2022-06-12 10:02:01 +00:00
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
MIT License
|
|
|
|
-----------
|
|
|
|
|
|
|
|
Copyright (c) 2002-2019 Advanced Micro Devices, Inc.
|
|
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
of this Software and associated documentaon files (the "Software"), to deal
|
|
|
|
in the Software without restriction, including without limitation the rights
|
|
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
|
|
all copies or substantial portions of the Software.
|
|
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
|
THE SOFTWARE.
|
|
|
|
*******************************************************************************/
|
|
|
|
|
|
|
|
#include "libm.h"
|
|
|
|
#include "libm_util.h"
|
|
|
|
|
|
|
|
#define USE_HANDLE_ERROR
|
|
|
|
#define USE_SPLITEXP
|
|
|
|
#define USE_SCALEDOUBLE_2
|
|
|
|
#define USE_VAL_WITH_FLAGS
|
|
|
|
#include "libm_inlines.h"
|
|
|
|
#undef USE_SPLITEXP
|
|
|
|
#undef USE_SCALEDOUBLE_2
|
|
|
|
#undef USE_VAL_WITH_FLAGS
|
|
|
|
#undef USE_HANDLE_ERROR
|
|
|
|
|
|
|
|
#include "libm_errno.h"
|
|
|
|
|
2022-06-12 11:16:22 +00:00
|
|
|
#ifdef _MSC_VER
|
2022-06-12 10:02:01 +00:00
|
|
|
#pragma function(tanh)
|
2022-06-12 11:16:22 +00:00
|
|
|
#endif
|
|
|
|
|
2022-06-12 10:02:01 +00:00
|
|
|
double tanh(double x)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
The definition of tanh(x) is sinh(x)/cosh(x), which is also equivalent
|
|
|
|
to the following three formulae:
|
|
|
|
1. (exp(x) - exp(-x))/(exp(x) + exp(-x))
|
|
|
|
2. (1 - (2/(exp(2*x) + 1 )))
|
|
|
|
3. (exp(2*x) - 1)/(exp(2*x) + 1)
|
|
|
|
but computationally, some formulae are better on some ranges.
|
|
|
|
*/
|
|
|
|
static const double
|
|
|
|
thirtytwo_by_log2 = 4.61662413084468283841e+01, /* 0x40471547652b82fe */
|
|
|
|
log2_by_32_lead = 2.16608493356034159660e-02, /* 0x3f962e42fe000000 */
|
|
|
|
log2_by_32_tail = 5.68948749532545630390e-11, /* 0x3dcf473de6af278e */
|
|
|
|
large_threshold = 20.0; /* 0x4034000000000000 */
|
|
|
|
|
2022-06-12 11:16:22 +00:00
|
|
|
unsigned long long ux, aux, xneg;
|
2022-06-12 10:02:01 +00:00
|
|
|
double y, z, p, z1, z2;
|
|
|
|
int m;
|
|
|
|
|
|
|
|
/* Special cases */
|
|
|
|
|
|
|
|
GET_BITS_DP64(x, ux);
|
|
|
|
aux = ux & ~SIGNBIT_DP64;
|
|
|
|
if (aux < 0x3e30000000000000) /* |x| small enough that tanh(x) = x */
|
|
|
|
{
|
|
|
|
if (aux == 0)
|
|
|
|
return x; /* with no inexact */
|
|
|
|
else
|
|
|
|
return val_with_flags(x, AMD_F_INEXACT);
|
|
|
|
}
|
|
|
|
else if (aux > 0x7ff0000000000000) /* |x| is NaN */
|
|
|
|
return _handle_error("tanh", OP_TANH, ux|0x0008000000000000, _DOMAIN,
|
|
|
|
0, EDOM, x, 0.0, 1);
|
|
|
|
// return x + x;
|
|
|
|
|
|
|
|
xneg = (aux != ux);
|
|
|
|
|
|
|
|
y = x;
|
|
|
|
if (xneg) y = -x;
|
|
|
|
|
|
|
|
if (y > large_threshold)
|
|
|
|
{
|
|
|
|
/* If x is large then exp(-x) is negligible and
|
|
|
|
formula 1 reduces to plus or minus 1.0 */
|
|
|
|
z = 1.0;
|
|
|
|
}
|
|
|
|
else if (y <= 1.0)
|
|
|
|
{
|
|
|
|
double y2;
|
|
|
|
y2 = y*y;
|
|
|
|
if (y < 0.9)
|
|
|
|
{
|
|
|
|
/* Use a [3,3] Remez approximation on [0,0.9]. */
|
|
|
|
z = y + y*y2*
|
|
|
|
(-0.274030424656179760118928e0 +
|
|
|
|
(-0.176016349003044679402273e-1 +
|
|
|
|
(-0.200047621071909498730453e-3 -
|
|
|
|
0.142077926378834722618091e-7*y2)*y2)*y2)/
|
|
|
|
(0.822091273968539282568011e0 +
|
|
|
|
(0.381641414288328849317962e0 +
|
|
|
|
(0.201562166026937652780575e-1 +
|
|
|
|
0.2091140262529164482568557e-3*y2)*y2)*y2);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Use a [3,3] Remez approximation on [0.9,1]. */
|
|
|
|
z = y + y*y2*
|
|
|
|
(-0.227793870659088295252442e0 +
|
|
|
|
(-0.146173047288731678404066e-1 +
|
|
|
|
(-0.165597043903549960486816e-3 -
|
|
|
|
0.115475878996143396378318e-7*y2)*y2)*y2)/
|
|
|
|
(0.683381611977295894959554e0 +
|
|
|
|
(0.317204558977294374244770e0 +
|
|
|
|
(0.167358775461896562588695e-1 +
|
|
|
|
0.173076050126225961768710e-3*y2)*y2)*y2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Compute p = exp(2*y) + 1. The code is basically inlined
|
|
|
|
from exp_amd. */
|
|
|
|
|
|
|
|
splitexp(2*y, 1.0, thirtytwo_by_log2, log2_by_32_lead,
|
|
|
|
log2_by_32_tail, &m, &z1, &z2);
|
|
|
|
p = scaleDouble_2(z1 + z2, m) + 1.0;
|
|
|
|
|
|
|
|
/* Now reconstruct tanh from p. */
|
|
|
|
z = (1.0 - 2.0/p);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (xneg) z = - z;
|
|
|
|
return z;
|
|
|
|
}
|