- Viva la deprecation! Trunk should now boot and the installer should work.

- Basically revert the new HAL/KERNEL IRQ code by putting the old one in, but without the actual pain of svn reverting and losing all the previous code.
- The old code goes in ntoskrnl\deprecated, and we only add a comment to the .rbuild file, re-export an old function, and initialize the old code in kernel.c. All the other kernel changes stay in-place to be tested.
- Same for hal, basically replace irq.S with irql.c in the .rbuild file, and disable the call to Halpinit1. All the other changes remain.

svn path=/trunk/; revision=23707
This commit is contained in:
Alex Ionescu 2006-08-25 14:50:01 +00:00
parent bb00cadd67
commit 397f1f88d2
9 changed files with 1304 additions and 3 deletions

View file

@ -31,7 +31,7 @@
<define name="_NTHAL_" />
<define name="__USE_W32API" />
<file>ipi.c</file>
<file>irq.S</file>
<file>irql.c</file>
<file>processor.c</file>
<file>resource.c</file>
<file>spinlock.c</file>

View file

@ -43,7 +43,7 @@ HalInitSystem (ULONG BootPhase,
else if (BootPhase == 1)
{
/* Initialize the clock interrupt */
HalpInitPhase1();
//HalpInitPhase1();
/* Initialize display and make the screen black */
HalInitializeDisplay ((PROS_LOADER_PARAMETER_BLOCK)LoaderBlock);

View file

@ -0,0 +1,425 @@
/* $Id$
*
* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS kernel
* FILE: ntoskrnl/hal/x86/irql.c
* PURPOSE: Implements IRQLs
* PROGRAMMER: David Welch (welch@cwcom.net)
*/
/* INCLUDES *****************************************************************/
#include <hal.h>
#define NDEBUG
#include <debug.h>
/* GLOBALS ******************************************************************/
/*
* FIXME: Use EISA_CONTROL STRUCTURE INSTEAD OF HARD-CODED OFFSETS
*/
typedef union
{
USHORT both;
struct
{
BYTE master;
BYTE slave;
};
}
PIC_MASK;
/*
* PURPOSE: - Mask for HalEnableSystemInterrupt and HalDisableSystemInterrupt
* - At startup enable timer and cascade
*/
#if defined(__GNUC__)
static PIC_MASK pic_mask = {.both = 0xFFFA};
#else
static PIC_MASK pic_mask = { 0xFFFA };
#endif
/*
* PURPOSE: Mask for disabling of acknowledged interrupts
*/
#if defined(__GNUC__)
static PIC_MASK pic_mask_intr = {.both = 0x0000};
#else
static PIC_MASK pic_mask_intr = { 0 };
#endif
static ULONG HalpPendingInterruptCount[NR_IRQS];
#define DIRQL_TO_IRQ(x) (PROFILE_LEVEL - x)
#define IRQ_TO_DIRQL(x) (PROFILE_LEVEL - x)
VOID STDCALL
KiInterruptDispatch2 (ULONG Irq, KIRQL old_level);
/* FUNCTIONS ****************************************************************/
#undef KeGetCurrentIrql
KIRQL STDCALL KeGetCurrentIrql (VOID)
/*
* PURPOSE: Returns the current irq level
* RETURNS: The current irq level
*/
{
return(KeGetPcr()->Irql);
}
VOID NTAPI HalpInitPICs(VOID)
{
memset(HalpPendingInterruptCount, 0, sizeof(HalpPendingInterruptCount));
/* Initialization sequence */
WRITE_PORT_UCHAR((PUCHAR)0x20, 0x11);
WRITE_PORT_UCHAR((PUCHAR)0xa0, 0x11);
/* Start of hardware irqs (0x24) */
WRITE_PORT_UCHAR((PUCHAR)0x21, IRQ_BASE);
WRITE_PORT_UCHAR((PUCHAR)0xa1, IRQ_BASE + 8);
/* 8259-1 is master */
WRITE_PORT_UCHAR((PUCHAR)0x21, 0x4);
/* 8259-2 is slave */
WRITE_PORT_UCHAR((PUCHAR)0xa1, 0x2);
/* 8086 mode */
WRITE_PORT_UCHAR((PUCHAR)0x21, 0x1);
WRITE_PORT_UCHAR((PUCHAR)0xa1, 0x1);
/* Enable interrupts */
WRITE_PORT_UCHAR((PUCHAR)0x21, pic_mask.master);
WRITE_PORT_UCHAR((PUCHAR)0xa1, pic_mask.slave);
/* We can now enable interrupts */
Ki386EnableInterrupts();
}
VOID HalpEndSystemInterrupt(KIRQL Irql)
/*
* FUNCTION: Enable all irqs with higher priority.
*/
{
ULONG flags;
const USHORT mask[] =
{
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0xc000, 0xe000, 0xf000,
0xf800, 0xfc00, 0xfe00, 0xff00, 0xff80, 0xffc0, 0xffe0, 0xfff0,
0xfff8, 0xfffc, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
};
/* Interrupts should be disable while enabling irqs of both pics */
Ki386SaveFlags(flags);
Ki386DisableInterrupts();
pic_mask_intr.both &= mask[Irql];
WRITE_PORT_UCHAR((PUCHAR)0x21, (UCHAR)(pic_mask.master|pic_mask_intr.master));
WRITE_PORT_UCHAR((PUCHAR)0xa1, (UCHAR)(pic_mask.slave|pic_mask_intr.slave));
/* restore flags */
Ki386RestoreFlags(flags);
}
VOID STATIC
HalpExecuteIrqs(KIRQL NewIrql)
{
ULONG IrqLimit, i;
IrqLimit = min(PROFILE_LEVEL - NewIrql, NR_IRQS);
/*
* For each irq if there have been any deferred interrupts then now
* dispatch them.
*/
for (i = 0; i < IrqLimit; i++)
{
if (HalpPendingInterruptCount[i] > 0)
{
KeGetPcr()->Irql = (KIRQL)IRQ_TO_DIRQL(i);
while (HalpPendingInterruptCount[i] > 0)
{
/*
* For each deferred interrupt execute all the handlers at DIRQL.
*/
HalpPendingInterruptCount[i]--;
KiInterruptDispatch2(i + IRQ_BASE, NewIrql);
}
KeGetPcr()->Irql--;
HalpEndSystemInterrupt(KeGetPcr()->Irql);
}
}
}
VOID STATIC
HalpLowerIrql(KIRQL NewIrql)
{
if (NewIrql >= PROFILE_LEVEL)
{
KeGetPcr()->Irql = NewIrql;
return;
}
HalpExecuteIrqs(NewIrql);
if (NewIrql >= DISPATCH_LEVEL)
{
KeGetPcr()->Irql = NewIrql;
return;
}
KeGetPcr()->Irql = DISPATCH_LEVEL;
if (((PKIPCR)KeGetPcr())->HalReserved[HAL_DPC_REQUEST])
{
((PKIPCR)KeGetPcr())->HalReserved[HAL_DPC_REQUEST] = FALSE;
KiDispatchInterrupt();
}
KeGetPcr()->Irql = APC_LEVEL;
if (NewIrql == APC_LEVEL)
{
return;
}
if (KeGetCurrentThread() != NULL &&
KeGetCurrentThread()->ApcState.KernelApcPending)
{
KiDeliverApc(KernelMode, NULL, NULL);
}
KeGetPcr()->Irql = PASSIVE_LEVEL;
}
/**********************************************************************
* NAME EXPORTED
* KfLowerIrql
*
* DESCRIPTION
* Restores the irq level on the current processor
*
* ARGUMENTS
* NewIrql = Irql to lower to
*
* RETURN VALUE
* None
*
* NOTES
* Uses fastcall convention
*/
VOID FASTCALL
KfLowerIrql (KIRQL NewIrql)
{
DPRINT("KfLowerIrql(NewIrql %d)\n", NewIrql);
if (NewIrql > KeGetPcr()->Irql)
{
DbgPrint ("(%s:%d) NewIrql %x CurrentIrql %x\n",
__FILE__, __LINE__, NewIrql, KeGetPcr()->Irql);
KEBUGCHECK(0);
for(;;);
}
HalpLowerIrql(NewIrql);
}
/**********************************************************************
* NAME EXPORTED
* KfRaiseIrql
*
* DESCRIPTION
* Raises the hardware priority (irql)
*
* ARGUMENTS
* NewIrql = Irql to raise to
*
* RETURN VALUE
* previous irq level
*
* NOTES
* Uses fastcall convention
*/
KIRQL FASTCALL
KfRaiseIrql (KIRQL NewIrql)
{
KIRQL OldIrql;
DPRINT("KfRaiseIrql(NewIrql %d)\n", NewIrql);
if (NewIrql < KeGetPcr()->Irql)
{
DbgPrint ("%s:%d CurrentIrql %x NewIrql %x\n",
__FILE__,__LINE__,KeGetPcr()->Irql,NewIrql);
KEBUGCHECK (0);
for(;;);
}
OldIrql = KeGetPcr()->Irql;
KeGetPcr()->Irql = NewIrql;
return OldIrql;
}
/**********************************************************************
* NAME EXPORTED
* KeRaiseIrqlToDpcLevel
*
* DESCRIPTION
* Raises the hardware priority (irql) to DISPATCH level
*
* ARGUMENTS
* None
*
* RETURN VALUE
* Previous irq level
*
* NOTES
* Calls KfRaiseIrql
*/
KIRQL STDCALL
KeRaiseIrqlToDpcLevel (VOID)
{
return KfRaiseIrql (DISPATCH_LEVEL);
}
/**********************************************************************
* NAME EXPORTED
* KeRaiseIrqlToSynchLevel
*
* DESCRIPTION
* Raises the hardware priority (irql) to CLOCK2 level
*
* ARGUMENTS
* None
*
* RETURN VALUE
* Previous irq level
*
* NOTES
* Calls KfRaiseIrql
*/
KIRQL STDCALL
KeRaiseIrqlToSynchLevel (VOID)
{
return KfRaiseIrql (CLOCK2_LEVEL);
}
BOOLEAN STDCALL
HalBeginSystemInterrupt (KIRQL Irql,
ULONG Vector,
PKIRQL OldIrql)
{
ULONG irq;
if (Vector < IRQ_BASE || Vector >= IRQ_BASE + NR_IRQS)
{
return(FALSE);
}
irq = Vector - IRQ_BASE;
pic_mask_intr.both |= ((1 << irq) & 0xfffe); // do not disable the timer interrupt
if (irq < 8)
{
WRITE_PORT_UCHAR((PUCHAR)0x21, (UCHAR)(pic_mask.master|pic_mask_intr.master));
WRITE_PORT_UCHAR((PUCHAR)0x20, 0x20);
}
else
{
WRITE_PORT_UCHAR((PUCHAR)0xa1, (UCHAR)(pic_mask.slave|pic_mask_intr.slave));
/* Send EOI to the PICs */
WRITE_PORT_UCHAR((PUCHAR)0x20,0x20);
WRITE_PORT_UCHAR((PUCHAR)0xa0,0x20);
}
if (KeGetPcr()->Irql >= Irql)
{
HalpPendingInterruptCount[irq]++;
return(FALSE);
}
*OldIrql = KeGetPcr()->Irql;
KeGetPcr()->Irql = Irql;
return(TRUE);
}
VOID STDCALL HalEndSystemInterrupt (KIRQL Irql, ULONG Unknown2)
/*
* FUNCTION: Finish a system interrupt and restore the specified irq level.
*/
{
HalpLowerIrql(Irql);
HalpEndSystemInterrupt(Irql);
}
BOOLEAN
STDCALL
HalDisableSystemInterrupt(
ULONG Vector,
KIRQL Irql)
{
ULONG irq;
if (Vector < IRQ_BASE || Vector >= IRQ_BASE + NR_IRQS)
return FALSE;
irq = Vector - IRQ_BASE;
pic_mask.both |= (1 << irq);
if (irq < 8)
{
WRITE_PORT_UCHAR((PUCHAR)0x21, (UCHAR)(pic_mask.master|pic_mask_intr.slave));
}
else
{
WRITE_PORT_UCHAR((PUCHAR)0xa1, (UCHAR)(pic_mask.slave|pic_mask_intr.slave));
}
return TRUE;
}
BOOLEAN
STDCALL
HalEnableSystemInterrupt(
ULONG Vector,
KIRQL Irql,
KINTERRUPT_MODE InterruptMode)
{
ULONG irq;
if (Vector < IRQ_BASE || Vector >= IRQ_BASE + NR_IRQS)
return FALSE;
irq = Vector - IRQ_BASE;
pic_mask.both &= ~(1 << irq);
if (irq < 8)
{
WRITE_PORT_UCHAR((PUCHAR)0x21, (UCHAR)(pic_mask.master|pic_mask_intr.master));
}
else
{
WRITE_PORT_UCHAR((PUCHAR)0xa1, (UCHAR)(pic_mask.slave|pic_mask_intr.slave));
}
return TRUE;
}
VOID FASTCALL
HalRequestSoftwareInterrupt(
IN KIRQL Request)
{
switch (Request)
{
case APC_LEVEL:
((PKIPCR)KeGetPcr())->HalReserved[HAL_APC_REQUEST] = TRUE;
break;
case DISPATCH_LEVEL:
((PKIPCR)KeGetPcr())->HalReserved[HAL_DPC_REQUEST] = TRUE;
break;
default:
KEBUGCHECK(0);
}
}
/* EOF */

View file

@ -0,0 +1,780 @@
/* $Id$
*
* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS kernel
* FILE: ntoskrnl/ke/i386/irq.c
* PURPOSE: IRQ handling
*
* PROGRAMMERS: David Welch (welch@mcmail.com)
*/
/*
* NOTE: In general the PIC interrupt priority facilities are used to
* preserve the NT IRQL semantics, global interrupt disables are only used
* to keep the PIC in a consistent state
*
*/
/* INCLUDES ****************************************************************/
#include <ntoskrnl.h>
#include <../hal/halx86/include/halirq.h>
#include <../hal/halx86/include/mps.h>
#define NDEBUG
#include <internal/debug.h>
extern KDPC KiExpireTimerDpc;
extern ULONG KiMaximumDpcQueueDepth;
extern ULONG KiMinimumDpcRate;
extern ULONG KiAdjustDpcThreshold;
extern ULONG KiIdealDpcRate;
extern LONG KiTickOffset;
extern ULONG KeMaximumIncrement;
extern ULONG KeMinimumIncrement;
extern ULONG KeTimeAdjustment;
extern BOOLEAN KiClockSetupComplete;
/* GLOBALS *****************************************************************/
/* Interrupt handler list */
#ifdef CONFIG_SMP
#define INT_NAME2(intnum) KiUnexpectedInterrupt##intnum
#define BUILD_INTERRUPT_HANDLER(intnum) \
VOID INT_NAME2(intnum)(VOID);
#define D(x,y) \
BUILD_INTERRUPT_HANDLER(x##y)
#define D16(x) \
D(x,0) D(x,1) D(x,2) D(x,3) \
D(x,4) D(x,5) D(x,6) D(x,7) \
D(x,8) D(x,9) D(x,A) D(x,B) \
D(x,C) D(x,D) D(x,E) D(x,F)
D16(3) D16(4) D16(5) D16(6)
D16(7) D16(8) D16(9) D16(A)
D16(B) D16(C) D16(D) D16(E)
D16(F)
#define L(x,y) \
(ULONG)& INT_NAME2(x##y)
#define L16(x) \
L(x,0), L(x,1), L(x,2), L(x,3), \
L(x,4), L(x,5), L(x,6), L(x,7), \
L(x,8), L(x,9), L(x,A), L(x,B), \
L(x,C), L(x,D), L(x,E), L(x,F)
static ULONG irq_handler[ROUND_UP(NR_IRQS, 16)] = {
L16(3), L16(4), L16(5), L16(6),
L16(7), L16(8), L16(9), L16(A),
L16(B), L16(C), L16(D), L16(E)
};
#undef L
#undef L16
#undef D
#undef D16
#else /* CONFIG_SMP */
void irq_handler_0(void);
void irq_handler_1(void);
void irq_handler_2(void);
void irq_handler_3(void);
void irq_handler_4(void);
void irq_handler_5(void);
void irq_handler_6(void);
void irq_handler_7(void);
void irq_handler_8(void);
void irq_handler_9(void);
void irq_handler_10(void);
void irq_handler_11(void);
void irq_handler_12(void);
void irq_handler_13(void);
void irq_handler_14(void);
void irq_handler_15(void);
static unsigned int irq_handler[NR_IRQS]=
{
(int)&irq_handler_0,
(int)&irq_handler_1,
(int)&irq_handler_2,
(int)&irq_handler_3,
(int)&irq_handler_4,
(int)&irq_handler_5,
(int)&irq_handler_6,
(int)&irq_handler_7,
(int)&irq_handler_8,
(int)&irq_handler_9,
(int)&irq_handler_10,
(int)&irq_handler_11,
(int)&irq_handler_12,
(int)&irq_handler_13,
(int)&irq_handler_14,
(int)&irq_handler_15,
};
#endif /* CONFIG_SMP */
/*
* PURPOSE: Object describing each isr
* NOTE: The data in this table is only modified at passsive level but can
* be accessed at any irq level.
*/
typedef struct
{
LIST_ENTRY ListHead;
KSPIN_LOCK Lock;
ULONG Count;
}
ISR_TABLE, *PISR_TABLE;
#ifdef CONFIG_SMP
static ISR_TABLE IsrTable[NR_IRQS][MAXIMUM_PROCESSORS];
#else
static ISR_TABLE IsrTable[NR_IRQS][1];
#endif
#define TAG_ISR_LOCK TAG('I', 'S', 'R', 'L')
extern IDT_DESCRIPTOR KiIdt[256];
/* FUNCTIONS ****************************************************************/
#define PRESENT (0x8000)
#define I486_INTERRUPT_GATE (0xe00)
VOID
INIT_FUNCTION
NTAPI
KeInitInterrupts (VOID)
{
int i, j;
/*
* Setup the IDT entries to point to the interrupt handlers
*/
for (i=0;i<NR_IRQS;i++)
{
KiIdt[IRQ_BASE+i].a=(irq_handler[i]&0xffff)+(KGDT_R0_CODE<<16);
KiIdt[IRQ_BASE+i].b=(irq_handler[i]&0xffff0000)+PRESENT+
I486_INTERRUPT_GATE;
#ifdef CONFIG_SMP
for (j = 0; j < MAXIMUM_PROCESSORS; j++)
#else
j = 0;
#endif
{
InitializeListHead(&IsrTable[i][j].ListHead);
KeInitializeSpinLock(&IsrTable[i][j].Lock);
IsrTable[i][j].Count = 0;
}
}
}
STATIC VOID
KeIRQTrapFrameToTrapFrame(PKIRQ_TRAPFRAME IrqTrapFrame,
PKTRAP_FRAME TrapFrame)
{
TrapFrame->SegGs = (USHORT)IrqTrapFrame->Gs;
TrapFrame->SegFs = (USHORT)IrqTrapFrame->Fs;
TrapFrame->SegEs = (USHORT)IrqTrapFrame->Es;
TrapFrame->SegDs = (USHORT)IrqTrapFrame->Ds;
TrapFrame->Eax = IrqTrapFrame->Eax;
TrapFrame->Ecx = IrqTrapFrame->Ecx;
TrapFrame->Edx = IrqTrapFrame->Edx;
TrapFrame->Ebx = IrqTrapFrame->Ebx;
TrapFrame->HardwareEsp = IrqTrapFrame->Esp;
TrapFrame->Ebp = IrqTrapFrame->Ebp;
TrapFrame->Esi = IrqTrapFrame->Esi;
TrapFrame->Edi = IrqTrapFrame->Edi;
TrapFrame->Eip = IrqTrapFrame->Eip;
TrapFrame->SegCs = IrqTrapFrame->Cs;
TrapFrame->EFlags = IrqTrapFrame->Eflags;
}
STATIC VOID
KeTrapFrameToIRQTrapFrame(PKTRAP_FRAME TrapFrame,
PKIRQ_TRAPFRAME IrqTrapFrame)
{
IrqTrapFrame->Gs = TrapFrame->SegGs;
IrqTrapFrame->Fs = TrapFrame->SegFs;
IrqTrapFrame->Es = TrapFrame->SegEs;
IrqTrapFrame->Ds = TrapFrame->SegDs;
IrqTrapFrame->Eax = TrapFrame->Eax;
IrqTrapFrame->Ecx = TrapFrame->Ecx;
IrqTrapFrame->Edx = TrapFrame->Edx;
IrqTrapFrame->Ebx = TrapFrame->Ebx;
IrqTrapFrame->Esp = TrapFrame->HardwareEsp;
IrqTrapFrame->Ebp = TrapFrame->Ebp;
IrqTrapFrame->Esi = TrapFrame->Esi;
IrqTrapFrame->Edi = TrapFrame->Edi;
IrqTrapFrame->Eip = TrapFrame->Eip;
IrqTrapFrame->Cs = TrapFrame->SegCs;
IrqTrapFrame->Eflags = TrapFrame->EFlags;
}
/*
* NOTE: On Windows this function takes exactly one parameter and EBP is
* guaranteed to point to KTRAP_FRAME. The function is used only
* by HAL, so there's no point in keeping that prototype.
*
* @implemented
*/
VOID
STDCALL
KeUpdateRunTime(IN PKTRAP_FRAME TrapFrame,
IN KIRQL Irql)
{
PKPRCB Prcb = KeGetCurrentPrcb();
PKTHREAD CurrentThread;
PKPROCESS CurrentProcess;
/* Make sure we don't go further if we're in early boot phase. */
if (!(Prcb) || !(Prcb->CurrentThread)) return;
/* Get the current thread and process */
CurrentThread = Prcb->CurrentThread;
CurrentProcess = CurrentThread->ApcState.Process;
/* Check if we came from user mode */
if (TrapFrame->PreviousPreviousMode != KernelMode)
{
/* Update user times */
CurrentThread->UserTime++;
InterlockedIncrement((PLONG)&CurrentProcess->UserTime);
Prcb->UserTime++;
}
else
{
/* Check IRQ */
if (Irql > DISPATCH_LEVEL)
{
/* This was an interrupt */
Prcb->InterruptTime++;
}
else if ((Irql < DISPATCH_LEVEL) || !(Prcb->DpcRoutineActive))
{
/* This was normal kernel time */
CurrentThread->KernelTime++;
InterlockedIncrement((PLONG)&CurrentProcess->KernelTime);
}
else if (Irql == DISPATCH_LEVEL)
{
/* This was DPC time */
Prcb->DpcTime++;
}
/* Update CPU kernel time in all cases */
Prcb->KernelTime++;
}
/* Set the last DPC Count and request rate */
Prcb->DpcLastCount = Prcb->DpcData[0].DpcCount;
Prcb->DpcRequestRate = ((Prcb->DpcData[0].DpcCount - Prcb->DpcLastCount) +
Prcb->DpcRequestRate) / 2;
/* Check if we should request a DPC */
if ((Prcb->DpcData[0].DpcQueueDepth) && !(Prcb->DpcRoutineActive))
{
/* Request one */
HalRequestSoftwareInterrupt(DISPATCH_LEVEL);
/* Update the depth if needed */
if ((Prcb->DpcRequestRate < KiIdealDpcRate) &&
(Prcb->MaximumDpcQueueDepth > 1))
{
/* Decrease the maximum depth by one */
Prcb->MaximumDpcQueueDepth--;
}
}
else
{
/* Decrease the adjustment threshold */
if (!(--Prcb->AdjustDpcThreshold))
{
/* We've hit 0, reset it */
Prcb->AdjustDpcThreshold = KiAdjustDpcThreshold;
/* Check if we've hit queue maximum */
if (KiMaximumDpcQueueDepth != Prcb->MaximumDpcQueueDepth)
{
/* Increase maximum by one */
Prcb->MaximumDpcQueueDepth++;
}
}
}
/*
* If we're at end of quantum request software interrupt. The rest
* is handled in KiDispatchInterrupt.
*
* NOTE: If one stays at DISPATCH_LEVEL for a long time the DPC routine
* which checks for quantum end will not be executed and decrementing
* the quantum here can result in overflow. This is not a problem since
* we don't care about the quantum value anymore after the QuantumEnd
* flag is set.
*/
if ((CurrentThread->Quantum -= 3) <= 0)
{
Prcb->QuantumEnd = TRUE;
HalRequestSoftwareInterrupt(DISPATCH_LEVEL);
}
}
/*
* NOTE: On Windows this function takes exactly zero parameters and EBP is
* guaranteed to point to KTRAP_FRAME. Also [esp+0] contains an IRQL.
* The function is used only by HAL, so there's no point in keeping
* that prototype.
*
* @implemented
*/
VOID
STDCALL
KeUpdateSystemTime(IN PKTRAP_FRAME TrapFrame,
IN KIRQL Irql,
IN ULONG Increment)
{
LONG OldOffset;
LARGE_INTEGER Time;
ASSERT(KeGetCurrentIrql() == PROFILE_LEVEL);
if (!KiClockSetupComplete) return;
/* Update interrupt time */
Time.LowPart = SharedUserData->InterruptTime.LowPart;
Time.HighPart = SharedUserData->InterruptTime.High1Time;
Time.QuadPart += Increment;
SharedUserData->InterruptTime.High2Time = Time.u.HighPart;
SharedUserData->InterruptTime.LowPart = Time.u.LowPart;
SharedUserData->InterruptTime.High1Time = Time.u.HighPart;
/* Increase the tick offset */
KiTickOffset -= Increment;
OldOffset = KiTickOffset;
/* Check if this isn't a tick yet */
if (KiTickOffset > 0)
{
/* Expire timers */
KeInsertQueueDpc(&KiExpireTimerDpc, (PVOID)TrapFrame->Eip, 0);
}
else
{
/* Setup time structure for system time */
Time.LowPart = SharedUserData->SystemTime.LowPart;
Time.HighPart = SharedUserData->SystemTime.High1Time;
Time.QuadPart += KeTimeAdjustment;
SharedUserData->SystemTime.High2Time = Time.HighPart;
SharedUserData->SystemTime.LowPart = Time.LowPart;
SharedUserData->SystemTime.High1Time = Time.HighPart;
/* Setup time structure for tick time */
Time.LowPart = KeTickCount.LowPart;
Time.HighPart = KeTickCount.High1Time;
Time.QuadPart += 1;
KeTickCount.High2Time = Time.HighPart;
KeTickCount.LowPart = Time.LowPart;
KeTickCount.High1Time = Time.HighPart;
SharedUserData->TickCount.High2Time = Time.HighPart;
SharedUserData->TickCount.LowPart = Time.LowPart;
SharedUserData->TickCount.High1Time = Time.HighPart;
/* Update tick count in shared user data as well */
SharedUserData->TickCountLowDeprecated++;
/* Queue a DPC that will expire timers */
KeInsertQueueDpc(&KiExpireTimerDpc, (PVOID)TrapFrame->Eip, 0);
}
/* Update process and thread times */
if (OldOffset <= 0)
{
/* This was a tick, calculate the next one */
KiTickOffset += KeMaximumIncrement;
KeUpdateRunTime(TrapFrame, Irql);
}
}
VOID STDCALL
KiInterruptDispatch2 (ULONG vector, KIRQL old_level)
/*
* FUNCTION: Calls all the interrupt handlers for a given irq.
* ARGUMENTS:
* vector - The number of the vector to call handlers for.
* old_level - The irql of the processor when the irq took place.
* NOTES: Must be called at DIRQL.
*/
{
PKINTERRUPT isr;
PLIST_ENTRY current;
KIRQL oldlvl;
PISR_TABLE CurrentIsr;
DPRINT("I(0x%.08x, 0x%.08x)\n", vector, old_level);
/*
* Iterate the list until one of the isr tells us its device interrupted
*/
CurrentIsr = &IsrTable[vector - IRQ_BASE][(ULONG)KeGetCurrentProcessorNumber()];
KiAcquireSpinLock(&CurrentIsr->Lock);
CurrentIsr->Count++;
current = CurrentIsr->ListHead.Flink;
while (current != &CurrentIsr->ListHead)
{
isr = CONTAINING_RECORD(current,KINTERRUPT,InterruptListEntry);
oldlvl = KeAcquireInterruptSpinLock(isr);
if (isr->ServiceRoutine(isr, isr->ServiceContext))
{
KeReleaseInterruptSpinLock(isr, oldlvl);
break;
}
KeReleaseInterruptSpinLock(isr, oldlvl);
current = current->Flink;
}
KiReleaseSpinLock(&CurrentIsr->Lock);
}
VOID
KiInterruptDispatch3 (ULONG vector, PKIRQ_TRAPFRAME Trapframe)
/*
* FUNCTION: Calls the irq specific handler for an irq
* ARGUMENTS:
* irq = IRQ that has interrupted
*/
{
KIRQL old_level;
KTRAP_FRAME KernelTrapFrame;
PKTHREAD CurrentThread;
PKTRAP_FRAME OldTrapFrame=NULL;
/*
* At this point we have interrupts disabled, nothing has been done to
* the PIC.
*/
KeGetCurrentPrcb()->InterruptCount++;
/*
* Notify the rest of the kernel of the raised irq level. For the
* default HAL this will send an EOI to the PIC and alter the IRQL.
*/
if (!HalBeginSystemInterrupt (VECTOR2IRQL(vector),
vector,
&old_level))
{
return;
}
/*
* Enable interrupts
* NOTE: Only higher priority interrupts will get through
*/
Ke386EnableInterrupts();
#ifndef CONFIG_SMP
if (VECTOR2IRQ(vector) == 0)
{
KeIRQTrapFrameToTrapFrame(Trapframe, &KernelTrapFrame);
KeUpdateSystemTime(&KernelTrapFrame, old_level, 100000);
}
else
#endif
{
/*
* Actually call the ISR.
*/
KiInterruptDispatch2(vector, old_level);
}
/*
* End the system interrupt.
*/
Ke386DisableInterrupts();
if (old_level==PASSIVE_LEVEL && Trapframe->Cs != KGDT_R0_CODE)
{
HalEndSystemInterrupt (APC_LEVEL, 0);
CurrentThread = KeGetCurrentThread();
if (CurrentThread!=NULL && CurrentThread->ApcState.UserApcPending)
{
DPRINT("PID: %d, TID: %d CS %04x/%04x\n",
((PETHREAD)CurrentThread)->ThreadsProcess->UniqueProcessId,
((PETHREAD)CurrentThread)->Cid.UniqueThread,
Trapframe->Cs,
CurrentThread->TrapFrame ? CurrentThread->TrapFrame->Cs : 0);
if (CurrentThread->TrapFrame == NULL)
{
OldTrapFrame = CurrentThread->TrapFrame;
KeIRQTrapFrameToTrapFrame(Trapframe, &KernelTrapFrame);
CurrentThread->TrapFrame = &KernelTrapFrame;
}
Ke386EnableInterrupts();
KiDeliverApc(UserMode, NULL, NULL);
Ke386DisableInterrupts();
ASSERT(KeGetCurrentThread() == CurrentThread);
if (CurrentThread->TrapFrame == &KernelTrapFrame)
{
KeTrapFrameToIRQTrapFrame(&KernelTrapFrame, Trapframe);
CurrentThread->TrapFrame = OldTrapFrame;
}
}
KeLowerIrql(PASSIVE_LEVEL);
}
else
{
HalEndSystemInterrupt (old_level, 0);
}
}
static VOID
KeDumpIrqList(VOID)
{
PKINTERRUPT current;
PLIST_ENTRY current_entry;
LONG i, j;
KIRQL oldlvl;
BOOLEAN printed;
for (i=0;i<NR_IRQS;i++)
{
printed = FALSE;
KeRaiseIrql(VECTOR2IRQL(i + IRQ_BASE),&oldlvl);
for (j=0; j < KeNumberProcessors; j++)
{
KiAcquireSpinLock(&IsrTable[i][j].Lock);
current_entry = IsrTable[i][j].ListHead.Flink;
current = CONTAINING_RECORD(current_entry,KINTERRUPT,InterruptListEntry);
while (current_entry!=&(IsrTable[i][j].ListHead))
{
if (printed == FALSE)
{
printed = TRUE;
DPRINT("For irq %x:\n",i);
}
DPRINT(" Isr %x\n",current);
current_entry = current_entry->Flink;
current = CONTAINING_RECORD(current_entry,KINTERRUPT,InterruptListEntry);
}
KiReleaseSpinLock(&IsrTable[i][j].Lock);
}
KeLowerIrql(oldlvl);
}
}
/*
* @implemented
*/
BOOLEAN
STDCALL
KeConnectInterrupt(PKINTERRUPT InterruptObject)
{
KIRQL oldlvl,synch_oldlvl;
PKINTERRUPT ListHead;
ULONG Vector;
PISR_TABLE CurrentIsr;
BOOLEAN Result;
DPRINT("KeConnectInterrupt()\n");
Vector = InterruptObject->Vector;
if (Vector < IRQ_BASE || Vector >= IRQ_BASE + NR_IRQS)
return FALSE;
Vector -= IRQ_BASE;
ASSERT (InterruptObject->Number < KeNumberProcessors);
KeSetSystemAffinityThread(1 << InterruptObject->Number);
CurrentIsr = &IsrTable[Vector][(ULONG)InterruptObject->Number];
KeRaiseIrql(VECTOR2IRQL(Vector + IRQ_BASE),&oldlvl);
KiAcquireSpinLock(&CurrentIsr->Lock);
/*
* Check if the vector is already in use that we can share it
*/
if (!IsListEmpty(&CurrentIsr->ListHead))
{
ListHead = CONTAINING_RECORD(CurrentIsr->ListHead.Flink,KINTERRUPT,InterruptListEntry);
if (InterruptObject->ShareVector == FALSE || ListHead->ShareVector==FALSE)
{
KiReleaseSpinLock(&CurrentIsr->Lock);
KeLowerIrql(oldlvl);
KeRevertToUserAffinityThread();
return FALSE;
}
}
synch_oldlvl = KeAcquireInterruptSpinLock(InterruptObject);
DPRINT("%x %x\n",CurrentIsr->ListHead.Flink, CurrentIsr->ListHead.Blink);
Result = HalEnableSystemInterrupt(Vector + IRQ_BASE, InterruptObject->Irql, InterruptObject->Mode);
if (Result)
{
InsertTailList(&CurrentIsr->ListHead,&InterruptObject->InterruptListEntry);
DPRINT("%x %x\n",InterruptObject->InterruptListEntry.Flink, InterruptObject->InterruptListEntry.Blink);
}
InterruptObject->Connected = TRUE;
KeReleaseInterruptSpinLock(InterruptObject, synch_oldlvl);
/*
* Release the table spinlock
*/
KiReleaseSpinLock(&CurrentIsr->Lock);
KeLowerIrql(oldlvl);
KeDumpIrqList();
KeRevertToUserAffinityThread();
return Result;
}
/*
* @implemented
*
* FUNCTION: Releases a drivers isr
* ARGUMENTS:
* InterruptObject = isr to release
*/
BOOLEAN
STDCALL
KeDisconnectInterrupt(PKINTERRUPT InterruptObject)
{
KIRQL oldlvl,synch_oldlvl;
PISR_TABLE CurrentIsr;
BOOLEAN State;
DPRINT1("KeDisconnectInterrupt\n");
ASSERT (InterruptObject->Number < KeNumberProcessors);
/* Set the affinity */
KeSetSystemAffinityThread(1 << InterruptObject->Number);
/* Get the ISR Tabe */
CurrentIsr = &IsrTable[InterruptObject->Vector - IRQ_BASE]
[(ULONG)InterruptObject->Number];
/* Raise IRQL to required level and lock table */
KeRaiseIrql(VECTOR2IRQL(InterruptObject->Vector),&oldlvl);
KiAcquireSpinLock(&CurrentIsr->Lock);
/* Check if it's actually connected */
if ((State = InterruptObject->Connected))
{
/* Lock the Interrupt */
synch_oldlvl = KeAcquireInterruptSpinLock(InterruptObject);
/* Remove this one, and check if all are gone */
RemoveEntryList(&InterruptObject->InterruptListEntry);
if (IsListEmpty(&CurrentIsr->ListHead))
{
/* Completely Disable the Interrupt */
HalDisableSystemInterrupt(InterruptObject->Vector, InterruptObject->Irql);
}
/* Disconnect it */
InterruptObject->Connected = FALSE;
/* Release the interrupt lock */
KeReleaseInterruptSpinLock(InterruptObject, synch_oldlvl);
}
/* Release the table spinlock */
KiReleaseSpinLock(&CurrentIsr->Lock);
KeLowerIrql(oldlvl);
/* Go back to default affinity */
KeRevertToUserAffinityThread();
/* Return Old Interrupt State */
return State;
}
/*
* @implemented
*/
VOID
STDCALL
KeInitializeInterrupt(PKINTERRUPT Interrupt,
PKSERVICE_ROUTINE ServiceRoutine,
PVOID ServiceContext,
PKSPIN_LOCK SpinLock,
ULONG Vector,
KIRQL Irql,
KIRQL SynchronizeIrql,
KINTERRUPT_MODE InterruptMode,
BOOLEAN ShareVector,
CHAR ProcessorNumber,
BOOLEAN FloatingSave)
{
/* Set the Interrupt Header */
Interrupt->Type = InterruptObject;
Interrupt->Size = sizeof(KINTERRUPT);
/* Check if we got a spinlock */
if (SpinLock)
{
Interrupt->ActualLock = SpinLock;
}
else
{
/* This means we'll be usin the built-in one */
KeInitializeSpinLock(&Interrupt->SpinLock);
Interrupt->ActualLock = &Interrupt->SpinLock;
}
/* Set the other settings */
Interrupt->ServiceRoutine = ServiceRoutine;
Interrupt->ServiceContext = ServiceContext;
Interrupt->Vector = Vector;
Interrupt->Irql = Irql;
Interrupt->SynchronizeIrql = SynchronizeIrql;
Interrupt->Mode = InterruptMode;
Interrupt->ShareVector = ShareVector;
Interrupt->Number = ProcessorNumber;
Interrupt->FloatingSave = FloatingSave;
/* Disconnect it at first */
Interrupt->Connected = FALSE;
}
VOID KePrintInterruptStatistic(VOID)
{
LONG i, j;
for (j = 0; j < KeNumberProcessors; j++)
{
DPRINT1("CPU%d:\n", j);
for (i = 0; i < NR_IRQS; i++)
{
if (IsrTable[i][j].Count)
{
DPRINT1(" Irq %x(%d): %d\n", i, VECTOR2IRQ(i + IRQ_BASE), IsrTable[i][j].Count);
}
}
}
}
/* EOF */

View file

@ -0,0 +1,89 @@
#include <ndk/asm.h>
#include <../hal/halx86/include/halirq.h>
_KiCommonInterrupt:
cld
pushl %ds
pushl %es
pushl %fs
pushl %gs
pushl $0xceafbeef
movl $KGDT_R0_DATA,%eax
movl %eax,%ds
movl %eax,%es
movl %eax,%gs
movl $KGDT_R0_PCR,%eax
movl %eax,%fs
pushl %esp
pushl %ebx
call _KiInterruptDispatch3
addl $0xC, %esp
popl %gs
popl %fs
popl %es
popl %ds
popa
iret
#ifdef CONFIG_SMP
#define BUILD_INTERRUPT_HANDLER(intnum) \
.global _KiUnexpectedInterrupt##intnum; \
_KiUnexpectedInterrupt##intnum:; \
pusha; \
movl $0x##intnum, %ebx; \
jmp _KiCommonInterrupt;
/* Interrupt handlers and declarations */
#define B(x,y) \
BUILD_INTERRUPT_HANDLER(x##y)
#define B16(x) \
B(x,0) B(x,1) B(x,2) B(x,3) \
B(x,4) B(x,5) B(x,6) B(x,7) \
B(x,8) B(x,9) B(x,A) B(x,B) \
B(x,C) B(x,D) B(x,E) B(x,F)
B16(3) B16(4) B16(5) B16(6)
B16(7) B16(8) B16(9) B16(A)
B16(B) B16(C) B16(D) B16(E)
B16(F)
#undef B
#undef B16
#undef BUILD_INTERRUPT_HANDLER
#else /* CONFIG_SMP */
#define BUILD_INTERRUPT_HANDLER(intnum) \
.global _irq_handler_##intnum; \
_irq_handler_##intnum:; \
pusha; \
movl $(##intnum + IRQ_BASE), %ebx; \
jmp _KiCommonInterrupt;
/* Interrupt handlers and declarations */
#define B(x) \
BUILD_INTERRUPT_HANDLER(x)
B(0) B(1) B(2) B(3)
B(4) B(5) B(6) B(7)
B(8) B(9) B(10) B(11)
B(12) B(13) B(14) B(15)
#undef B
#undef BUILD_INTERRUPT_HANDLER
#endif /* CONFIG_SMP */
.intel_syntax noprefix
.globl _KiUnexpectedInterrupt@0
_KiUnexpectedInterrupt@0:
/* Bugcheck with invalid interrupt code */
push 0x12
call _KeBugCheck@4

View file

@ -94,6 +94,7 @@ KiInitializeSystemClock(VOID)
SharedUserData->SystemTime.High2Time = SystemBootTime.u.HighPart;
SharedUserData->SystemTime.LowPart = SystemBootTime.u.LowPart;
SharedUserData->SystemTime.High1Time = SystemBootTime.u.HighPart;
KiClockSetupComplete = TRUE;
}
VOID

View file

@ -380,6 +380,7 @@ KeInit1(PCHAR CommandLine, PULONG LastKernelAddress)
InitializeListHead(&KPCR->PrcbData.WaitListHead);
KeInitExceptions ();
KeInitInterrupts ();
KeActiveProcessors |= 1 << 0;

View file

@ -663,6 +663,7 @@ KiCoprocessorError@0
KiCheckForKernelApcDelivery@0
KiDeliverApc@12
KiDispatchInterrupt@0
KiInterruptDispatch2@8
KiEnableTimerWatchdog
KiIpiServiceRoutine@8
@KiReleaseSpinLock@4

View file

@ -33,7 +33,7 @@
<file>exp.c</file>
<file>fpu.c</file>
<file>gdt.c</file>
<file>irq.c</file>
<!-- <file>irq.c</file> -->
<file>kernel.c</file>
<file>ldt.c</file>
<file>thread.c</file>
@ -68,6 +68,10 @@
<file>usercall.c</file>
<file>wait.c</file>
</directory>
<directory name="deprecated">
<file>irqhand.S</file>
<file>irq.c</file>
</directory>
<directory name="cc">
<file>cacheman.c</file>
<file>copy.c</file>