + to hold them, instead of 4, as the size would suggest. + */ +#define CLASS_MAX_NREGS(CLASS, MODE) \ + (!MAYBE_INTEGER_CLASS_P (CLASS) \ + ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ + : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \ + + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* A C expression whose value is nonzero if pseudos that have been + assigned to registers of class CLASS would likely be spilled + because registers of CLASS are needed for spill registers. + + The default value of this macro returns 1 if CLASS has exactly one + register and zero otherwise. On most machines, this default + should be used. Only define this macro to some other expression + if pseudo allocated by `local-alloc.c' end up in memory because + their hard registers were needed for spill registers. If this + macro returns nonzero for those classes, those pseudos will only + be allocated by `global.c', which knows how to reallocate the + pseudo to another register. If there would not be another + register available for reallocation, you should not change the + definition of this macro since the only effect of such a + definition would be to slow down register allocation. */ + +#define CLASS_LIKELY_SPILLED_P(CLASS) \ + (((CLASS) == AREG) \ + || ((CLASS) == DREG) \ + || ((CLASS) == CREG) \ + || ((CLASS) == BREG) \ + || ((CLASS) == AD_REGS) \ + || ((CLASS) == SIREG) \ + || ((CLASS) == DIREG)) + +/* A C statement that adds to CLOBBERS any hard regs the port wishes + to automatically clobber for all asms. + + We do this in the new i386 backend to maintain source compatibility + with the old cc0-based compiler. */ + +#define MD_ASM_CLOBBERS(CLOBBERS) \ + do { \ + (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \ + (CLOBBERS)); \ + (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \ + (CLOBBERS)); \ + (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \ + (CLOBBERS)); \ + } while (0) + +/* Stack layout; function entry, exit and calling. */ + +/* Define this if pushing a word on the stack + makes the stack pointer a smaller address. */ +#define STACK_GROWS_DOWNWARD + +/* Define this if the nominal address of the stack frame + is at the high-address end of the local variables; + that is, each additional local variable allocated + goes at a more negative offset in the frame. */ +#define FRAME_GROWS_DOWNWARD + +/* Offset within stack frame to start allocating local variables at. + If FRAME_GROWS_DOWNWARD, this is the offset to the END of the + first local allocated. Otherwise, it is the offset to the BEGINNING + of the first local allocated. */ +#define STARTING_FRAME_OFFSET 0 + +/* If we generate an insn to push BYTES bytes, + this says how many the stack pointer really advances by. + On 386 pushw decrements by exactly 2 no matter what the position was. + On the 386 there is no pushb; we use pushw instead, and this + has the effect of rounding up to 2. + + For 64bit ABI we round up to 8 bytes. + */ + +#define PUSH_ROUNDING(BYTES) \ + (TARGET_64BIT \ + ? (((BYTES) + 7) & (-8)) \ + : (((BYTES) + 1) & (-2))) + +/* If defined, the maximum amount of space required for outgoing arguments will + be computed and placed into the variable + `current_function_outgoing_args_size'. No space will be pushed onto the + stack for each call; instead, the function prologue should increase the stack + frame size by this amount. */ + +#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS + +/* If defined, a C expression whose value is nonzero when we want to use PUSH + instructions to pass outgoing arguments. */ + +#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS) + +/* Offset of first parameter from the argument pointer register value. */ +#define FIRST_PARM_OFFSET(FNDECL) 0 + +/* Define this macro if functions should assume that stack space has been + allocated for arguments even when their values are passed in registers. + + The value of this macro is the size, in bytes, of the area reserved for + arguments passed in registers for the function represented by FNDECL. + + This space can be allocated by the caller, or be a part of the + machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says + which. */ +#define REG_PARM_STACK_SPACE(FNDECL) 0 + +/* Define as a C expression that evaluates to nonzero if we do not know how + to pass TYPE solely in registers. The file expr.h defines a + definition that is usually appropriate, refer to expr.h for additional + documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be + computed in the stack and then loaded into a register. */ +#define MUST_PASS_IN_STACK(MODE, TYPE) \ + ((TYPE) != 0 \ + && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \ + || TREE_ADDRESSABLE (TYPE) \ + || ((MODE) == TImode) \ + || ((MODE) == BLKmode \ + && ! ((TYPE) != 0 \ + && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \ + && 0 == (int_size_in_bytes (TYPE) \ + % (PARM_BOUNDARY / BITS_PER_UNIT))) \ + && (FUNCTION_ARG_PADDING (MODE, TYPE) \ + == (BYTES_BIG_ENDIAN ? upward : downward))))) + +/* Value is the number of bytes of arguments automatically + popped when returning from a subroutine call. + FUNDECL is the declaration node of the function (as a tree), + FUNTYPE is the data type of the function (as a tree), + or for a library call it is an identifier node for the subroutine name. + SIZE is the number of bytes of arguments passed on the stack. + + On the 80386, the RTD insn may be used to pop them if the number + of args is fixed, but if the number is variable then the caller + must pop them all. RTD can't be used for library calls now + because the library is compiled with the Unix compiler. + Use of RTD is a selectable option, since it is incompatible with + standard Unix calling sequences. If the option is not selected, + the caller must always pop the args. + + The attribute stdcall is equivalent to RTD on a per module basis. */ + +#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \ + ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE)) + +/* Define how to find the value returned by a function. + VALTYPE is the data type of the value (as a tree). + If the precise function being called is known, FUNC is its FUNCTION_DECL; + otherwise, FUNC is 0. */ +#define FUNCTION_VALUE(VALTYPE, FUNC) \ + ix86_function_value (VALTYPE) + +#define FUNCTION_VALUE_REGNO_P(N) \ + ix86_function_value_regno_p (N) + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ + +#define LIBCALL_VALUE(MODE) \ + ix86_libcall_value (MODE) + +/* Define the size of the result block used for communication between + untyped_call and untyped_return. The block contains a DImode value + followed by the block used by fnsave and frstor. */ + +#define APPLY_RESULT_SIZE (8+108) + +/* 1 if N is a possible register number for function argument passing. */ +#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N) + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. */ + +typedef struct ix86_args { + int words; /* # words passed so far */ + int nregs; /* # registers available for passing */ + int regno; /* next available register number */ + int sse_words; /* # sse words passed so far */ + int sse_nregs; /* # sse registers available for passing */ + int sse_regno; /* next available sse register number */ + int maybe_vaarg; /* true for calls to possibly vardic fncts. */ +} CUMULATIVE_ARGS; + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. */ + +#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \ + init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME)) + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be available.) */ + +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ + function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED)) + +/* Define where to put the arguments to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). */ + +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ + function_arg (&(CUM), (MODE), (TYPE), (NAMED)) + +/* For an arg passed partly in registers and partly in memory, + this is the number of registers used. + For args passed entirely in registers or entirely in memory, zero. */ + +#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0 + +/* If PIC, we cannot make sibling calls to global functions + because the PLT requires %ebx live. + If we are returning floats on the register stack, we cannot make + sibling calls to functions that return floats. (The stack adjust + instruction will wind up after the sibcall jump, and not be executed.) */ +#define FUNCTION_OK_FOR_SIBCALL(DECL) \ + ((DECL) \ + && (! flag_pic || ! TREE_PUBLIC (DECL)) \ + && (! TARGET_FLOAT_RETURNS_IN_80387 \ + || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \ + || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl)))))) + +/* Perform any needed actions needed for a function that is receiving a + variable number of arguments. + + CUM is as above. + + MODE and TYPE are the mode and type of the current parameter. + + PRETEND_SIZE is a variable that should be set to the amount of stack + that must be pushed by the prolog to pretend that our caller pushed + it. + + Normally, this macro will push all remaining incoming registers on the + stack and set PRETEND_SIZE to the length of the registers pushed. */ + +#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \ + ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \ + (NO_RTL)) + +/* Define the `__builtin_va_list' type for the ABI. */ +#define BUILD_VA_LIST_TYPE(VALIST) \ + ((VALIST) = ix86_build_va_list ()) + +/* Implement `va_start' for varargs and stdarg. */ +#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \ + ix86_va_start ((STDARG), (VALIST), (NEXTARG)) + +/* Implement `va_arg'. */ +#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \ + ix86_va_arg ((VALIST), (TYPE)) + +/* This macro is invoked at the end of compilation. It is used here to + output code for -fpic that will load the return address into %ebx. */ + +#undef ASM_FILE_END +#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE) + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ + +#define FUNCTION_PROFILER(FILE, LABELNO) \ +do { \ + if (flag_pic) \ + { \ + fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \ + LPREFIX, (LABELNO)); \ + fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \ + } \ + else \ + { \ + fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \ + fprintf ((FILE), "\tcall\t_mcount\n"); \ + } \ +} while (0) + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. The value is tested only in + functions that have frame pointers. + No definition is equivalent to always zero. */ +/* Note on the 386 it might be more efficient not to define this since + we have to restore it ourselves from the frame pointer, in order to + use pop */ + +#define EXIT_IGNORE_STACK 1 + +/* Output assembler code for a block containing the constant parts + of a trampoline, leaving space for the variable parts. */ + +/* On the 386, the trampoline contains two instructions: + mov #STATIC,ecx + jmp FUNCTION + The trampoline is generated entirely at runtime. The operand of JMP + is the address of FUNCTION relative to the instruction following the + JMP (which is 5 bytes long). */ + +/* Length in units of the trampoline for entering a nested function. */ + +#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10) + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. */ + +#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ + x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT)) + +/* Definitions for register eliminations. + + This is an array of structures. Each structure initializes one pair + of eliminable registers. The "from" register number is given first, + followed by "to". Eliminations of the same "from" register are listed + in order of preference. + + There are two registers that can always be eliminated on the i386. + The frame pointer and the arg pointer can be replaced by either the + hard frame pointer or to the stack pointer, depending upon the + circumstances. The hard frame pointer is not used before reload and + so it is not eligible for elimination. */ + +#define ELIMINABLE_REGS \ +{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ + { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ + +/* Given FROM and TO register numbers, say whether this elimination is + allowed. Frame pointer elimination is automatically handled. + + All other eliminations are valid. */ + +#define CAN_ELIMINATE(FROM, TO) \ + ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1) + +/* Define the offset between two registers, one to be eliminated, and the other + its replacement, at the start of a routine. */ + +#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ + ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO))) + +/* Addressing modes, and classification of registers for them. */ + +/* #define HAVE_POST_INCREMENT 0 */ +/* #define HAVE_POST_DECREMENT 0 */ + +/* #define HAVE_PRE_DECREMENT 0 */ +/* #define HAVE_PRE_INCREMENT 0 */ + +/* Macros to check register numbers against specific register classes. */ + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ + +#define REGNO_OK_FOR_INDEX_P(REGNO) \ + ((REGNO) < STACK_POINTER_REGNUM \ + || (REGNO >= FIRST_REX_INT_REG \ + && (REGNO) <= LAST_REX_INT_REG) \ + || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \ + && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \ + || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM) + +#define REGNO_OK_FOR_BASE_P(REGNO) \ + ((REGNO) <= STACK_POINTER_REGNUM \ + || (REGNO) == ARG_POINTER_REGNUM \ + || (REGNO) == FRAME_POINTER_REGNUM \ + || (REGNO >= FIRST_REX_INT_REG \ + && (REGNO) <= LAST_REX_INT_REG) \ + || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \ + && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \ + || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM) + +#define REGNO_OK_FOR_SIREG_P(REGNO) \ + ((REGNO) == 4 || reg_renumber[(REGNO)] == 4) +#define REGNO_OK_FOR_DIREG_P(REGNO) \ + ((REGNO) == 5 || reg_renumber[(REGNO)] == 5) + +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx + and check its validity for a certain class. + We have two alternate definitions for each of them. + The usual definition accepts all pseudo regs; the other rejects + them unless they have been allocated suitable hard regs. + The symbol REG_OK_STRICT causes the latter definition to be used. + + Most source files want to accept pseudo regs in the hope that + they will get allocated to the class that the insn wants them to be in. + Source files for reload pass need to be strict. + After reload, it makes no difference, since pseudo regs have + been eliminated by then. */ + + +/* Non strict versions, pseudos are ok */ +#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \ + (REGNO (X) < STACK_POINTER_REGNUM \ + || (REGNO (X) >= FIRST_REX_INT_REG \ + && REGNO (X) <= LAST_REX_INT_REG) \ + || REGNO (X) >= FIRST_PSEUDO_REGISTER) + +#define REG_OK_FOR_BASE_NONSTRICT_P(X) \ + (REGNO (X) <= STACK_POINTER_REGNUM \ + || REGNO (X) == ARG_POINTER_REGNUM \ + || REGNO (X) == FRAME_POINTER_REGNUM \ + || (REGNO (X) >= FIRST_REX_INT_REG \ + && REGNO (X) <= LAST_REX_INT_REG) \ + || REGNO (X) >= FIRST_PSEUDO_REGISTER) + +/* Strict versions, hard registers only */ +#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) +#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) + +#ifndef REG_OK_STRICT +#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X) +#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X) + +#else +#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X) +#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X) +#endif + +/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression + that is a valid memory address for an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. + + The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, + except for CONSTANT_ADDRESS_P which is usually machine-independent. + + See legitimize_pic_address in i386.c for details as to what + constitutes a legitimate address when -fpic is used. */ + +#define MAX_REGS_PER_ADDRESS 2 + +#define CONSTANT_ADDRESS_P(X) \ + (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ + || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ + || GET_CODE (X) == CONST_DOUBLE) + +/* Nonzero if the constant value X is a legitimate general operand. + It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ + +#define LEGITIMATE_CONSTANT_P(X) 1 + +#ifdef REG_OK_STRICT +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ +do { \ + if (legitimate_address_p ((MODE), (X), 1)) \ + goto ADDR; \ +} while (0) + +#else +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ +do { \ + if (legitimate_address_p ((MODE), (X), 0)) \ + goto ADDR; \ +} while (0) + +#endif + +/* If defined, a C expression to determine the base term of address X. + This macro is used in only one place: `find_base_term' in alias.c. + + It is always safe for this macro to not be defined. It exists so + that alias analysis can understand machine-dependent addresses. + + The typical use of this macro is to handle addresses containing + a label_ref or symbol_ref within an UNSPEC. */ + +#define FIND_BASE_TERM(X) ix86_find_base_term (X) + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE and WIN are passed so that this macro can use + GO_IF_LEGITIMATE_ADDRESS. + + It is always safe for this macro to do nothing. It exists to recognize + opportunities to optimize the output. + + For the 80386, we handle X+REG by loading X into a register R and + using R+REG. R will go in a general reg and indexing will be used. + However, if REG is a broken-out memory address or multiplication, + nothing needs to be done because REG can certainly go in a general reg. + + When -fpic is used, special handling is needed for symbolic references. + See comments by legitimize_pic_address in i386.c for details. */ + +#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ +do { \ + (X) = legitimize_address ((X), (OLDX), (MODE)); \ + if (memory_address_p ((MODE), (X))) \ + goto WIN; \ +} while (0) + +#define REWRITE_ADDRESS(X) rewrite_address (X) + +/* Nonzero if the constant value X is a legitimate general operand + when generating PIC code. It is given that flag_pic is on and + that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ + +#define LEGITIMATE_PIC_OPERAND_P(X) \ + (! SYMBOLIC_CONST (X) \ + || legitimate_pic_address_disp_p (X)) + +#define SYMBOLIC_CONST(X) \ + (GET_CODE (X) == SYMBOL_REF \ + || GET_CODE (X) == LABEL_REF \ + || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) + +/* Go to LABEL if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. + On the 80386, only postdecrement and postincrement address depend thus + (the amount of decrement or increment being the length of the operand). */ +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ +do { \ + if (GET_CODE (ADDR) == POST_INC \ + || GET_CODE (ADDR) == POST_DEC) \ + goto LABEL; \ +} while (0) + +/* Codes for all the SSE/MMX builtins. */ +enum ix86_builtins +{ + IX86_BUILTIN_ADDPS, + IX86_BUILTIN_ADDSS, + IX86_BUILTIN_DIVPS, + IX86_BUILTIN_DIVSS, + IX86_BUILTIN_MULPS, + IX86_BUILTIN_MULSS, + IX86_BUILTIN_SUBPS, + IX86_BUILTIN_SUBSS, + + IX86_BUILTIN_CMPEQPS, + IX86_BUILTIN_CMPLTPS, + IX86_BUILTIN_CMPLEPS, + IX86_BUILTIN_CMPGTPS, + IX86_BUILTIN_CMPGEPS, + IX86_BUILTIN_CMPNEQPS, + IX86_BUILTIN_CMPNLTPS, + IX86_BUILTIN_CMPNLEPS, + IX86_BUILTIN_CMPNGTPS, + IX86_BUILTIN_CMPNGEPS, + IX86_BUILTIN_CMPORDPS, + IX86_BUILTIN_CMPUNORDPS, + IX86_BUILTIN_CMPNEPS, + IX86_BUILTIN_CMPEQSS, + IX86_BUILTIN_CMPLTSS, + IX86_BUILTIN_CMPLESS, + IX86_BUILTIN_CMPGTSS, + IX86_BUILTIN_CMPGESS, + IX86_BUILTIN_CMPNEQSS, + IX86_BUILTIN_CMPNLTSS, + IX86_BUILTIN_CMPNLESS, + IX86_BUILTIN_CMPNGTSS, + IX86_BUILTIN_CMPNGESS, + IX86_BUILTIN_CMPORDSS, + IX86_BUILTIN_CMPUNORDSS, + IX86_BUILTIN_CMPNESS, + + IX86_BUILTIN_COMIEQSS, + IX86_BUILTIN_COMILTSS, + IX86_BUILTIN_COMILESS, + IX86_BUILTIN_COMIGTSS, + IX86_BUILTIN_COMIGESS, + IX86_BUILTIN_COMINEQSS, + IX86_BUILTIN_UCOMIEQSS, + IX86_BUILTIN_UCOMILTSS, + IX86_BUILTIN_UCOMILESS, + IX86_BUILTIN_UCOMIGTSS, + IX86_BUILTIN_UCOMIGESS, + IX86_BUILTIN_UCOMINEQSS, + + IX86_BUILTIN_CVTPI2PS, + IX86_BUILTIN_CVTPS2PI, + IX86_BUILTIN_CVTSI2SS, + IX86_BUILTIN_CVTSS2SI, + IX86_BUILTIN_CVTTPS2PI, + IX86_BUILTIN_CVTTSS2SI, + + IX86_BUILTIN_MAXPS, + IX86_BUILTIN_MAXSS, + IX86_BUILTIN_MINPS, + IX86_BUILTIN_MINSS, + + IX86_BUILTIN_LOADAPS, + IX86_BUILTIN_LOADUPS, + IX86_BUILTIN_STOREAPS, + IX86_BUILTIN_STOREUPS, + IX86_BUILTIN_LOADSS, + IX86_BUILTIN_STORESS, + IX86_BUILTIN_MOVSS, + + IX86_BUILTIN_MOVHLPS, + IX86_BUILTIN_MOVLHPS, + IX86_BUILTIN_LOADHPS, + IX86_BUILTIN_LOADLPS, + IX86_BUILTIN_STOREHPS, + IX86_BUILTIN_STORELPS, + + IX86_BUILTIN_MASKMOVQ, + IX86_BUILTIN_MOVMSKPS, + IX86_BUILTIN_PMOVMSKB, + + IX86_BUILTIN_MOVNTPS, + IX86_BUILTIN_MOVNTQ, + + IX86_BUILTIN_PACKSSWB, + IX86_BUILTIN_PACKSSDW, + IX86_BUILTIN_PACKUSWB, + + IX86_BUILTIN_PADDB, + IX86_BUILTIN_PADDW, + IX86_BUILTIN_PADDD, + IX86_BUILTIN_PADDSB, + IX86_BUILTIN_PADDSW, + IX86_BUILTIN_PADDUSB, + IX86_BUILTIN_PADDUSW, + IX86_BUILTIN_PSUBB, + IX86_BUILTIN_PSUBW, + IX86_BUILTIN_PSUBD, + IX86_BUILTIN_PSUBSB, + IX86_BUILTIN_PSUBSW, + IX86_BUILTIN_PSUBUSB, + IX86_BUILTIN_PSUBUSW, + + IX86_BUILTIN_PAND, + IX86_BUILTIN_PANDN, + IX86_BUILTIN_POR, + IX86_BUILTIN_PXOR, + + IX86_BUILTIN_PAVGB, + IX86_BUILTIN_PAVGW, + + IX86_BUILTIN_PCMPEQB, + IX86_BUILTIN_PCMPEQW, + IX86_BUILTIN_PCMPEQD, + IX86_BUILTIN_PCMPGTB, + IX86_BUILTIN_PCMPGTW, + IX86_BUILTIN_PCMPGTD, + + IX86_BUILTIN_PEXTRW, + IX86_BUILTIN_PINSRW, + + IX86_BUILTIN_PMADDWD, + + IX86_BUILTIN_PMAXSW, + IX86_BUILTIN_PMAXUB, + IX86_BUILTIN_PMINSW, + IX86_BUILTIN_PMINUB, + + IX86_BUILTIN_PMULHUW, + IX86_BUILTIN_PMULHW, + IX86_BUILTIN_PMULLW, + + IX86_BUILTIN_PSADBW, + IX86_BUILTIN_PSHUFW, + + IX86_BUILTIN_PSLLW, + IX86_BUILTIN_PSLLD, + IX86_BUILTIN_PSLLQ, + IX86_BUILTIN_PSRAW, + IX86_BUILTIN_PSRAD, + IX86_BUILTIN_PSRLW, + IX86_BUILTIN_PSRLD, + IX86_BUILTIN_PSRLQ, + IX86_BUILTIN_PSLLWI, + IX86_BUILTIN_PSLLDI, + IX86_BUILTIN_PSLLQI, + IX86_BUILTIN_PSRAWI, + IX86_BUILTIN_PSRADI, + IX86_BUILTIN_PSRLWI, + IX86_BUILTIN_PSRLDI, + IX86_BUILTIN_PSRLQI, + + IX86_BUILTIN_PUNPCKHBW, + IX86_BUILTIN_PUNPCKHWD, + IX86_BUILTIN_PUNPCKHDQ, + IX86_BUILTIN_PUNPCKLBW, + IX86_BUILTIN_PUNPCKLWD, + IX86_BUILTIN_PUNPCKLDQ, + + IX86_BUILTIN_SHUFPS, + + IX86_BUILTIN_RCPPS, + IX86_BUILTIN_RCPSS, + IX86_BUILTIN_RSQRTPS, + IX86_BUILTIN_RSQRTSS, + IX86_BUILTIN_SQRTPS, + IX86_BUILTIN_SQRTSS, + + IX86_BUILTIN_UNPCKHPS, + IX86_BUILTIN_UNPCKLPS, + + IX86_BUILTIN_ANDPS, + IX86_BUILTIN_ANDNPS, + IX86_BUILTIN_ORPS, + IX86_BUILTIN_XORPS, + + IX86_BUILTIN_EMMS, + IX86_BUILTIN_LDMXCSR, + IX86_BUILTIN_STMXCSR, + IX86_BUILTIN_SFENCE, + + /* 3DNow! Original */ + IX86_BUILTIN_FEMMS, + IX86_BUILTIN_PAVGUSB, + IX86_BUILTIN_PF2ID, + IX86_BUILTIN_PFACC, + IX86_BUILTIN_PFADD, + IX86_BUILTIN_PFCMPEQ, + IX86_BUILTIN_PFCMPGE, + IX86_BUILTIN_PFCMPGT, + IX86_BUILTIN_PFMAX, + IX86_BUILTIN_PFMIN, + IX86_BUILTIN_PFMUL, + IX86_BUILTIN_PFRCP, + IX86_BUILTIN_PFRCPIT1, + IX86_BUILTIN_PFRCPIT2, + IX86_BUILTIN_PFRSQIT1, + IX86_BUILTIN_PFRSQRT, + IX86_BUILTIN_PFSUB, + IX86_BUILTIN_PFSUBR, + IX86_BUILTIN_PI2FD, + IX86_BUILTIN_PMULHRW, + + /* 3DNow! Athlon Extensions */ + IX86_BUILTIN_PF2IW, + IX86_BUILTIN_PFNACC, + IX86_BUILTIN_PFPNACC, + IX86_BUILTIN_PI2FW, + IX86_BUILTIN_PSWAPDSI, + IX86_BUILTIN_PSWAPDSF, + + IX86_BUILTIN_SSE_ZERO, + IX86_BUILTIN_MMX_ZERO, + + IX86_BUILTIN_MAX +}; + +/* Define this macro if references to a symbol must be treated + differently depending on something about the variable or + function named by the symbol (such as what section it is in). + + On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol + so that we may access it directly in the GOT. */ + +#define ENCODE_SECTION_INFO(DECL) \ +do { \ + if (flag_pic) \ + { \ + rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \ + ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \ + \ + if (GET_CODE (rtl) == MEM) \ + { \ + if (TARGET_DEBUG_ADDR \ + && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \ + { \ + fprintf (stderr, "Encode %s, public = %d\n", \ + IDENTIFIER_POINTER (DECL_NAME (DECL)), \ + TREE_PUBLIC (DECL)); \ + } \ + \ + SYMBOL_REF_FLAG (XEXP (rtl, 0)) \ + = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \ + || ! TREE_PUBLIC (DECL)); \ + } \ + } \ +} while (0) + +/* The `FINALIZE_PIC' macro serves as a hook to emit these special + codes once the function is being compiled into assembly code, but + not before. (It is not done before, because in the case of + compiling an inline function, it would lead to multiple PIC + prologues being included in functions which used inline functions + and were compiled to assembly language.) */ + +#define FINALIZE_PIC \ + (current_function_uses_pic_offset_table |= current_function_profile) + + +/* Max number of args passed in registers. If this is more than 3, we will + have problems with ebx (register #4), since it is a caller save register and + is also used as the pic register in ELF. So for now, don't allow more than + 3 registers to be passed in registers. */ + +#define REGPARM_MAX (TARGET_64BIT ? 6 : 3) + +#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0) + + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode) + +/* Define as C expression which evaluates to nonzero if the tablejump + instruction expects the table to contain offsets from the address of the + table. + Do not define this if the table should contain absolute addresses. */ +/* #define CASE_VECTOR_PC_RELATIVE 1 */ + +/* Define this as 1 if `char' should by default be signed; else as 0. */ +#define DEFAULT_SIGNED_CHAR 1 + +/* Number of bytes moved into a data cache for a single prefetch operation. */ +#define PREFETCH_BLOCK ix86_cost->prefetch_block + +/* Number of prefetch operations that can be done in parallel. */ +#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches + +/* Max number of bytes we can move from memory to memory + in one reasonably fast instruction. */ +#define MOVE_MAX 16 + +/* MOVE_MAX_PIECES is the number of bytes at a time which we can + move efficiently, as opposed to MOVE_MAX which is the maximum + number of bytes we can move with a single instruction. */ +#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4) + +/* If a memory-to-memory move would take MOVE_RATIO or more simple + move-instruction pairs, we will do a movstr or libcall instead. + Increasing the value will always make code faster, but eventually + incurs high cost in increased code size. + + If you don't define this, a reasonable default is used. */ + +#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio) + +/* Define if shifts truncate the shift count + which implies one can omit a sign-extension or zero-extension + of a shift count. */ +/* On i386, shifts do truncate the count. But bit opcodes don't. */ + +/* #define SHIFT_COUNT_TRUNCATED */ + +/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits + is done just by pretending it is already truncated. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 + +/* We assume that the store-condition-codes instructions store 0 for false + and some other value for true. This is the value stored for true. */ + +#define STORE_FLAG_VALUE 1 + +/* When a prototype says `char' or `short', really pass an `int'. + (The 386 can't easily push less than an int.) */ + +#define PROMOTE_PROTOTYPES (!TARGET_64BIT) + +/* A macro to update M and UNSIGNEDP when an object whose type is + TYPE and which has the specified mode and signedness is to be + stored in a register. This macro is only called when TYPE is a + scalar type. + + On i386 it is sometimes useful to promote HImode and QImode + quantities to SImode. The choice depends on target type. */ + +#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ +do { \ + if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \ + || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \ + (MODE) = SImode; \ +} while (0) + +/* Specify the machine mode that pointers have. + After generation of rtl, the compiler makes no further distinction + between pointers and any other objects of this machine mode. */ +#define Pmode (TARGET_64BIT ? DImode : SImode) + +/* A function address in a call instruction + is a byte address (for indexing purposes) + so give the MEM rtx a byte's mode. */ +#define FUNCTION_MODE QImode + +/* A part of a C `switch' statement that describes the relative costs + of constant RTL expressions. It must contain `case' labels for + expression codes `const_int', `const', `symbol_ref', `label_ref' + and `const_double'. Each case must ultimately reach a `return' + statement to return the relative cost of the use of that kind of + constant value in an expression. The cost may depend on the + precise value of the constant, which is available for examination + in X, and the rtx code of the expression in which it is contained, + found in OUTER_CODE. + + CODE is the expression code--redundant, since it can be obtained + with `GET_CODE (X)'. */ + +#define CONST_COSTS(RTX, CODE, OUTER_CODE) \ + case CONST_INT: \ + case CONST: \ + case LABEL_REF: \ + case SYMBOL_REF: \ + if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \ + return 3; \ + if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \ + return 2; \ + return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \ + \ + case CONST_DOUBLE: \ + { \ + int code; \ + if (GET_MODE (RTX) == VOIDmode) \ + return 0; \ + \ + code = standard_80387_constant_p (RTX); \ + return code == 1 ? 1 : \ + code == 2 ? 2 : \ + 3; \ + } + +/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */ +#define TOPLEVEL_COSTS_N_INSNS(N) \ + do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0) + +/* Like `CONST_COSTS' but applies to nonconstant RTL expressions. + This can be used, for example, to indicate how costly a multiply + instruction is. In writing this macro, you can use the construct + `COSTS_N_INSNS (N)' to specify a cost equal to N fast + instructions. OUTER_CODE is the code of the expression in which X + is contained. + + This macro is optional; do not define it if the default cost + assumptions are adequate for the target machine. */ + +#define RTX_COSTS(X, CODE, OUTER_CODE) \ + case ZERO_EXTEND: \ + /* The zero extensions is often completely free on x86_64, so make \ + it as cheap as possible. */ \ + if (TARGET_64BIT && GET_MODE (X) == DImode \ + && GET_MODE (XEXP (X, 0)) == SImode) \ + { \ + total = 1; goto egress_rtx_costs; \ + } \ + else \ + TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \ + ix86_cost->add : ix86_cost->movzx); \ + break; \ + case SIGN_EXTEND: \ + TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \ + break; \ + case ASHIFT: \ + if (GET_CODE (XEXP (X, 1)) == CONST_INT \ + && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \ + { \ + HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \ + if (value == 1) \ + TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \ + if ((value == 2 || value == 3) \ + && !TARGET_DECOMPOSE_LEA \ + && ix86_cost->lea <= ix86_cost->shift_const) \ + TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \ + } \ + /* fall through */ \ + \ + case ROTATE: \ + case ASHIFTRT: \ + case LSHIFTRT: \ + case ROTATERT: \ + if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \ + { \ + if (GET_CODE (XEXP (X, 1)) == CONST_INT) \ + { \ + if (INTVAL (XEXP (X, 1)) > 32) \ + TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \ + else \ + TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \ + } \ + else \ + { \ + if (GET_CODE (XEXP (X, 1)) == AND) \ + TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \ + else \ + TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \ + } \ + } \ + else \ + { \ + if (GET_CODE (XEXP (X, 1)) == CONST_INT) \ + TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \ + else \ + TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \ + } \ + break; \ + \ + case MULT: \ + if (GET_CODE (XEXP (X, 1)) == CONST_INT) \ + { \ + unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \ + int nbits = 0; \ + \ + while (value != 0) \ + { \ + nbits++; \ + value >>= 1; \ + } \ + \ + TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \ + + nbits * ix86_cost->mult_bit); \ + } \ + else /* This is arbitrary */ \ + TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \ + + 7 * ix86_cost->mult_bit); \ + \ + case DIV: \ + case UDIV: \ + case MOD: \ + case UMOD: \ + TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \ + \ + case PLUS: \ + if (!TARGET_DECOMPOSE_LEA \ + && INTEGRAL_MODE_P (GET_MODE (X)) \ + && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \ + { \ + if (GET_CODE (XEXP (X, 0)) == PLUS \ + && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \ + && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \ + && CONSTANT_P (XEXP (X, 1))) \ + { \ + HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\ + if (val == 2 || val == 4 || val == 8) \ + { \ + return (COSTS_N_INSNS (ix86_cost->lea) \ + + rtx_cost (XEXP (XEXP (X, 0), 1), \ + (OUTER_CODE)) \ + + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \ + (OUTER_CODE)) \ + + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \ + } \ + } \ + else if (GET_CODE (XEXP (X, 0)) == MULT \ + && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \ + { \ + HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \ + if (val == 2 || val == 4 || val == 8) \ + { \ + return (COSTS_N_INSNS (ix86_cost->lea) \ + + rtx_cost (XEXP (XEXP (X, 0), 0), \ + (OUTER_CODE)) \ + + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \ + } \ + } \ + else if (GET_CODE (XEXP (X, 0)) == PLUS) \ + { \ + return (COSTS_N_INSNS (ix86_cost->lea) \ + + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \ + + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \ + + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \ + } \ + } \ + \ + /* fall through */ \ + case AND: \ + case IOR: \ + case XOR: \ + case MINUS: \ + if (!TARGET_64BIT && GET_MODE (X) == DImode) \ + return (COSTS_N_INSNS (ix86_cost->add) * 2 \ + + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \ + << (GET_MODE (XEXP (X, 0)) != DImode)) \ + + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \ + << (GET_MODE (XEXP (X, 1)) != DImode))); \ + \ + /* fall through */ \ + case NEG: \ + case NOT: \ + if (!TARGET_64BIT && GET_MODE (X) == DImode) \ + TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \ + TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \ + \ + egress_rtx_costs: \ + break; + + +/* An expression giving the cost of an addressing mode that contains + ADDRESS. If not defined, the cost is computed from the ADDRESS + expression and the `CONST_COSTS' values. + + For most CISC machines, the default cost is a good approximation + of the true cost of the addressing mode. However, on RISC + machines, all instructions normally have the same length and + execution time. Hence all addresses will have equal costs. + + In cases where more than one form of an address is known, the form + with the lowest cost will be used. If multiple forms have the + same, lowest, cost, the one that is the most complex will be used. + + For example, suppose an address that is equal to the sum of a + register and a constant is used twice in the same basic block. + When this macro is not defined, the address will be computed in a + register and memory references will be indirect through that + register. On machines where the cost of the addressing mode + containing the sum is no higher than that of a simple indirect + reference, this will produce an additional instruction and + possibly require an additional register. Proper specification of + this macro eliminates this overhead for such machines. + + Similar use of this macro is made in strength reduction of loops. + + ADDRESS need not be valid as an address. In such a case, the cost + is not relevant and can be any value; invalid addresses need not be + assigned a different cost. + + On machines where an address involving more than one register is as + cheap as an address computation involving only one register, + defining `ADDRESS_COST' to reflect this can cause two registers to + be live over a region of code where only one would have been if + `ADDRESS_COST' were not defined in that manner. This effect should + be considered in the definition of this macro. Equivalent costs + should probably only be given to addresses with different numbers + of registers on machines with lots of registers. + + This macro will normally either not be defined or be defined as a + constant. + + For i386, it is better to use a complex address than let gcc copy + the address into a reg and make a new pseudo. But not if the address + requires to two regs - that would mean more pseudos with longer + lifetimes. */ + +#define ADDRESS_COST(RTX) \ + ix86_address_cost (RTX) + +/* A C expression for the cost of moving data from a register in class FROM to + one in class TO. The classes are expressed using the enumeration values + such as `GENERAL_REGS'. A value of 2 is the default; other values are + interpreted relative to that. + + It is not required that the cost always equal 2 when FROM is the same as TO; + on some machines it is expensive to move between registers if they are not + general registers. */ + +#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \ + ix86_register_move_cost ((MODE), (CLASS1), (CLASS2)) + +/* A C expression for the cost of moving data of mode M between a + register and memory. A value of 2 is the default; this cost is + relative to those in `REGISTER_MOVE_COST'. + + If moving between registers and memory is more expensive than + between two registers, you should define this macro to express the + relative cost. */ + +#define MEMORY_MOVE_COST(MODE, CLASS, IN) \ + ix86_memory_move_cost ((MODE), (CLASS), (IN)) + +/* A C expression for the cost of a branch instruction. A value of 1 + is the default; other values are interpreted relative to that. */ + +#define BRANCH_COST ix86_branch_cost + +/* Define this macro as a C expression which is nonzero if accessing + less than a word of memory (i.e. a `char' or a `short') is no + faster than accessing a word of memory, i.e., if such access + require more than one instruction or if there is no difference in + cost between byte and (aligned) word loads. + + When this macro is not defined, the compiler will access a field by + finding the smallest containing object; when it is defined, a + fullword load will be used if alignment permits. Unless bytes + accesses are faster than word accesses, using word accesses is + preferable since it may eliminate subsequent memory access if + subsequent accesses occur to other fields in the same word of the + structure, but to different bytes. */ + +#define SLOW_BYTE_ACCESS 0 + +/* Nonzero if access to memory by shorts is slow and undesirable. */ +#define SLOW_SHORT_ACCESS 0 + +/* Define this macro to be the value 1 if unaligned accesses have a + cost many times greater than aligned accesses, for example if they + are emulated in a trap handler. + + When this macro is non-zero, the compiler will act as if + `STRICT_ALIGNMENT' were non-zero when generating code for block + moves. This can cause significantly more instructions to be + produced. Therefore, do not set this macro non-zero if unaligned + accesses only add a cycle or two to the time for a memory access. + + If the value of this macro is always zero, it need not be defined. */ + +/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */ + +/* Define this macro to inhibit strength reduction of memory + addresses. (On some machines, such strength reduction seems to do + harm rather than good.) */ + +/* #define DONT_REDUCE_ADDR */ + +/* Define this macro if it is as good or better to call a constant + function address than to call an address kept in a register. + + Desirable on the 386 because a CALL with a constant address is + faster than one with a register address. */ + +#define NO_FUNCTION_CSE + +/* Define this macro if it is as good or better for a function to call + itself with an explicit address than to call an address kept in a + register. */ + +#define NO_RECURSIVE_FUNCTION_CSE + +/* Add any extra modes needed to represent the condition code. + + For the i386, we need separate modes when floating-point + equality comparisons are being done. + + Add CCNO to indicate comparisons against zero that requires + Overflow flag to be unset. Sign bit test is used instead and + thus can be used to form "a&b>0" type of tests. + + Add CCGC to indicate comparisons agains zero that allows + unspecified garbage in the Carry flag. This mode is used + by inc/dec instructions. + + Add CCGOC to indicate comparisons agains zero that allows + unspecified garbage in the Carry and Overflow flag. This + mode is used to simulate comparisons of (a-b) and (a+b) + against zero using sub/cmp/add operations. + + Add CCZ to indicate that only the Zero flag is valid. */ + +#define EXTRA_CC_MODES \ + CC (CCGCmode, "CCGC") \ + CC (CCGOCmode, "CCGOC") \ + CC (CCNOmode, "CCNO") \ + CC (CCZmode, "CCZ") \ + CC (CCFPmode, "CCFP") \ + CC (CCFPUmode, "CCFPU") + +/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, + return the mode to be used for the comparison. + + For floating-point equality comparisons, CCFPEQmode should be used. + VOIDmode should be used in all other cases. + + For integer comparisons against zero, reduce to CCNOmode or CCZmode if + possible, to allow for more combinations. */ + +#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y)) + +/* Return non-zero if MODE implies a floating point inequality can be + reversed. */ + +#define REVERSIBLE_CC_MODE(MODE) 1 + +/* A C expression whose value is reversed condition code of the CODE for + comparison done in CC_MODE mode. */ +#define REVERSE_CONDITION(CODE, MODE) \ + ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \ + : reverse_condition_maybe_unordered (CODE)) + + +/* Control the assembler format that we output, to the extent + this does not vary between assemblers. */ + +/* How to refer to registers in assembler output. + This sequence is indexed by compiler's hard-register-number (see above). */ + +/* In order to refer to the first 8 regs as 32 bit regs prefix an "e" + For non floating point regs, the following are the HImode names. + + For float regs, the stack top is sometimes referred to as "%st(0)" + instead of just "%st". PRINT_REG handles this with the "y" code. */ + +#undef HI_REGISTER_NAMES +#define HI_REGISTER_NAMES \ +{"ax","dx","cx","bx","si","di","bp","sp", \ + "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \ + "flags","fpsr", "dirflag", "frame", \ + "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \ + "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \ + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ + "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"} + +#define REGISTER_NAMES HI_REGISTER_NAMES + +/* Table of additional register names to use in user input. */ + +#define ADDITIONAL_REGISTER_NAMES \ +{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \ + { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \ + { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \ + { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \ + { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \ + { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \ + { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \ + { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} } + +/* Note we are omitting these since currently I don't know how +to get gcc to use these, since they want the same but different +number as al, and ax. +*/ + +#define QI_REGISTER_NAMES \ +{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",} + +/* These parallel the array above, and can be used to access bits 8:15 + of regs 0 through 3. */ + +#define QI_HIGH_REGISTER_NAMES \ +{"ah", "dh", "ch", "bh", } + +/* How to renumber registers for dbx and gdb. */ + +#define DBX_REGISTER_NUMBER(N) \ + (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)]) + +extern int const dbx_register_map[FIRST_PSEUDO_REGISTER]; +extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER]; +extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER]; + +/* Before the prologue, RA is at 0(%esp). */ +#define INCOMING_RETURN_ADDR_RTX \ + gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM)) + +/* After the prologue, RA is at -4(AP) in the current frame. */ +#define RETURN_ADDR_RTX(COUNT, FRAME) \ + ((COUNT) == 0 \ + ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \ + : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD))) + +/* PC is dbx register 8; let's use that column for RA. */ +#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8) + +/* Before the prologue, the top of the frame is at 4(%esp). */ +#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD + +/* Describe how we implement __builtin_eh_return. */ +#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM) +#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2) + + +/* Select a format to encode pointers in exception handling data. CODE + is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is + true if the symbol may be affected by dynamic relocations. + + ??? All x86 object file formats are capable of representing this. + After all, the relocation needed is the same as for the call insn. + Whether or not a particular assembler allows us to enter such, I + guess we'll have to see. */ +#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ + (flag_pic \ + ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\ + : DW_EH_PE_absptr) + +/* This is how to output the definition of a user-level label named NAME, + such as the label on a static function or variable NAME. */ + +#define ASM_OUTPUT_LABEL(FILE, NAME) \ + (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE))) + +/* Store in OUTPUT a string (made with alloca) containing + an assembler-name for a local static variable named NAME. + LABELNO is an integer which is different for each call. */ + +#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ +( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ + sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) + +/* This is how to output an insn to push a register on the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \ + asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]) + +/* This is how to output an insn to pop a register from the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_POP(FILE, REGNO) \ + asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]) + +/* This is how to output an element of a case-vector that is absolute. */ + +#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ + ix86_output_addr_vec_elt ((FILE), (VALUE)) + +/* This is how to output an element of a case-vector that is relative. */ + +#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ + ix86_output_addr_diff_elt ((FILE), (VALUE), (REL)) + +/* Under some conditions we need jump tables in the text section, because + the assembler cannot handle label differences between sections. */ + +#define JUMP_TABLES_IN_TEXT_SECTION \ + (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA) + +/* A C statement that outputs an address constant appropriate to + for DWARF debugging. */ + +#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \ + i386_dwarf_output_addr_const ((FILE), (X)) + +/* Either simplify a location expression, or return the original. */ + +#define ASM_SIMPLIFY_DWARF_ADDR(X) \ + i386_simplify_dwarf_addr (X) + +/* Switch to init or fini section via SECTION_OP, emit a call to FUNC, + and switch back. For x86 we do this only to save a few bytes that + would otherwise be unused in the text section. */ +#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ + asm (SECTION_OP "\n\t" \ + "call " USER_LABEL_PREFIX #FUNC "\n" \ + TEXT_SECTION_ASM_OP); + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + Effect of various CODE letters is described in i386.c near + print_operand function. */ + +#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ + ((CODE) == '*' || (CODE) == '+') + +/* Print the name of a register based on its machine mode and number. + If CODE is 'w', pretend the mode is HImode. + If CODE is 'b', pretend the mode is QImode. + If CODE is 'k', pretend the mode is SImode. + If CODE is 'q', pretend the mode is DImode. + If CODE is 'h', pretend the reg is the `high' byte register. + If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */ + +#define PRINT_REG(X, CODE, FILE) \ + print_reg ((X), (CODE), (FILE)) + +#define PRINT_OPERAND(FILE, X, CODE) \ + print_operand ((FILE), (X), (CODE)) + +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ + print_operand_address ((FILE), (ADDR)) + +/* Print the name of a register for based on its machine mode and number. + This macro is used to print debugging output. + This macro is different from PRINT_REG in that it may be used in + programs that are not linked with aux-output.o. */ + +#define DEBUG_PRINT_REG(X, CODE, FILE) \ + do { static const char * const hi_name[] = HI_REGISTER_NAMES; \ + static const char * const qi_name[] = QI_REGISTER_NAMES; \ + fprintf ((FILE), "%d ", REGNO (X)); \ + if (REGNO (X) == FLAGS_REG) \ + { fputs ("flags", (FILE)); break; } \ + if (REGNO (X) == DIRFLAG_REG) \ + { fputs ("dirflag", (FILE)); break; } \ + if (REGNO (X) == FPSR_REG) \ + { fputs ("fpsr", (FILE)); break; } \ + if (REGNO (X) == ARG_POINTER_REGNUM) \ + { fputs ("argp", (FILE)); break; } \ + if (REGNO (X) == FRAME_POINTER_REGNUM) \ + { fputs ("frame", (FILE)); break; } \ + if (STACK_TOP_P (X)) \ + { fputs ("st(0)", (FILE)); break; } \ + if (FP_REG_P (X)) \ + { fputs (hi_name[REGNO(X)], (FILE)); break; } \ + if (REX_INT_REG_P (X)) \ + { \ + switch (GET_MODE_SIZE (GET_MODE (X))) \ + { \ + default: \ + case 8: \ + fprintf ((FILE), "r%i", REGNO (X) \ + - FIRST_REX_INT_REG + 8); \ + break; \ + case 4: \ + fprintf ((FILE), "r%id", REGNO (X) \ + - FIRST_REX_INT_REG + 8); \ + break; \ + case 2: \ + fprintf ((FILE), "r%iw", REGNO (X) \ + - FIRST_REX_INT_REG + 8); \ + break; \ + case 1: \ + fprintf ((FILE), "r%ib", REGNO (X) \ + - FIRST_REX_INT_REG + 8); \ + break; \ + } \ + break; \ + } \ + switch (GET_MODE_SIZE (GET_MODE (X))) \ + { \ + case 8: \ + fputs ("r", (FILE)); \ + fputs (hi_name[REGNO (X)], (FILE)); \ + break; \ + default: \ + fputs ("e", (FILE)); \ + case 2: \ + fputs (hi_name[REGNO (X)], (FILE)); \ + break; \ + case 1: \ + fputs (qi_name[REGNO (X)], (FILE)); \ + break; \ + } \ + } while (0) + +/* a letter which is not needed by the normal asm syntax, which + we can use for operand syntax in the extended asm */ + +#define ASM_OPERAND_LETTER '#' +#define RET return "" +#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx)) + +/* Define the codes that are matched by predicates in i386.c. */ + +#define PREDICATE_CODES \ + {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \ + SYMBOL_REF, LABEL_REF, CONST}}, \ + {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \ + SYMBOL_REF, LABEL_REF, CONST}}, \ + {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \ + SYMBOL_REF, LABEL_REF, CONST}}, \ + {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \ + SYMBOL_REF, LABEL_REF, CONST}}, \ + {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \ + SYMBOL_REF, LABEL_REF, CONST}}, \ + {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \ + SYMBOL_REF, LABEL_REF, CONST}}, \ + {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \ + SYMBOL_REF, LABEL_REF}}, \ + {"shiftdi_operand", {SUBREG, REG, MEM}}, \ + {"const_int_1_operand", {CONST_INT}}, \ + {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \ + {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \ + LABEL_REF, SUBREG, REG, MEM}}, \ + {"pic_symbolic_operand", {CONST}}, \ + {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \ + {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \ + {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \ + {"const1_operand", {CONST_INT}}, \ + {"const248_operand", {CONST_INT}}, \ + {"incdec_operand", {CONST_INT}}, \ + {"mmx_reg_operand", {REG}}, \ + {"reg_no_sp_operand", {SUBREG, REG}}, \ + {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \ + SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \ + {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \ + {"q_regs_operand", {SUBREG, REG}}, \ + {"non_q_regs_operand", {SUBREG, REG}}, \ + {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \ + ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \ + GE, UNGE, LTGT, UNEQ}}, \ + {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \ + ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \ + }}, \ + {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \ + GTU, UNORDERED, ORDERED, UNLE, UNLT, \ + UNGE, UNGT, LTGT, UNEQ }}, \ + {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \ + {"ext_register_operand", {SUBREG, REG}}, \ + {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \ + {"mult_operator", {MULT}}, \ + {"div_operator", {DIV}}, \ + {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \ + UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \ + UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \ + LSHIFTRT, ROTATERT}}, \ + {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \ + {"memory_displacement_operand", {MEM}}, \ + {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \ + LABEL_REF, SUBREG, REG, MEM, AND}}, \ + {"long_memory_operand", {MEM}}, + +/* A list of predicates that do special things with modes, and so + should not elicit warnings for VOIDmode match_operand. */ + +#define SPECIAL_MODE_PREDICATES \ + "ext_register_operand", + +/* CM_32 is used by 32bit ABI + CM_SMALL is small model assuming that all code and data fits in the first + 31bits of address space. + CM_KERNEL is model assuming that all code and data fits in the negative + 31bits of address space. + CM_MEDIUM is model assuming that code fits in the first 31bits of address + space. Size of data is unlimited. + CM_LARGE is model making no assumptions about size of particular sections. + + CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt + tables first in 31bits of address space. + */ +enum cmodel { + CM_32, + CM_SMALL, + CM_KERNEL, + CM_MEDIUM, + CM_LARGE, + CM_SMALL_PIC +}; + +/* Size of the RED_ZONE area. */ +#define RED_ZONE_SIZE 128 +/* Reserved area of the red zone for temporaries. */ +#define RED_ZONE_RESERVE 8 +extern const char *ix86_debug_arg_string, *ix86_debug_addr_string; + +enum asm_dialect { + ASM_ATT, + ASM_INTEL +}; +extern const char *ix86_asm_string; +extern enum asm_dialect ix86_asm_dialect; +/* Value of -mcmodel specified by user. */ +extern const char *ix86_cmodel_string; +extern enum cmodel ix86_cmodel; + +/* Variables in i386.c */ +extern const char *ix86_cpu_string; /* for -mcpu= */ +extern const char *ix86_arch_string; /* for -march= */ +extern const char *ix86_fpmath_string; /* for -mfpmath= */ +extern const char *ix86_regparm_string; /* # registers to use to pass args */ +extern const char *ix86_align_loops_string; /* power of two alignment for loops */ +extern const char *ix86_align_jumps_string; /* power of two alignment for non-loop jumps */ +extern const char *ix86_align_funcs_string; /* power of two alignment for functions */ +extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */ +extern const char *ix86_branch_cost_string; /* values 1-5: see jump.c */ +extern int ix86_regparm; /* ix86_regparm_string as a number */ +extern int ix86_preferred_stack_boundary; /* preferred stack boundary alignment in bits */ +extern int ix86_branch_cost; /* values 1-5: see jump.c */ +extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */ +// Commented out the following two lines due to lack of definition for "rtx" - Brian +//extern rtx ix86_compare_op0; /* operand 0 for comparisons */ +//extern rtx ix86_compare_op1; /* operand 1 for comparisons */ + +/* To properly truncate FP values into integers, we need to set i387 control + word. We can't emit proper mode switching code before reload, as spills + generated by reload may truncate values incorrectly, but we still can avoid + redundant computation of new control word by the mode switching pass. + The fldcw instructions are still emitted redundantly, but this is probably + not going to be noticeable problem, as most CPUs do have fast path for + the sequence. + + The machinery is to emit simple truncation instructions and split them + before reload to instructions having USEs of two memory locations that + are filled by this code to old and new control word. + + Post-reload pass may be later used to eliminate the redundant fildcw if + needed. */ + +enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY}; + +/* Define this macro if the port needs extra instructions inserted + for mode switching in an optimizing compilation. */ + +#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1 + +/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as + initializer for an array of integers. Each initializer element N + refers to an entity that needs mode switching, and specifies the + number of different modes that might need to be set for this + entity. The position of the initializer in the initializer - + starting counting at zero - determines the integer that is used to + refer to the mode-switched entity in question. */ + +#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY } + +/* ENTITY is an integer specifying a mode-switched entity. If + `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to + return an integer value not larger than the corresponding element + in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY + must be switched into prior to the execution of INSN. */ + +#define MODE_NEEDED(ENTITY, I) \ + (GET_CODE (I) == CALL_INSN \ + || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \ + || GET_CODE (PATTERN (I)) == ASM_INPUT))\ + ? FP_CW_UNINITIALIZED \ + : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \ + ? FP_CW_ANY \ + : FP_CW_STORED) + +/* This macro specifies the order in which modes for ENTITY are + processed. 0 is the highest priority. */ + +#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N) + +/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE + is the set of hard registers live at the point where the insn(s) + are to be inserted. */ + +#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \ + ((MODE) == FP_CW_STORED \ + ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \ + assign_386_stack_local (HImode, 2)), 0\ + : 0) + +/* Avoid renaming of stack registers, as doing so in combination with + scheduling just increases amount of live registers at time and in + the turn amount of fxch instructions needed. + + ??? Maybe Pentium chips benefits from renaming, someone can try... */ + +#define HARD_REGNO_RENAME_OK(SRC, TARGET) \ + ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG) + + +/* +Local variables: +version-control: t +End: +*/