completely rewritten PagedPool.

- more than 800% faster
- support for multiple pools (SpecialPool, etc anyone?)
- can be used for NPool if wanted, too
- tries not to immediately reallocate a block that's just freed for allocations of <= 512 (helps find memory abusers)

svn path=/trunk/; revision=12165
This commit is contained in:
Royce Mitchell III 2004-12-17 13:20:05 +00:00
parent 7cbb0d7e6e
commit 0fe4682b80
2 changed files with 1203 additions and 691 deletions

File diff suppressed because it is too large Load diff

View file

@ -1,4 +1,4 @@
/* $Id: ppool.c,v 1.36 2004/12/13 20:11:08 arty Exp $
/* $Id: ppool.c,v 1.37 2004/12/17 13:20:05 royce Exp $
*
* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS kernel
@ -7,241 +7,59 @@
* PROGRAMMER: David Welch (welch@mcmail.com)
* UPDATE HISTORY:
* Created 22/05/98
* Complete Rewrite Dec 2004 by Royce Mitchell III
*/
/* INCLUDES *****************************************************************/
#ifdef PPOOL_UMODE_TEST
#include "ppool_umode.h"
#else//PPOOL_UMODE_TEST
#include <ntoskrnl.h>
#define NDEBUG
#include <internal/debug.h>
/* GLOBALS *******************************************************************/
/* Define to enable strict checking of the paged pool on every allocation */
/* #define ENABLE_VALIDATE_POOL */
#endif//PPOOL_UMODE_TEST
#undef ASSERT
#define ASSERT(x) if (!(x)) {DbgPrint("Assertion "#x" failed at %s:%d\n", __FILE__,__LINE__); KeBugCheck(0); }
#define ASSERT_SIZE(n) ASSERT ( (n) <= MmPagedPoolSize && (n) > 0 )
#define IS_PPOOL_PTR(p) ((size_t)(p)) >= ((size_t)MmPagedPoolBase) && ((size_t)(p)) < ((size_t)((size_t)MmPagedPoolBase+MmPagedPoolSize))
#define ASSERT_PTR(p) ASSERT ( IS_PPOOL_PTR(p) )
// to disable buffer over/under-run detection, set the following macro to 0
#if !defined(DBG) && !defined(KDBG)
#define MM_PPOOL_REDZONE_BYTES 0
#else
#define MM_PPOOL_REDZONE_BYTES 4
#define MM_PPOOL_REDZONE_LOVALUE 0x87
#define MM_PPOOL_REDZONE_HIVALUE 0xA5
#define MM_PPOOL_FREEMAGIC (ULONG)(('F'<<0) + ('r'<<8) + ('E'<<16) + ('e'<<24))
#define MM_PPOOL_USEDMAGIC (ULONG)(('u'<<0) + ('S'<<8) + ('e'<<16) + ('D'<<24))
#define MM_PPOOL_LASTOWNER_ENTRIES 3
#endif
// enable "magic"
//#define R_MAGIC
#define R_MUTEX FAST_MUTEX
#define R_ACQUIRE_MUTEX(pool) /*DPRINT1("Acquiring PPool Mutex\n");*/ ExAcquireFastMutex(&pool->Mutex)
#define R_RELEASE_MUTEX(pool) /*DPRINT1("Releasing PPool Mutex\n");*/ ExReleaseFastMutex(&pool->Mutex)
#define R_PRINT_ADDRESS(addr) 0
#define R_PANIC() KeBugCheck(0)
#define R_DEBUG DbgPrint
#define R_EXTRA_STACK_UP 2
typedef struct _MM_PPOOL_FREE_BLOCK_HEADER
{
#if MM_PPOOL_REDZONE_BYTES
ULONG FreeMagic;
#endif//MM_PPOOL_REDZONE_BYTES
ULONG Size;
struct _MM_PPOOL_FREE_BLOCK_HEADER* NextFree;
#if MM_PPOOL_REDZONE_BYTES
ULONG LastOwnerStack[MM_PPOOL_LASTOWNER_ENTRIES];
#endif//MM_PPOOL_REDZONE_BYTES
}
MM_PPOOL_FREE_BLOCK_HEADER, *PMM_PPOOL_FREE_BLOCK_HEADER;
#include "RPoolMgr.h"
typedef struct _MM_PPOOL_USED_BLOCK_HEADER
{
#if MM_PPOOL_REDZONE_BYTES
ULONG UsedMagic;
#endif//MM_PPOOL_REDZONE_BYTES
ULONG Size;
#if MM_PPOOL_REDZONE_BYTES
ULONG UserSize; // how many bytes the user actually asked for...
#endif//MM_PPOOL_REDZONE_BYTES
struct _MM_PPOOL_USED_BLOCK_HEADER* NextUsed;
ULONG Tag;
#if MM_PPOOL_REDZONE_BYTES
ULONG LastOwnerStack[MM_PPOOL_LASTOWNER_ENTRIES];
#endif//MM_PPOOL_REDZONE_BYTES
}
MM_PPOOL_USED_BLOCK_HEADER, *PMM_PPOOL_USED_BLOCK_HEADER;
/* GLOBALS *******************************************************************/
PVOID MmPagedPoolBase;
ULONG MmPagedPoolSize;
ULONG MmTotalPagedPoolQuota = 0;
static FAST_MUTEX MmPagedPoolLock;
static PMM_PPOOL_FREE_BLOCK_HEADER MmPagedPoolFirstFreeBlock;
static PMM_PPOOL_USED_BLOCK_HEADER MmPagedPoolFirstUsedBlock;
ULONG MmTotalPagedPoolQuota = 0; // TODO FIXME commented out until we use it
static PR_POOL MmPagedPool = NULL;
/* FUNCTIONS *****************************************************************/
inline static void* block_to_address ( PVOID blk )
/*
* FUNCTION: Translate a block header address to the corresponding block
* address (internal)
*/
{
return ( (void *) ((char*)blk + sizeof(MM_PPOOL_USED_BLOCK_HEADER) + MM_PPOOL_REDZONE_BYTES) );
}
inline static PMM_PPOOL_USED_BLOCK_HEADER address_to_block(PVOID addr)
{
return (PMM_PPOOL_USED_BLOCK_HEADER)
( ((char*)addr) - sizeof(MM_PPOOL_USED_BLOCK_HEADER) - MM_PPOOL_REDZONE_BYTES );
}
VOID INIT_FUNCTION
MmInitializePagedPool(VOID)
MmInitializePagedPool()
{
MmPagedPoolFirstFreeBlock = (PMM_PPOOL_FREE_BLOCK_HEADER)MmPagedPoolBase;
/*
* We are still at a high IRQL level at this point so explicitly commit
* the first page of the paged pool before writing the first block header.
*/
MmCommitPagedPoolAddress((PVOID)MmPagedPoolFirstFreeBlock, FALSE);
MmPagedPoolFirstFreeBlock->Size = MmPagedPoolSize;
MmPagedPoolFirstFreeBlock->NextFree = NULL;
/*
* We are still at a high IRQL level at this point so explicitly commit
* the first page of the paged pool before writing the first block header.
*/
MmCommitPagedPoolAddress ( (PVOID)MmPagedPoolBase, FALSE );
#if MM_PPOOL_REDZONE_BYTES
MmPagedPoolFirstFreeBlock->FreeMagic = MM_PPOOL_FREEMAGIC;
{
int i;
for ( i = 0; i < MM_PPOOL_LASTOWNER_ENTRIES; i++ )
MmPagedPoolFirstFreeBlock->LastOwnerStack[i] = 0;
}
MmPagedPool = RPoolInit ( MmPagedPoolBase,
MmPagedPoolSize,
MM_POOL_ALIGNMENT,
MM_CACHE_LINE_SIZE,
PAGE_SIZE );
MmPagedPoolFirstUsedBlock = NULL;
#endif//MM_PPOOL_REDZONE_BYTES
ExInitializeFastMutex(&MmPagedPoolLock);
}
#ifdef ENABLE_VALIDATE_POOL
static void VerifyPagedPool ( int line )
{
PMM_PPOOL_FREE_BLOCK_HEADER p = MmPagedPoolFirstFreeBlock;
int count = 0;
DPRINT ( "VerifyPagedPool(%i):\n", line );
while ( p )
{
DPRINT ( " 0x%x: %lu bytes (next 0x%x)\n", p, p->Size, p->NextFree );
#if MM_PPOOL_REDZONE_BYTES
ASSERT ( p->FreeMagic == MM_PPOOL_FREEMAGIC );
#endif//MM_PPOOL_REDZONE_BYTES
ASSERT_PTR(p);
ASSERT_SIZE(p->Size);
count++;
p = p->NextFree;
}
DPRINT ( "VerifyPagedPool(%i): (%lu blocks)\n", line, count );
}
#define VerifyPagedPool() VerifyPagedPool(__LINE__)
#else
#define VerifyPagedPool()
#endif
BOOLEAN STDCALL
KeRosPrintAddress(PVOID address);
#if !MM_PPOOL_REDZONE_BYTES
#define MmpRedZoneCheck(pUsed,Addr,file,line)
#else//MM_PPOOL_REDZONE_BYTES
static VOID FASTCALL
MmpRedZoneCheck ( PMM_PPOOL_USED_BLOCK_HEADER pUsed, PUCHAR Addr, const char* file, int line )
{
int i;
PUCHAR AddrEnd = Addr + pUsed->UserSize;
BOOL bLow = TRUE;
BOOL bHigh = TRUE;
ASSERT_PTR(Addr);
if ( pUsed->UsedMagic == MM_PPOOL_FREEMAGIC )
{
PMM_PPOOL_FREE_BLOCK_HEADER pFree = (PMM_PPOOL_FREE_BLOCK_HEADER)pUsed;
DPRINT1 ( "Double-free detected for Block 0x%x (kthread=0x%x)!\n", Addr, KeGetCurrentThread() );
DbgPrint ( "First Free Stack Frames:" );
for ( i = 0; i < MM_PPOOL_LASTOWNER_ENTRIES; i++ )
{
if ( pFree->LastOwnerStack[i] != 0xDEADBEEF )
{
DbgPrint(" ");
if (!KeRosPrintAddress ((PVOID)pFree->LastOwnerStack[i]) )
{
DbgPrint("<%X>", pFree->LastOwnerStack[i] );
}
}
}
DbgPrint ( "\n" );
KEBUGCHECK(BAD_POOL_HEADER);
}
if ( pUsed->UsedMagic != MM_PPOOL_USEDMAGIC )
{
DPRINT1 ( "Bad magic in Block 0x%x!\n", Addr );
KEBUGCHECK(BAD_POOL_HEADER);
}
ASSERT_SIZE(pUsed->Size);
ASSERT_SIZE(pUsed->UserSize);
ASSERT_PTR(AddrEnd);
Addr -= MM_PPOOL_REDZONE_BYTES; // this is to simplify indexing below...
for ( i = 0; i < MM_PPOOL_REDZONE_BYTES && bLow && bHigh; i++ )
{
bLow = bLow && ( Addr[i] == MM_PPOOL_REDZONE_LOVALUE );
bHigh = bHigh && ( AddrEnd[i] == MM_PPOOL_REDZONE_HIVALUE );
}
if ( !bLow || !bHigh )
{
const char* violation = "High and Low-side";
if ( bHigh ) // high is okay, so it was just low failed
violation = "Low-side";
else if ( bLow ) // low side is okay, so it was just high failed
violation = "High-side";
DbgPrint("%s(%i): %s redzone violation detected for paged pool address 0x%x\n",
file, line, violation, Addr );
DbgPrint ( "UsedMagic 0x%x, Tag 0x%x, LoZone ",
pUsed->UsedMagic,
pUsed->Tag);
for ( i = 0; i < MM_PPOOL_REDZONE_BYTES; i++ )
DbgPrint ( "%02x", Addr[i] );
DbgPrint ( ", HiZone " );
for ( i = 0; i < MM_PPOOL_REDZONE_BYTES; i++ )
DbgPrint ( "%02x", AddrEnd[i] );
DbgPrint ( "\n" );
DbgPrint ( "First Free Stack Frames:" );
for ( i = 0; i < MM_PPOOL_LASTOWNER_ENTRIES; i++ )
{
if ( pUsed->LastOwnerStack[i] != 0xDEADBEEF )
{
DbgPrint(" ");
if (!KeRosPrintAddress ((PVOID)pUsed->LastOwnerStack[i]) )
{
DbgPrint("<%X>", pUsed->LastOwnerStack[i] );
}
}
}
DbgPrint ( "\n" );
KEBUGCHECK(BAD_POOL_HEADER);
}
}
#endif//MM_PPOOL_REDZONE_BYTES
VOID STDCALL
MmDbgPagedPoolRedZoneCheck ( const char* file, int line )
{
#if MM_PPOOL_REDZONE_BYTES
PMM_PPOOL_USED_BLOCK_HEADER pUsed = MmPagedPoolFirstUsedBlock;
while ( pUsed )
{
MmpRedZoneCheck ( pUsed, block_to_address(pUsed), __FILE__, __LINE__ );
pUsed = pUsed->NextUsed;
}
#endif//MM_PPOOL_REDZONE_BYTES
ExInitializeFastMutex(&MmPagedPool->Mutex);
}
/**********************************************************************
@ -259,501 +77,169 @@ ExAllocatePagedPoolWithTag (IN POOL_TYPE PoolType,
IN ULONG NumberOfBytes,
IN ULONG Tag)
{
PMM_PPOOL_FREE_BLOCK_HEADER BestBlock;
PMM_PPOOL_FREE_BLOCK_HEADER CurrentBlock;
ULONG BlockSize;
PMM_PPOOL_USED_BLOCK_HEADER NewBlock;
PMM_PPOOL_FREE_BLOCK_HEADER NextBlock;
PMM_PPOOL_FREE_BLOCK_HEADER PreviousBlock;
PMM_PPOOL_FREE_BLOCK_HEADER BestPreviousBlock;
PVOID BlockAddress;
ULONG Alignment;
int align;
ASSERT_IRQL(APC_LEVEL);
if ( NumberOfBytes >= PAGE_SIZE )
align = 2;
else if ( PoolType == PagedPoolCacheAligned )
align = 1;
else
align = 0;
ExAcquireFastMutex(&MmPagedPoolLock);
ASSERT_IRQL(APC_LEVEL);
/*
* Don't bother allocating anything for a zero-byte block.
*/
if (NumberOfBytes == 0)
{
MmDbgPagedPoolRedZoneCheck(__FILE__,__LINE__);
ExReleaseFastMutex(&MmPagedPoolLock);
return(NULL);
}
DPRINT ( "ExAllocatePagedPoolWithTag(%i,%lu,%lu)\n", PoolType, NumberOfBytes, Tag );
VerifyPagedPool();
if (NumberOfBytes >= PAGE_SIZE)
{
Alignment = PAGE_SIZE;
}
else if (PoolType == PagedPoolCacheAligned)
{
Alignment = MM_CACHE_LINE_SIZE;
}
else
{
Alignment = MM_POOL_ALIGNMENT;
}
/*
* Calculate the total number of bytes we will need.
*/
BlockSize = NumberOfBytes + sizeof(MM_PPOOL_USED_BLOCK_HEADER) + 2*MM_PPOOL_REDZONE_BYTES;
if (BlockSize < sizeof(MM_PPOOL_FREE_BLOCK_HEADER))
{
/* At least we need the size of the free block header. */
BlockSize = sizeof(MM_PPOOL_FREE_BLOCK_HEADER);
}
/*
* Find the best-fitting block.
*/
PreviousBlock = NULL;
BestPreviousBlock = BestBlock = NULL;
CurrentBlock = MmPagedPoolFirstFreeBlock;
if ( Alignment > 0 )
{
PVOID BestAlignedAddr = NULL;
while ( CurrentBlock != NULL )
{
PVOID Addr = block_to_address(CurrentBlock);
PVOID CurrentBlockEnd = (char*)CurrentBlock + CurrentBlock->Size;
/* calculate last size-aligned address available within this block */
PVOID AlignedAddr = MM_ROUND_DOWN((char*)CurrentBlockEnd-NumberOfBytes-MM_PPOOL_REDZONE_BYTES, Alignment);
ASSERT ( (char*)AlignedAddr+NumberOfBytes+MM_PPOOL_REDZONE_BYTES <= (char*)CurrentBlockEnd );
/* special case, this address is already size-aligned, and the right size */
if ( Addr == AlignedAddr )
{
BestAlignedAddr = AlignedAddr;
BestPreviousBlock = PreviousBlock;
BestBlock = CurrentBlock;
break;
}
else if ( Addr < (PVOID)address_to_block(AlignedAddr) )
{
/*
* there's enough room to allocate our size-aligned memory out
* of this block, see if it's a better choice than any previous
* finds
*/
if ( BestBlock == NULL || BestBlock->Size > CurrentBlock->Size )
{
BestAlignedAddr = AlignedAddr;
BestPreviousBlock = PreviousBlock;
BestBlock = CurrentBlock;
}
}
PreviousBlock = CurrentBlock;
CurrentBlock = CurrentBlock->NextFree;
}
/*
* we found a best block can/should we chop a few bytes off the beginning
* into a separate memory block?
*/
if ( BestBlock != NULL )
{
PVOID Addr = block_to_address(BestBlock);
if ( BestAlignedAddr != Addr )
{
PMM_PPOOL_FREE_BLOCK_HEADER NewFreeBlock =
(PMM_PPOOL_FREE_BLOCK_HEADER)address_to_block(BestAlignedAddr);
ASSERT ( BestAlignedAddr > Addr );
NewFreeBlock->Size = (char*)Addr + BestBlock->Size - (char*)BestAlignedAddr;
#if MM_PPOOL_REDZONE_BYTES
NewFreeBlock->FreeMagic = MM_PPOOL_FREEMAGIC;
#endif//MM_PPOOL_REDZONE_BYTES
ASSERT_SIZE(NewFreeBlock->Size);
BestBlock->Size = (size_t)NewFreeBlock - (size_t)Addr;
ASSERT_SIZE(BestBlock->Size);
DPRINT ( "breaking off preceding bytes into their own block...\n" );
DPRINT ( "NewFreeBlock 0x%x Size %lu (Old Block's new size %lu) NextFree 0x%x\n",
NewFreeBlock, NewFreeBlock->Size, BestBlock->Size, BestBlock->NextFree );
/* insert the new block into the chain */
NewFreeBlock->NextFree = BestBlock->NextFree;
BestBlock->NextFree = NewFreeBlock;
/* we want the following code to use our size-aligned block */
BestPreviousBlock = BestBlock;
BestBlock = NewFreeBlock;
//VerifyPagedPool();
}
}
}
/*
* non-size-aligned block search
*/
else
while ( CurrentBlock != NULL )
{
if ( CurrentBlock->Size >= BlockSize
&& ( BestBlock == NULL || BestBlock->Size > CurrentBlock->Size )
)
{
BestPreviousBlock = PreviousBlock;
BestBlock = CurrentBlock;
}
PreviousBlock = CurrentBlock;
CurrentBlock = CurrentBlock->NextFree;
}
/*
* We didn't find anything suitable at all.
*/
if (BestBlock == NULL)
{
DPRINT1("Trying to allocate %lu bytes from paged pool - nothing suitable found, returning NULL\n",
NumberOfBytes );
ExReleaseFastMutex(&MmPagedPoolLock);
return(NULL);
}
DPRINT("BestBlock 0x%x NextFree 0x%x\n", BestBlock, BestBlock->NextFree );
//VerifyPagedPool();
/*
* Is there enough space to create a second block from the unused portion.
*/
if ( BestBlock->Size > BlockSize
&& (BestBlock->Size - BlockSize) > sizeof(MM_PPOOL_FREE_BLOCK_HEADER)
)
{
ULONG NewSize = BestBlock->Size - BlockSize;
ASSERT_SIZE ( NewSize );
//DPRINT("creating 2nd block from unused portion\n");
DPRINT("BestBlock 0x%x Size 0x%x BlockSize 0x%x NewSize 0x%x\n",
BestBlock, BestBlock->Size, BlockSize, NewSize );
/*
* Create the new free block.
*/
//DPRINT("creating the new free block");
NextBlock = (PMM_PPOOL_FREE_BLOCK_HEADER)((char*)BestBlock + BlockSize);
//DPRINT(".");
NextBlock->Size = NewSize;
#if MM_PPOOL_REDZONE_BYTES
NextBlock->FreeMagic = MM_PPOOL_FREEMAGIC;
#endif//MM_PPOOL_REDZONE_BYTES
ASSERT_SIZE ( NextBlock->Size );
//DPRINT(".");
NextBlock->NextFree = BestBlock->NextFree;
//DPRINT(".\n");
/*
* Replace the old free block with it.
*/
//DPRINT("replacing old free block with it");
if (BestPreviousBlock == NULL)
{
//DPRINT("(from beginning)");
MmPagedPoolFirstFreeBlock = NextBlock;
}
else
{
//DPRINT("(from previous)");
BestPreviousBlock->NextFree = NextBlock;
}
//DPRINT(".\n");
/*
* Create the new used block header.
*/
//DPRINT("create new used block header");
NewBlock = (PMM_PPOOL_USED_BLOCK_HEADER)BestBlock;
//DPRINT(".");
NewBlock->Size = BlockSize;
#if MM_PPOOL_REDZONE_BYTES
{
PULONG Frame;
int i;
#if defined __GNUC__
__asm__("mov %%ebp, %%ebx" : "=b" (Frame) : );
#elif defined(_MSC_VER)
__asm mov [Frame], ebp
#endif
NewBlock->UsedMagic = MM_PPOOL_USEDMAGIC;
Frame = (PULONG)Frame[0]; // step out of ExFreePagedPool
for ( i = 0; i < MM_PPOOL_LASTOWNER_ENTRIES; i++ )
{
if ( Frame == 0 || (ULONG)Frame == 0xDEADBEEF )
NewBlock->LastOwnerStack[i] = 0xDEADBEEF;
else
{
//DbgPrint ( " 0x%x", Frame[1] );
NewBlock->LastOwnerStack[i] = Frame[1];
Frame = (PULONG)Frame[0];
}
}
}
#endif//MM_PPOOL_REDZONE_BYTES
ASSERT_SIZE ( NewBlock->Size );
//DPRINT(".\n");
}
else
{
ULONG NewSize = BestBlock->Size;
/*
* Remove the selected block from the list of free blocks.
*/
//DPRINT ( "Removing selected block from free block list\n" );
if (BestPreviousBlock == NULL)
{
MmPagedPoolFirstFreeBlock = BestBlock->NextFree;
}
else
{
BestPreviousBlock->NextFree = BestBlock->NextFree;
}
/*
* Set up the header of the new block
*/
NewBlock = (PMM_PPOOL_USED_BLOCK_HEADER)BestBlock;
NewBlock->Size = NewSize;
#if MM_PPOOL_REDZONE_BYTES
{
PULONG Frame;
int i;
#if defined __GNUC__
__asm__("mov %%ebp, %%ebx" : "=b" (Frame) : );
#elif defined(_MSC_VER)
__asm mov [Frame], ebp
#endif
NewBlock->UsedMagic = MM_PPOOL_USEDMAGIC;
Frame = (PULONG)Frame[0]; // step out of ExFreePagedPool
for ( i = 0; i < MM_PPOOL_LASTOWNER_ENTRIES; i++ )
{
if ( Frame == 0 || (ULONG)Frame == 0xDEADBEEF )
NewBlock->LastOwnerStack[i] = 0xDEADBEEF;
else
{
//DbgPrint ( " 0x%x", Frame[1] );
NewBlock->LastOwnerStack[i] = Frame[1];
Frame = (PULONG)Frame[0];
}
}
}
#endif//MM_PPOOL_REDZONE_BYTES
ASSERT_SIZE ( NewBlock->Size );
}
// now add the block to the used block list
NewBlock->NextUsed = MmPagedPoolFirstUsedBlock;
MmPagedPoolFirstUsedBlock = NewBlock;
NewBlock->Tag = Tag;
VerifyPagedPool();
ExReleaseFastMutex(&MmPagedPoolLock);
BlockAddress = block_to_address ( NewBlock );
/* RtlZeroMemory(BlockAddress, NumberOfBytes);*/
#if MM_PPOOL_REDZONE_BYTES
NewBlock->UserSize = NumberOfBytes;
// write out buffer-overrun detection bytes
{
PUCHAR Addr = (PUCHAR)BlockAddress;
//DbgPrint ( "writing buffer-overrun detection bytes" );
memset ( Addr - MM_PPOOL_REDZONE_BYTES,
MM_PPOOL_REDZONE_LOVALUE, MM_PPOOL_REDZONE_BYTES );
memset ( Addr + NewBlock->UserSize, MM_PPOOL_REDZONE_HIVALUE,
MM_PPOOL_REDZONE_BYTES );
}
#endif//MM_PPOOL_REDZONE_BYTES
return(BlockAddress);
return RPoolAlloc ( MmPagedPool, NumberOfBytes, Tag, align );
}
VOID STDCALL
ExFreePagedPool(IN PVOID Block)
{
PMM_PPOOL_FREE_BLOCK_HEADER PreviousBlock;
PMM_PPOOL_USED_BLOCK_HEADER UsedBlock = address_to_block(Block);
ULONG UsedSize = UsedBlock->Size;
PMM_PPOOL_FREE_BLOCK_HEADER FreeBlock =
(PMM_PPOOL_FREE_BLOCK_HEADER)UsedBlock;
PMM_PPOOL_FREE_BLOCK_HEADER NextBlock;
PMM_PPOOL_FREE_BLOCK_HEADER NextNextBlock;
ASSERT_IRQL(APC_LEVEL);
MmpRedZoneCheck ( UsedBlock, Block, __FILE__, __LINE__ );
#if MM_PPOOL_REDZONE_BYTES
memset ( Block, 0xCD, UsedBlock->UserSize );
#endif
ExAcquireFastMutex(&MmPagedPoolLock);
// remove from used list...
{
PMM_PPOOL_USED_BLOCK_HEADER pPrev = MmPagedPoolFirstUsedBlock;
if ( pPrev == UsedBlock )
{
// special-case, our freeing block is first in list...
MmPagedPoolFirstUsedBlock = pPrev->NextUsed;
}
else
{
while ( pPrev && pPrev->NextUsed != UsedBlock )
pPrev = pPrev->NextUsed;
// if this assert fails - memory has been corrupted
// ( or I have a logic error...! )
ASSERT ( pPrev->NextUsed == UsedBlock );
pPrev->NextUsed = UsedBlock->NextUsed;
}
}
/*
* Begin setting up the newly freed block's header.
*/
FreeBlock->Size = UsedSize;
#if MM_PPOOL_REDZONE_BYTES
FreeBlock->FreeMagic = MM_PPOOL_FREEMAGIC;
{
PULONG Frame;
int i;
#if defined __GNUC__
__asm__("mov %%ebp, %%ebx" : "=b" (Frame) : );
#elif defined(_MSC_VER)
__asm mov [Frame], ebp
#endif
//DbgPrint ( "Stack Frames for Free Block 0x%x:", Block );
Frame = (PULONG)Frame[0]; // step out of ExFreePagedPool
for ( i = 0; i < MM_PPOOL_LASTOWNER_ENTRIES; i++ )
{
if ( Frame == 0 || (ULONG)Frame == 0xDEADBEEF )
FreeBlock->LastOwnerStack[i] = 0xDEADBEEF;
else
{
//DbgPrint ( " 0x%x", Frame[1] );
FreeBlock->LastOwnerStack[i] = Frame[1];
Frame = (PULONG)Frame[0];
}
}
//DbgPrint ( "\n" );
//KeRosDumpStackFrames ( NULL, 4 );
}
#endif//MM_PPOOL_REDZONE_BYTES
ASSERT_SIZE ( FreeBlock->Size );
/*
* Find the blocks immediately before and after the newly freed block on the free list.
*/
PreviousBlock = NULL;
NextBlock = MmPagedPoolFirstFreeBlock;
while (NextBlock != NULL && NextBlock < FreeBlock)
{
PreviousBlock = NextBlock;
NextBlock = NextBlock->NextFree;
}
/*
* Insert the freed block on the free list.
*/
if (PreviousBlock == NULL)
{
FreeBlock->NextFree = MmPagedPoolFirstFreeBlock;
MmPagedPoolFirstFreeBlock = FreeBlock;
}
else
{
PreviousBlock->NextFree = FreeBlock;
FreeBlock->NextFree = NextBlock;
}
/*
* If the next block is immediately adjacent to the newly freed one then
* merge them.
* PLEASE DO NOT WIPE OUT 'MAGIC' OR 'LASTOWNER' DATA FOR MERGED FREE BLOCKS
*/
if (NextBlock != NULL &&
((char*)FreeBlock + FreeBlock->Size) == (char*)NextBlock)
{
FreeBlock->Size = FreeBlock->Size + NextBlock->Size;
ASSERT_SIZE ( FreeBlock->Size );
FreeBlock->NextFree = NextBlock->NextFree;
NextNextBlock = NextBlock->NextFree;
}
else
{
NextNextBlock = NextBlock;
}
/*
* If the previous block is adjacent to the newly freed one then
* merge them.
* PLEASE DO NOT WIPE OUT 'MAGIC' OR 'LASTOWNER' DATA FOR MERGED FREE BLOCKS
*/
if (PreviousBlock != NULL &&
((char*)PreviousBlock + PreviousBlock->Size) == (char*)FreeBlock)
{
PreviousBlock->Size = PreviousBlock->Size + FreeBlock->Size;
ASSERT_SIZE ( PreviousBlock->Size );
PreviousBlock->NextFree = NextNextBlock;
}
VerifyPagedPool();
ExReleaseFastMutex(&MmPagedPoolLock);
ASSERT_IRQL(APC_LEVEL);
RPoolFree ( MmPagedPool, Block );
}
VOID STDCALL
ExRosDumpPagedPoolByTag ( ULONG Tag )
{
PMM_PPOOL_USED_BLOCK_HEADER UsedBlock = MmPagedPoolFirstUsedBlock;
int count = 0;
char tag[5];
// TODO FIXME - should we validate params or ASSERT_IRQL?
*(ULONG*)&tag[0] = Tag;
tag[4] = 0;
DbgPrint ( "PagedPool Dump by tag '%s'\n", tag );
DbgPrint ( " -BLOCK-- --SIZE--\n" );
while ( IS_PPOOL_PTR(UsedBlock) )
{
if ( UsedBlock->Tag == Tag )
{
DbgPrint ( " %08X %08X\n", UsedBlock, UsedBlock->Size );
++count;
}
UsedBlock = UsedBlock->NextUsed;
}
if ( UsedBlock && !IS_PPOOL_PTR(UsedBlock) )
{
DPRINT1 ( "!!NextUsed took me to lala land: 0x%08X\n", UsedBlock );
}
DbgPrint ( "Entries found for tag '%s': %i\n", tag, count );
// TODO FIXME - should we ASSERT_IRQL?
RPoolDumpByTag ( MmPagedPool, Tag );
}
ULONG STDCALL
ExRosQueryPagedPoolTag ( PVOID Block )
ExRosQueryPagedPoolTag ( PVOID Addr )
{
PMM_PPOOL_USED_BLOCK_HEADER UsedBlock = address_to_block(Block);
// TODO FIXME - should we validate params or ASSERT_IRQL?
return UsedBlock->Tag;
// TODO FIXME - should we ASSERT_IRQL?
return RPoolQueryTag ( Addr );
}
#ifdef PPOOL_UMODE_TEST
PVOID TestAlloc ( ULONG Bytes )
{
PVOID ret;
//printf ( "Allocating block: " ); RPoolStats ( MmPagedPool );
//RPoolRedZoneCheck ( MmPagedPool, __FILE__, __LINE__ );
ret = ExAllocatePagedPoolWithTag ( PagedPool, Bytes, 0 );
//printf ( "Block %x allocated: ", ret ); RPoolStats ( MmPagedPool );
//RPoolRedZoneCheck ( MmPagedPool, __FILE__, __LINE__ );
return ret;
}
void TestFree ( PVOID ptr )
{
//printf ( "Freeing block %x: ", ptr ); RPoolStats ( MmPagedPool );
//RPoolRedZoneCheck ( MmPagedPool, __FILE__, __LINE__ );
ExFreePagedPool(ptr);
//printf ( "Block %x freed: ", ptr ); RPoolStats ( MmPagedPool );
//RPoolRedZoneCheck ( MmPagedPool, __FILE__, __LINE__ );
}
int main()
{
#define COUNT 100
int i, j;
char* keepers[COUNT];
char* trash[COUNT];
int AllocSize[] = { 15, 31, 63, 127, 255, 511, 1023, 2047 };
const int ALLOCS = sizeof(AllocSize) / sizeof(0[AllocSize]);
DWORD dwStart;
MmPagedPoolSize = 1*1024*1024;
MmPagedPoolBase = malloc ( MmPagedPoolSize );
MmInitializePagedPool();
dwStart = GetTickCount();
printf ( "test #1 phase #1\n" );
for ( i = 0; i < COUNT; i++ )
{
//printf ( "keeper %i) ", i );
keepers[i] = TestAlloc ( AllocSize[i%ALLOCS] );
if ( !keepers[i] ) printf ( "allocation failed\n" );
//printf ( "trash %i) ", i );
trash[i] = TestAlloc ( AllocSize[i%ALLOCS] );
if ( !trash[i] ) printf ( "allocation failed\n" );
}
printf ( "test #1 phase #2\n" );
for ( i = 0; i < COUNT; i++ )
{
if ( i == 6 )
i = i;
//printf ( "%i) ", i );
TestFree ( trash[i] );
}
printf ( "test #1 phase #3\n" );
for ( i = 0; i < 4; i++ )
{
//printf ( "%i) ", i );
keepers[i] = TestAlloc ( 4096 );
if ( !keepers[i] ) printf ( "allocation failed\n" );
}
printf ( "test #1 phase #4\n" );
for ( i = 0; i < 4; i++ )
{
//printf ( "%i) ", i );
TestFree ( keepers[i] );
}
printf ( "test #1 phase #5\n" );
srand(1);
for ( i = 0; i < COUNT; i++ )
{
//printf ( "%i) ", i );
trash[i] = TestAlloc ( rand()%1024+1 );
if ( !trash[i] ) printf ( "allocation failed\n" );
}
printf ( "test #1 phase #6\n" );
for ( i = 0; i < 10000; i++ )
{
TestFree ( trash[i%COUNT] );
trash[i%COUNT] = TestAlloc ( rand()%1024+1 );
if ( !trash[i%COUNT] ) printf ( "allocation failed\n" );
}
printf ( "test #1 phase #7\n" );
j = 0;
for ( i = 0; i < COUNT; i++ )
{
if ( trash[i] )
{
TestFree ( trash[i] );
++j;
}
}
printf ( "test #1 phase #8 ( freed %i of %i trash )\n", j, COUNT );
if ( !TestAlloc ( 2048 ) )
printf ( "Couldn't allocate 2048 bytes after freeing up a whole bunch of blocks\n" );
free ( MmPagedPoolBase );
printf ( "test time: %lu\n", GetTickCount() - dwStart );
printf ( "test #2\n" );
MmPagedPoolSize = 1024;
MmPagedPoolBase = malloc ( MmPagedPoolSize );
MmInitializePagedPool();
TestAlloc ( 512 );
i = RPoolLargestAllocPossible ( MmPagedPool, 0 );
if ( !TestAlloc ( i ) )
{
printf ( "allocating last available block failed\n" );
}
free ( MmPagedPoolBase );
printf ( "done!\n" );
return 0;
}
#endif//PPOOL_UMODE_TEST
/* EOF */