reactos/reactos/lib/rtl/heap.c

1976 lines
60 KiB
C
Raw Normal View History

/* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS system libraries
* FILE: lib/rtl/image.c
* PURPOSE: Image handling functions
* PROGRAMMERS: Copyright 1996 Alexandre Julliard
* Copyright 1998 Ulrich Weigand
*/
//
// Note: This is a slightly modified implementation of WINE's.
//
// WINE's implementation is a hack based on Windows 95's heap implementation,
// itself a hack of DOS memory management.It supports 3 out of the 18 possible
// NT Heap Flags, does not support custom allocation/deallocation routines,
// and is about 50-80x slower with fragmentation rates up to 500x higher when
// compared to NT's LFH. WINE is lucky because the advanced NT Heap features are
// used in kernel-mode usually, not in user-mode, and they are crossing their
// fingers for this being the same. Note that several high-end SQL/Database
// applications would significantly benefit from custom heap features provided
// by NT.
//
// ROS's changes include:
// - Using Zw instead of Nt calls, because this matters when in Kernel Mode
// - Not using per-process heap lists while in Kernel Mode
// - Using a macro to handle the Critical Section, because it's meaningless
// in Kernel Mode.
// - Crappy support for a custom Commit routine.
// - Crappy support for User-defined flags and the User-defined value.
// - Ripping out all the code for shared heaps, because those don't exist on NT.
//
// Be aware of these changes when you try to sync something back.
//
/* INCLUDES *****************************************************************/
#include <rtl.h>
#undef LIST_FOR_EACH
#undef LIST_FOR_EACH_SAFE
#include <wine/list.h>
#define NDEBUG
#include <debug.h>
#define TRACE DPRINT
#define WARN DPRINT1
#define ERR DPRINT1
#define DPRINTF DPRINT
/* FUNCTIONS *****************************************************************/
#define WARN_ON(x) (1)
#ifdef NDEBUG
#define TRACE_ON(x) (0)
#else
#define TRACE_ON(x) (1)
#endif
/* Note: the heap data structures are based on what Pietrek describes in his
* book 'Windows 95 System Programming Secrets'. The layout is not exactly
* the same, but could be easily adapted if it turns out some programs
* require it.
*/
/* FIXME: use SIZE_T for 'size' structure members, but we need to make sure
* that there is no unaligned accesses to structure fields.
*/
typedef struct tagARENA_INUSE
{
SIZE_T size; /* Block size; must be the first field */
DWORD magic : 23; /* Magic number */
DWORD has_user_data : 1; /* There is user data associated with this block */
DWORD unused_bytes : 8; /* Number of bytes in the block not used by user data (max value is HEAP_MIN_DATA_SIZE+HEAP_MIN_SHRINK_SIZE) */
} ARENA_INUSE;
typedef struct tagARENA_FREE
{
SIZE_T size; /* Block size; must be the first field */
DWORD magic; /* Magic number */
struct list entry; /* Entry in free list */
} ARENA_FREE;
#define ARENA_FLAG_FREE 0x00000001 /* flags OR'ed with arena size */
#define ARENA_FLAG_PREV_FREE 0x00000002
#define ARENA_SIZE_MASK (~3)
#define ARENA_INUSE_MAGIC 0x455355 /* Value for arena 'magic' field */
#define ARENA_FREE_MAGIC 0x45455246 /* Value for arena 'magic' field */
#define ARENA_INUSE_FILLER 0x55
#define ARENA_FREE_FILLER 0xaa
/* everything is aligned on 8 byte boundaries (16 for Win64)*/
#define ALIGNMENT (2*sizeof(void*))
#define ARENA_OFFSET (ALIGNMENT - sizeof(ARENA_INUSE))
#define ROUND_SIZE(size) ((((size) + ALIGNMENT - 1) & ~(ALIGNMENT-1)) + ARENA_OFFSET)
#define QUIET 1 /* Suppress messages */
#define NOISY 0 /* Report all errors */
/* minimum data size (without arenas) of an allocated block */
#define HEAP_MIN_DATA_SIZE ROUND_SIZE(2 * sizeof(struct list))
/* minimum size that must remain to shrink an allocated block */
#define HEAP_MIN_SHRINK_SIZE (HEAP_MIN_DATA_SIZE+sizeof(ARENA_FREE))
#define HEAP_NB_FREE_LISTS 5 /* Number of free lists */
/* Max size of the blocks on the free lists */
static const DWORD HEAP_freeListSizes[HEAP_NB_FREE_LISTS] =
{
0x10, 0x20, 0x80, 0x200, MAXULONG
};
typedef struct
{
ARENA_FREE arena;
void *aligment[4];
} FREE_LIST_ENTRY;
struct tagHEAP;
typedef struct tagSUBHEAP
{
SIZE_T size; /* Size of the whole sub-heap */
SIZE_T commitSize; /* Committed size of the sub-heap */
DWORD headerSize; /* Size of the heap header */
struct tagSUBHEAP *next; /* Next sub-heap */
struct tagHEAP *heap; /* Main heap structure */
DWORD magic; /* Magic number */
} SUBHEAP;
#define SUBHEAP_MAGIC ((DWORD)('S' | ('U'<<8) | ('B'<<16) | ('H'<<24)))
typedef struct tagHEAP_USER_DATA
{
LIST_ENTRY ListEntry;
PVOID BaseAddress;
ULONG UserFlags;
PVOID UserValue;
} HEAP_USER_DATA, *PHEAP_USER_DATA;
typedef struct tagHEAP
{
SUBHEAP subheap; /* First sub-heap */
struct list entry; /* Entry in process heap list */
RTL_CRITICAL_SECTION critSection; /* Critical section for serialization */
FREE_LIST_ENTRY freeList[HEAP_NB_FREE_LISTS]; /* Free lists */
DWORD flags; /* Heap flags */
DWORD magic; /* Magic number */
PRTL_HEAP_COMMIT_ROUTINE commitRoutine;
LIST_ENTRY UserDataHead;
} HEAP;
#define HEAP_MAGIC ((DWORD)('H' | ('E'<<8) | ('A'<<16) | ('P'<<24)))
#define HEAP_DEF_SIZE 0x110000 /* Default heap size = 1Mb + 64Kb */
#define COMMIT_MASK 0xffff /* bitmask for commit/decommit granularity */
static HEAP *processHeap; /* main process heap */
static BOOL HEAP_IsRealArena( HEAP *heapPtr, DWORD flags, LPCVOID block, BOOL quiet );
/* mark a block of memory as free for debugging purposes */
static __inline void mark_block_free( void *ptr, SIZE_T size )
{
if (TRACE_ON(heap)) memset( ptr, ARENA_FREE_FILLER, size );
#ifdef VALGRIND_MAKE_NOACCESS
VALGRIND_DISCARD( VALGRIND_MAKE_NOACCESS( ptr, size ));
#endif
}
/* mark a block of memory as initialized for debugging purposes */
static __inline void mark_block_initialized( void *ptr, SIZE_T size )
{
#ifdef VALGRIND_MAKE_READABLE
VALGRIND_DISCARD( VALGRIND_MAKE_READABLE( ptr, size ));
#endif
}
/* mark a block of memory as uninitialized for debugging purposes */
static __inline void mark_block_uninitialized( void *ptr, SIZE_T size )
{
#ifdef VALGRIND_MAKE_WRITABLE
VALGRIND_DISCARD( VALGRIND_MAKE_WRITABLE( ptr, size ));
#endif
if (TRACE_ON(heap))
{
memset( ptr, ARENA_INUSE_FILLER, size );
#ifdef VALGRIND_MAKE_WRITABLE
/* make it uninitialized to valgrind again */
VALGRIND_DISCARD( VALGRIND_MAKE_WRITABLE( ptr, size ));
#endif
}
}
/* clear contents of a block of memory */
static __inline void clear_block( void *ptr, SIZE_T size )
{
mark_block_initialized( ptr, size );
memset( ptr, 0, size );
}
/* locate a free list entry of the appropriate size */
/* size is the size of the whole block including the arena header */
static __inline unsigned int get_freelist_index( SIZE_T size )
{
unsigned int i;
size -= sizeof(ARENA_FREE);
for (i = 0; i < HEAP_NB_FREE_LISTS - 1; i++) if (size <= HEAP_freeListSizes[i]) break;
return i;
}
/* get the memory protection type to use for a given heap */
static inline ULONG get_protection_type( DWORD flags )
{
return (flags & HEAP_CREATE_ENABLE_EXECUTE) ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
}
static RTL_CRITICAL_SECTION_DEBUG process_heap_critsect_debug =
{
0, 0, NULL, /* will be set later */
{ &process_heap_critsect_debug.ProcessLocksList, &process_heap_critsect_debug.ProcessLocksList },
0, 0, 0, 0, 0
};
/***********************************************************************
* HEAP_Dump
*/
static void HEAP_Dump( HEAP *heap )
{
int i;
SUBHEAP *subheap;
char *ptr;
DPRINTF( "Heap: %p\n", heap );
DPRINTF( "Next: %p Sub-heaps: %p",
LIST_ENTRY( heap->entry.next, HEAP, entry ), &heap->subheap );
subheap = &heap->subheap;
while (subheap->next)
{
DPRINTF( " -> %p", subheap->next );
subheap = subheap->next;
}
DPRINTF( "\nFree lists:\n Block Stat Size Id\n" );
for (i = 0; i < HEAP_NB_FREE_LISTS; i++)
DPRINTF( "%p free %08lx prev=%p next=%p\n",
&heap->freeList[i].arena, HEAP_freeListSizes[i],
LIST_ENTRY( heap->freeList[i].arena.entry.prev, ARENA_FREE, entry ),
LIST_ENTRY( heap->freeList[i].arena.entry.next, ARENA_FREE, entry ));
subheap = &heap->subheap;
while (subheap)
{
SIZE_T freeSize = 0, usedSize = 0, arenaSize = subheap->headerSize;
DPRINTF( "\n\nSub-heap %p: size=%08lx committed=%08lx\n",
subheap, subheap->size, subheap->commitSize );
DPRINTF( "\n Block Stat Size Id\n" );
ptr = (char*)subheap + subheap->headerSize;
while (ptr < (char *)subheap + subheap->size)
{
if (*(DWORD *)ptr & ARENA_FLAG_FREE)
{
ARENA_FREE *pArena = (ARENA_FREE *)ptr;
DPRINTF( "%p free %08lx prev=%p next=%p\n",
pArena, pArena->size & ARENA_SIZE_MASK,
LIST_ENTRY( pArena->entry.prev, ARENA_FREE, entry ),
LIST_ENTRY( pArena->entry.next, ARENA_FREE, entry ) );
ptr += sizeof(*pArena) + (pArena->size & ARENA_SIZE_MASK);
arenaSize += sizeof(ARENA_FREE);
freeSize += pArena->size & ARENA_SIZE_MASK;
}
else if (*(DWORD *)ptr & ARENA_FLAG_PREV_FREE)
{
ARENA_INUSE *pArena = (ARENA_INUSE *)ptr;
DPRINTF( "%p Used %08lx back=%p\n",
pArena, pArena->size & ARENA_SIZE_MASK, *((ARENA_FREE **)pArena - 1) );
ptr += sizeof(*pArena) + (pArena->size & ARENA_SIZE_MASK);
arenaSize += sizeof(ARENA_INUSE);
usedSize += pArena->size & ARENA_SIZE_MASK;
}
else
{
ARENA_INUSE *pArena = (ARENA_INUSE *)ptr;
DPRINTF( "%p used %08lx\n", pArena, pArena->size & ARENA_SIZE_MASK );
ptr += sizeof(*pArena) + (pArena->size & ARENA_SIZE_MASK);
arenaSize += sizeof(ARENA_INUSE);
usedSize += pArena->size & ARENA_SIZE_MASK;
}
}
DPRINTF( "\nTotal: Size=%08lx Committed=%08lx Free=%08lx Used=%08lx Arenas=%08lx (%ld%%)\n\n",
subheap->size, subheap->commitSize, freeSize, usedSize,
arenaSize, (arenaSize * 100) / subheap->size );
subheap = subheap->next;
}
}
#if 0
static void HEAP_DumpEntry( LPPROCESS_HEAP_ENTRY entry )
{
WORD rem_flags;
TRACE( "Dumping entry %p\n", entry );
TRACE( "lpData\t\t: %p\n", entry->lpData );
TRACE( "cbData\t\t: %08lx\n", entry->cbData);
TRACE( "cbOverhead\t: %08x\n", entry->cbOverhead);
TRACE( "iRegionIndex\t: %08x\n", entry->iRegionIndex);
TRACE( "WFlags\t\t: ");
if (entry->wFlags & PROCESS_HEAP_REGION)
TRACE( "PROCESS_HEAP_REGION ");
if (entry->wFlags & PROCESS_HEAP_UNCOMMITTED_RANGE)
TRACE( "PROCESS_HEAP_UNCOMMITTED_RANGE ");
if (entry->wFlags & PROCESS_HEAP_ENTRY_BUSY)
TRACE( "PROCESS_HEAP_ENTRY_BUSY ");
if (entry->wFlags & PROCESS_HEAP_ENTRY_MOVEABLE)
TRACE( "PROCESS_HEAP_ENTRY_MOVEABLE ");
if (entry->wFlags & PROCESS_HEAP_ENTRY_DDESHARE)
TRACE( "PROCESS_HEAP_ENTRY_DDESHARE ");
rem_flags = entry->wFlags &
~(PROCESS_HEAP_REGION | PROCESS_HEAP_UNCOMMITTED_RANGE |
PROCESS_HEAP_ENTRY_BUSY | PROCESS_HEAP_ENTRY_MOVEABLE|
PROCESS_HEAP_ENTRY_DDESHARE);
if (rem_flags)
TRACE( "Unknown %08x", rem_flags);
TRACE( "\n");
if ((entry->wFlags & PROCESS_HEAP_ENTRY_BUSY )
&& (entry->wFlags & PROCESS_HEAP_ENTRY_MOVEABLE))
{
/* Treat as block */
TRACE( "BLOCK->hMem\t\t:%p\n", entry->Block.hMem);
}
if (entry->wFlags & PROCESS_HEAP_REGION)
{
TRACE( "Region.dwCommittedSize\t:%08lx\n",entry->Region.dwCommittedSize);
TRACE( "Region.dwUnCommittedSize\t:%08lx\n",entry->Region.dwUnCommittedSize);
TRACE( "Region.lpFirstBlock\t:%p\n",entry->Region.lpFirstBlock);
TRACE( "Region.lpLastBlock\t:%p\n",entry->Region.lpLastBlock);
}
}
#endif
static PHEAP_USER_DATA HEAP_GetUserData(HEAP *heapPtr, PVOID BaseAddress)
{
PLIST_ENTRY CurrentEntry;
PHEAP_USER_DATA udata;
CurrentEntry = heapPtr->UserDataHead.Flink;
while (CurrentEntry != &heapPtr->UserDataHead)
{
udata = CONTAINING_RECORD(CurrentEntry, HEAP_USER_DATA, ListEntry);
if (udata->BaseAddress == BaseAddress)
return udata;
CurrentEntry = CurrentEntry->Flink;
}
return NULL;
}
static PHEAP_USER_DATA HEAP_AllocUserData(HEAP *heapPtr, PVOID BaseAddress)
{
/* Allocate user data entry */
ARENA_INUSE *pInUse;
PHEAP_USER_DATA udata = RtlAllocateHeap(heapPtr, 0, sizeof(HEAP_USER_DATA));
if (!udata) return NULL;
udata->BaseAddress = BaseAddress;
InsertTailList(&heapPtr->UserDataHead, &udata->ListEntry);
pInUse = (ARENA_INUSE *)BaseAddress - 1;
pInUse->has_user_data = 1;
return udata;
}
/***********************************************************************
* HEAP_GetPtr
* RETURNS
* Pointer to the heap
* NULL: Failure
*/
static HEAP *HEAP_GetPtr(
HANDLE heap /* [in] Handle to the heap */
) {
HEAP *heapPtr = (HEAP *)heap;
if (!heapPtr || (heapPtr->magic != HEAP_MAGIC))
{
if (heapPtr)
ERR("Invalid heap %p, magic:%.4s!\n", heap, &heapPtr->magic );
else
ERR("Invalid heap %p!\n", heap );
//KeDumpStackFrames(NULL);
return NULL;
}
if (TRACE_ON(heap) && !HEAP_IsRealArena( heapPtr, 0, NULL, NOISY ))
{
HEAP_Dump( heapPtr );
assert( FALSE );
return NULL;
}
return heapPtr;
}
/***********************************************************************
* HEAP_InsertFreeBlock
*
* Insert a free block into the free list.
*/
static __inline void HEAP_InsertFreeBlock( HEAP *heap, ARENA_FREE *pArena, BOOL last )
{
FREE_LIST_ENTRY *pEntry = heap->freeList + get_freelist_index( pArena->size + sizeof(*pArena) );
if (last)
{
/* insert at end of free list, i.e. before the next free list entry */
pEntry++;
if (pEntry == &heap->freeList[HEAP_NB_FREE_LISTS]) pEntry = heap->freeList;
list_add_before( &pEntry->arena.entry, &pArena->entry );
}
else
{
/* insert at head of free list */
list_add_after( &pEntry->arena.entry, &pArena->entry );
}
pArena->size |= ARENA_FLAG_FREE;
}
/***********************************************************************
* HEAP_FindSubHeap
* Find the sub-heap containing a given address.
*
* RETURNS
* Pointer: Success
* NULL: Failure
*/
static SUBHEAP *HEAP_FindSubHeap(
const HEAP *heap, /* [in] Heap pointer */
LPCVOID ptr /* [in] Address */
) {
const SUBHEAP *sub = &heap->subheap;
while (sub)
{
if (((const char *)ptr >= (const char *)sub) &&
((const char *)ptr < (const char *)sub + sub->size)) return (SUBHEAP*)sub;
sub = sub->next;
}
return NULL;
}
/***********************************************************************
* HEAP_Commit
*
* Make sure the heap storage is committed for a given size in the specified arena.
*/
static __inline BOOL HEAP_Commit( SUBHEAP *subheap, ARENA_INUSE *pArena, SIZE_T data_size )
{
NTSTATUS Status;
void *ptr = (char *)(pArena + 1) + data_size + sizeof(ARENA_FREE);
SIZE_T size = (char *)ptr - (char *)subheap;
size = (size + COMMIT_MASK) & ~COMMIT_MASK;
if (size > subheap->size) size = subheap->size;
if (size <= subheap->commitSize) return TRUE;
size -= subheap->commitSize;
ptr = (char *)subheap + subheap->commitSize;
if (subheap->heap->commitRoutine != NULL)
{
Status = subheap->heap->commitRoutine(subheap->heap, &ptr, &size);
}
else
{
Status = ZwAllocateVirtualMemory( NtCurrentProcess(), &ptr, 0,
&size, MEM_COMMIT, get_protection_type(subheap->heap->flags) );
}
if (!NT_SUCCESS(Status))
{
WARN("Could not commit %08lx bytes at %p for heap %p\n",
size, ptr, subheap->heap );
return FALSE;
}
subheap->commitSize += size;
return TRUE;
}
#if 0
/***********************************************************************
* HEAP_Decommit
*
* If possible, decommit the heap storage from (including) 'ptr'.
*/
static inline BOOL HEAP_Decommit( SUBHEAP *subheap, void *ptr )
{
void *addr;
SIZE_T decommit_size;
SIZE_T size = (char *)ptr - (char *)subheap;
/* round to next block and add one full block */
size = ((size + COMMIT_MASK) & ~COMMIT_MASK) + COMMIT_MASK + 1;
if (size >= subheap->commitSize) return TRUE;
decommit_size = subheap->commitSize - size;
addr = (char *)subheap + size;
if (ZwFreeVirtualMemory( NtCurrentProcess(), &addr, &decommit_size, MEM_DECOMMIT ))
{
WARN("Could not decommit %08lx bytes at %p for heap %p\n",
decommit_size, (char *)subheap + size, subheap->heap );
return FALSE;
}
subheap->commitSize -= decommit_size;
return TRUE;
}
#endif
/***********************************************************************
* HEAP_CreateFreeBlock
*
* Create a free block at a specified address. 'size' is the size of the
* whole block, including the new arena.
*/
static void HEAP_CreateFreeBlock( SUBHEAP *subheap, void *ptr, SIZE_T size )
{
ARENA_FREE *pFree;
char *pEnd;
BOOL last;
/* Create a free arena */
mark_block_uninitialized( ptr, sizeof( ARENA_FREE ) );
pFree = (ARENA_FREE *)ptr;
pFree->magic = ARENA_FREE_MAGIC;
/* If debugging, erase the freed block content */
pEnd = (char *)ptr + size;
if (pEnd > (char *)subheap + subheap->commitSize) pEnd = (char *)subheap + subheap->commitSize;
if (pEnd > (char *)(pFree + 1)) mark_block_free( pFree + 1, pEnd - (char *)(pFree + 1) );
/* Check if next block is free also */
if (((char *)ptr + size < (char *)subheap + subheap->size) &&
(*(DWORD *)((char *)ptr + size) & ARENA_FLAG_FREE))
{
/* Remove the next arena from the free list */
ARENA_FREE *pNext = (ARENA_FREE *)((char *)ptr + size);
list_remove( &pNext->entry );
size += (pNext->size & ARENA_SIZE_MASK) + sizeof(*pNext);
mark_block_free( pNext, sizeof(ARENA_FREE) );
}
/* Set the next block PREV_FREE flag and pointer */
last = ((char *)ptr + size >= (char *)subheap + subheap->size);
if (!last)
{
DWORD *pNext = (DWORD *)((char *)ptr + size);
*pNext |= ARENA_FLAG_PREV_FREE;
mark_block_initialized( pNext - 1, sizeof( ARENA_FREE * ) );
*((ARENA_FREE **)pNext - 1) = pFree;
}
/* Last, insert the new block into the free list */
pFree->size = size - sizeof(*pFree);
HEAP_InsertFreeBlock( subheap->heap, pFree, last );
}
/***********************************************************************
* HEAP_MakeInUseBlockFree
*
* Turn an in-use block into a free block. Can also decommit the end of
* the heap, and possibly even free the sub-heap altogether.
*/
static void HEAP_MakeInUseBlockFree( SUBHEAP *subheap, ARENA_INUSE *pArena )
{
ARENA_FREE *pFree;
SIZE_T size = (pArena->size & ARENA_SIZE_MASK) + sizeof(*pArena);
PHEAP_USER_DATA udata;
/* Find and free user data */
if (pArena->has_user_data)
{
udata = HEAP_GetUserData(subheap->heap, pArena + 1);
if (udata)
{
RemoveEntryList(&udata->ListEntry);
RtlFreeHeap(subheap->heap, 0, udata);
}
}
/* Check if we can merge with previous block */
if (pArena->size & ARENA_FLAG_PREV_FREE)
{
pFree = *((ARENA_FREE **)pArena - 1);
size += (pFree->size & ARENA_SIZE_MASK) + sizeof(ARENA_FREE);
/* Remove it from the free list */
list_remove( &pFree->entry );
}
else pFree = (ARENA_FREE *)pArena;
/* Create a free block */
HEAP_CreateFreeBlock( subheap, pFree, size );
size = (pFree->size & ARENA_SIZE_MASK) + sizeof(ARENA_FREE);
if ((char *)pFree + size < (char *)subheap + subheap->size)
return; /* Not the last block, so nothing more to do */
/* Free the whole sub-heap if it's empty and not the original one */
if (((char *)pFree == (char *)subheap + subheap->headerSize) &&
(subheap != &subheap->heap->subheap))
{
SIZE_T size = 0;
SUBHEAP *pPrev = &subheap->heap->subheap;
/* Remove the free block from the list */
list_remove( &pFree->entry );
/* Remove the subheap from the list */
while (pPrev && (pPrev->next != subheap)) pPrev = pPrev->next;
if (pPrev) pPrev->next = subheap->next;
/* Free the memory */
subheap->magic = 0;
ZwFreeVirtualMemory( NtCurrentProcess(), (void **)&subheap, &size, MEM_RELEASE );
return;
}
/* Decommit the end of the heap */
}
/***********************************************************************
* HEAP_ShrinkBlock
*
* Shrink an in-use block.
*/
static void HEAP_ShrinkBlock(SUBHEAP *subheap, ARENA_INUSE *pArena, SIZE_T size)
{
if ((pArena->size & ARENA_SIZE_MASK) >= size + HEAP_MIN_SHRINK_SIZE)
{
HEAP_CreateFreeBlock( subheap, (char *)(pArena + 1) + size,
(pArena->size & ARENA_SIZE_MASK) - size );
/* assign size plus previous arena flags */
pArena->size = size | (pArena->size & ~ARENA_SIZE_MASK);
}
else
{
/* Turn off PREV_FREE flag in next block */
char *pNext = (char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK);
if (pNext < (char *)subheap + subheap->size)
*(DWORD *)pNext &= ~ARENA_FLAG_PREV_FREE;
}
}
/***********************************************************************
* HEAP_InitSubHeap
*/
static BOOL HEAP_InitSubHeap( HEAP *heap, LPVOID address, DWORD flags,
SIZE_T commitSize, SIZE_T totalSize,
PRTL_HEAP_PARAMETERS Parameters)
{
SUBHEAP *subheap;
FREE_LIST_ENTRY *pEntry;
int i;
NTSTATUS Status;
if (!address && ZwAllocateVirtualMemory( NtCurrentProcess(), &address, 0,
&commitSize, MEM_COMMIT, get_protection_type(flags) ))
{
WARN("Could not commit %08lx bytes for sub-heap %p\n", commitSize, address );
return FALSE;
}
/* Fill the sub-heap structure */
subheap = (SUBHEAP *)address;
subheap->heap = heap;
subheap->size = totalSize;
subheap->commitSize = commitSize;
subheap->magic = SUBHEAP_MAGIC;
if ( subheap != (SUBHEAP *)heap )
{
/* If this is a secondary subheap, insert it into list */
subheap->headerSize = ROUND_SIZE( sizeof(SUBHEAP) );
subheap->next = heap->subheap.next;
heap->subheap.next = subheap;
}
else
{
/* If this is a primary subheap, initialize main heap */
subheap->headerSize = ROUND_SIZE( sizeof(HEAP) );
subheap->next = NULL;
heap->flags = flags;
heap->magic = HEAP_MAGIC;
if (Parameters)
heap->commitRoutine = Parameters->CommitRoutine;
else
heap->commitRoutine = NULL;
InitializeListHead(&heap->UserDataHead);
/* Build the free lists */
list_init( &heap->freeList[0].arena.entry );
for (i = 0, pEntry = heap->freeList; i < HEAP_NB_FREE_LISTS; i++, pEntry++)
{
pEntry->arena.size = 0 | ARENA_FLAG_FREE;
pEntry->arena.magic = ARENA_FREE_MAGIC;
if (i) list_add_after( &pEntry[-1].arena.entry, &pEntry->arena.entry );
}
/* Initialize critical section */
if (RtlpGetMode() == UserMode)
{
if (!processHeap) /* do it by hand to avoid memory allocations */
{
heap->critSection.DebugInfo = &process_heap_critsect_debug;
heap->critSection.LockCount = -1;
heap->critSection.RecursionCount = 0;
heap->critSection.OwningThread = 0;
heap->critSection.LockSemaphore = 0;
heap->critSection.SpinCount = 0;
process_heap_critsect_debug.CriticalSection = &heap->critSection;
}
else RtlInitializeHeapLock( &heap->critSection );
}
}
/* Commit memory */
if (heap->commitRoutine)
{
if (subheap != (SUBHEAP *)heap)
{
Status = heap->commitRoutine(heap, &address, &commitSize);
}
else
{
/* the caller is responsible for committing the first page! */
Status = STATUS_SUCCESS;
}
}
else
{
Status = ZwAllocateVirtualMemory(NtCurrentProcess(),
&address,
0,
&commitSize,
MEM_COMMIT,
get_protection_type(flags));
}
if (!NT_SUCCESS(Status))
{
DPRINT("Could not commit %08lx bytes for sub-heap %p\n",
commitSize, address);
return FALSE;
}
/* Create the first free block */
HEAP_CreateFreeBlock( subheap, (LPBYTE)subheap + subheap->headerSize,
subheap->size - subheap->headerSize );
return TRUE;
}
/***********************************************************************
* HEAP_CreateSubHeap
*
* Create a sub-heap of the given size.
* If heap == NULL, creates a main heap.
*/
static SUBHEAP *HEAP_CreateSubHeap( HEAP *heap, void *base, DWORD flags,
SIZE_T commitSize, SIZE_T totalSize,
IN PRTL_HEAP_PARAMETERS Parameters)
{
LPVOID address = base;
/* round-up sizes on a 64K boundary */
totalSize = (totalSize + 0xffff) & 0xffff0000;
commitSize = (commitSize + 0xffff) & 0xffff0000;
if (!commitSize) commitSize = 0x10000;
totalSize = min( totalSize, 0xffff0000 ); /* don't allow a heap larger than 4Gb */
if (totalSize < commitSize) totalSize = commitSize;
if (!address)
{
/* allocate the memory block */
if (ZwAllocateVirtualMemory( NtCurrentProcess(), &address, 0, &totalSize,
MEM_RESERVE | MEM_COMMIT, get_protection_type(flags) ))
{
WARN("Could not allocate %08lx bytes\n", totalSize );
return NULL;
}
}
/* Initialize subheap */
if (!HEAP_InitSubHeap( heap ? heap : (HEAP *)address,
address, flags, commitSize, totalSize, Parameters ))
{
SIZE_T size = 0;
if (!base) ZwFreeVirtualMemory( NtCurrentProcess(), &address, &size, MEM_RELEASE );
return NULL;
}
return (SUBHEAP *)address;
}
/***********************************************************************
* HEAP_FindFreeBlock
*
* Find a free block at least as large as the requested size, and make sure
* the requested size is committed.
*/
static ARENA_FREE *HEAP_FindFreeBlock( HEAP *heap, SIZE_T size,
SUBHEAP **ppSubHeap )
{
SUBHEAP *subheap;
struct list *ptr;
SIZE_T total_size;
FREE_LIST_ENTRY *pEntry = heap->freeList + get_freelist_index( size + sizeof(ARENA_INUSE) );
/* Find a suitable free list, and in it find a block large enough */
ptr = &pEntry->arena.entry;
while ((ptr = list_next( &heap->freeList[0].arena.entry, ptr )))
{
ARENA_FREE *pArena = LIST_ENTRY( ptr, ARENA_FREE, entry );
SIZE_T arena_size = (pArena->size & ARENA_SIZE_MASK) +
sizeof(ARENA_FREE) - sizeof(ARENA_INUSE);
if (arena_size >= size)
{
subheap = HEAP_FindSubHeap( heap, pArena );
if (!HEAP_Commit( subheap, (ARENA_INUSE *)pArena, size )) return NULL;
*ppSubHeap = subheap;
return pArena;
}
}
/* If no block was found, attempt to grow the heap */
if (!(heap->flags & HEAP_GROWABLE))
{
ERR("Not enough space in heap %p for %08lx bytes\n", heap, size );
return NULL;
}
/* make sure that we have a big enough size *committed* to fit another
* last free arena in !
* So just one heap struct, one first free arena which will eventually
* get used, and a second free arena that might get assigned all remaining
* free space in HEAP_ShrinkBlock() */
total_size = size + ROUND_SIZE(sizeof(SUBHEAP)) + sizeof(ARENA_INUSE) + sizeof(ARENA_FREE);
if (total_size < size) return NULL; /* overflow */
if (!(subheap = HEAP_CreateSubHeap( heap, NULL, heap->flags, total_size,
max( HEAP_DEF_SIZE, total_size ), NULL )))
return NULL;
TRACE("created new sub-heap %p of %08lx bytes for heap %p\n",
subheap, size, heap );
*ppSubHeap = subheap;
return (ARENA_FREE *)(subheap + 1);
}
/***********************************************************************
* HEAP_IsValidArenaPtr
*
* Check that the pointer is inside the range possible for arenas.
*/
static BOOL HEAP_IsValidArenaPtr( const HEAP *heap, const void *ptr )
{
int i;
const SUBHEAP *subheap = HEAP_FindSubHeap( heap, ptr );
if (!subheap) return FALSE;
if ((const char *)ptr >= (const char *)subheap + subheap->headerSize) return TRUE;
if (subheap != &heap->subheap) return FALSE;
for (i = 0; i < HEAP_NB_FREE_LISTS; i++)
if (ptr == (const void *)&heap->freeList[i].arena) return TRUE;
return FALSE;
}
/***********************************************************************
* HEAP_ValidateFreeArena
*/
static BOOL HEAP_ValidateFreeArena( SUBHEAP *subheap, ARENA_FREE *pArena )
{
ARENA_FREE *prev, *next;
char *heapEnd = (char *)subheap + subheap->size;
/* Check for unaligned pointers */
if ( (ULONG_PTR)pArena % ALIGNMENT != ARENA_OFFSET )
{
ERR("Heap %p: unaligned arena pointer %p\n", subheap->heap, pArena );
return FALSE;
}
/* Check magic number */
if (pArena->magic != ARENA_FREE_MAGIC)
{
ERR("Heap %p: invalid free arena magic for %p\n", subheap->heap, pArena );
return FALSE;
}
/* Check size flags */
if (!(pArena->size & ARENA_FLAG_FREE) ||
(pArena->size & ARENA_FLAG_PREV_FREE))
{
ERR("Heap %p: bad flags %08lx for free arena %p\n",
subheap->heap, pArena->size & ~ARENA_SIZE_MASK, pArena );
return FALSE;
}
/* Check arena size */
if ((char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK) > heapEnd)
{
ERR("Heap %p: bad size %08lx for free arena %p\n",
subheap->heap, pArena->size & ARENA_SIZE_MASK, pArena );
return FALSE;
}
/* Check that next pointer is valid */
next = LIST_ENTRY( pArena->entry.next, ARENA_FREE, entry );
if (!HEAP_IsValidArenaPtr( subheap->heap, next ))
{
ERR("Heap %p: bad next ptr %p for arena %p\n",
subheap->heap, next, pArena );
return FALSE;
}
/* Check that next arena is free */
if (!(next->size & ARENA_FLAG_FREE) || (next->magic != ARENA_FREE_MAGIC))
{
ERR("Heap %p: next arena %p invalid for %p\n",
subheap->heap, next, pArena );
return FALSE;
}
/* Check that prev pointer is valid */
prev = LIST_ENTRY( pArena->entry.prev, ARENA_FREE, entry );
if (!HEAP_IsValidArenaPtr( subheap->heap, prev ))
{
ERR("Heap %p: bad prev ptr %p for arena %p\n",
subheap->heap, prev, pArena );
return FALSE;
}
/* Check that prev arena is free */
if (!(prev->size & ARENA_FLAG_FREE) || (prev->magic != ARENA_FREE_MAGIC))
{
/* this often means that the prev arena got overwritten
* by a memory write before that prev arena */
ERR("Heap %p: prev arena %p invalid for %p\n",
subheap->heap, prev, pArena );
return FALSE;
}
/* Check that next block has PREV_FREE flag */
if ((char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK) < heapEnd)
{
if (!(*(DWORD *)((char *)(pArena + 1) +
(pArena->size & ARENA_SIZE_MASK)) & ARENA_FLAG_PREV_FREE))
{
ERR("Heap %p: free arena %p next block has no PREV_FREE flag\n",
subheap->heap, pArena );
return FALSE;
}
/* Check next block back pointer */
if (*((ARENA_FREE **)((char *)(pArena + 1) +
(pArena->size & ARENA_SIZE_MASK)) - 1) != pArena)
{
ERR("Heap %p: arena %p has wrong back ptr %p\n",
subheap->heap, pArena,
*((ARENA_FREE **)((char *)(pArena+1) + (pArena->size & ARENA_SIZE_MASK)) - 1));
return FALSE;
}
}
return TRUE;
}
/***********************************************************************
* HEAP_ValidateInUseArena
*/
static BOOL HEAP_ValidateInUseArena( const SUBHEAP *subheap, const ARENA_INUSE *pArena, BOOL quiet )
{
const char *heapEnd = (const char *)subheap + subheap->size;
/* Check for unaligned pointers */
if ( (ULONG_PTR)pArena % ALIGNMENT != ARENA_OFFSET )
{
if ( quiet == NOISY )
{
ERR( "Heap %p: unaligned arena pointer %p\n", subheap->heap, pArena );
if ( TRACE_ON(heap) )
HEAP_Dump( subheap->heap );
}
else if ( WARN_ON(heap) )
{
WARN( "Heap %p: unaligned arena pointer %p\n", subheap->heap, pArena );
if ( TRACE_ON(heap) )
HEAP_Dump( subheap->heap );
}
return FALSE;
}
/* Check magic number */
if (pArena->magic != ARENA_INUSE_MAGIC)
{
if (quiet == NOISY) {
ERR("Heap %p: invalid in-use arena magic for %p\n", subheap->heap, pArena );
if (TRACE_ON(heap))
HEAP_Dump( subheap->heap );
} else if (WARN_ON(heap)) {
WARN("Heap %p: invalid in-use arena magic for %p\n", subheap->heap, pArena );
if (TRACE_ON(heap))
HEAP_Dump( subheap->heap );
}
return FALSE;
}
/* Check size flags */
if (pArena->size & ARENA_FLAG_FREE)
{
ERR("Heap %p: bad flags %08lx for in-use arena %p\n",
subheap->heap, pArena->size & ~ARENA_SIZE_MASK, pArena );
return FALSE;
}
/* Check arena size */
if ((const char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK) > heapEnd)
{
ERR("Heap %p: bad size %08lx for in-use arena %p\n",
subheap->heap, pArena->size & ARENA_SIZE_MASK, pArena );
return FALSE;
}
/* Check next arena PREV_FREE flag */
if (((const char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK) < heapEnd) &&
(*(const DWORD *)((const char *)(pArena + 1) + (pArena->size & ARENA_SIZE_MASK)) & ARENA_FLAG_PREV_FREE))
{
ERR("Heap %p: in-use arena %p next block has PREV_FREE flag\n",
subheap->heap, pArena );
return FALSE;
}
/* Check prev free arena */
if (pArena->size & ARENA_FLAG_PREV_FREE)
{
const ARENA_FREE *pPrev = *((const ARENA_FREE * const*)pArena - 1);
/* Check prev pointer */
if (!HEAP_IsValidArenaPtr( subheap->heap, pPrev ))
{
ERR("Heap %p: bad back ptr %p for arena %p\n",
subheap->heap, pPrev, pArena );
return FALSE;
}
/* Check that prev arena is free */
if (!(pPrev->size & ARENA_FLAG_FREE) ||
(pPrev->magic != ARENA_FREE_MAGIC))
{
ERR("Heap %p: prev arena %p invalid for in-use %p\n",
subheap->heap, pPrev, pArena );
return FALSE;
}
/* Check that prev arena is really the previous block */
if ((const char *)(pPrev + 1) + (pPrev->size & ARENA_SIZE_MASK) != (const char *)pArena)
{
ERR("Heap %p: prev arena %p is not prev for in-use %p\n",
subheap->heap, pPrev, pArena );
return FALSE;
}
}
return TRUE;
}
/***********************************************************************
* HEAP_IsRealArena [Internal]
* Validates a block is a valid arena.
*
* RETURNS
* TRUE: Success
* FALSE: Failure
*/
static BOOL HEAP_IsRealArena( HEAP *heapPtr, /* [in] ptr to the heap */
DWORD flags, /* [in] Bit flags that control access during operation */
LPCVOID block, /* [in] Optional pointer to memory block to validate */
BOOL quiet ) /* [in] Flag - if true, HEAP_ValidateInUseArena
* does not complain */
{
SUBHEAP *subheap;
BOOL ret = TRUE;
if (!heapPtr || (heapPtr->magic != HEAP_MAGIC))
{
ERR("Invalid heap %p!\n", heapPtr );
return FALSE;
}
flags &= HEAP_NO_SERIALIZE;
flags |= heapPtr->flags;
/* calling HeapLock may result in infinite recursion, so do the critsect directly */
if (!(flags & HEAP_NO_SERIALIZE))
RtlEnterHeapLock( &heapPtr->critSection );
if (block)
{
/* Only check this single memory block */
if (!(subheap = HEAP_FindSubHeap( heapPtr, block )) ||
((const char *)block < (char *)subheap + subheap->headerSize
+ sizeof(ARENA_INUSE)))
{
if (quiet == NOISY)
ERR("Heap %p: block %p is not inside heap\n", heapPtr, block );
else if (WARN_ON(heap))
WARN("Heap %p: block %p is not inside heap\n", heapPtr, block );
ret = FALSE;
} else
ret = HEAP_ValidateInUseArena( subheap, (const ARENA_INUSE *)block - 1, quiet );
if (!(flags & HEAP_NO_SERIALIZE))
RtlLeaveHeapLock( &heapPtr->critSection );
return ret;
}
subheap = &heapPtr->subheap;
while (subheap && ret)
{
char *ptr = (char *)subheap + subheap->headerSize;
while (ptr < (char *)subheap + subheap->size)
{
if (*(DWORD *)ptr & ARENA_FLAG_FREE)
{
if (!HEAP_ValidateFreeArena( subheap, (ARENA_FREE *)ptr )) {
ret = FALSE;
break;
}
ptr += sizeof(ARENA_FREE) + (*(DWORD *)ptr & ARENA_SIZE_MASK);
}
else
{
if (!HEAP_ValidateInUseArena( subheap, (ARENA_INUSE *)ptr, NOISY )) {
ret = FALSE;
break;
}
ptr += sizeof(ARENA_INUSE) + (*(DWORD *)ptr & ARENA_SIZE_MASK);
}
}
subheap = subheap->next;
}
if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection );
return ret;
}
/***********************************************************************
* HeapCreate (KERNEL32.336)
* RETURNS
* Handle of heap: Success
* NULL: Failure
*
* @implemented
*/
HANDLE NTAPI
RtlCreateHeap(ULONG flags,
PVOID addr,
SIZE_T totalSize,
SIZE_T commitSize,
PVOID Lock,
PRTL_HEAP_PARAMETERS Parameters)
{
SUBHEAP *subheap;
/* Allocate the heap block */
if (!totalSize)
{
totalSize = HEAP_DEF_SIZE;
flags |= HEAP_GROWABLE;
}
if (!(subheap = HEAP_CreateSubHeap( NULL, addr, flags, commitSize, totalSize, Parameters ))) return 0;
if (RtlpGetMode() == UserMode)
{
/* link it into the per-process heap list */
if (processHeap)
{
HEAP *heapPtr = subheap->heap;
RtlEnterHeapLock( &processHeap->critSection );
list_add_head( &processHeap->entry, &heapPtr->entry );
RtlLeaveHeapLock( &processHeap->critSection );
}
else
{
processHeap = subheap->heap; /* assume the first heap we create is the process main heap */
list_init( &processHeap->entry );
assert( (ULONG_PTR)processHeap->freeList % ALIGNMENT == ARENA_OFFSET );
}
}
return (HANDLE)subheap;
}
/***********************************************************************
* HeapDestroy (KERNEL32.337)
* RETURNS
* TRUE: Success
* FALSE: Failure
*
* @implemented
*
* RETURNS
* Success: A NULL HANDLE, if heap is NULL or it was destroyed
* Failure: The Heap handle, if heap is the process heap.
*/
HANDLE NTAPI
RtlDestroyHeap(HANDLE heap) /* [in] Handle of heap */
{
HEAP *heapPtr = HEAP_GetPtr( heap );
SUBHEAP *subheap;
DPRINT("%p\n", heap );
if (!heapPtr)
return heap;
if (RtlpGetMode() == UserMode)
{
if (heap == NtCurrentPeb()->ProcessHeap)
return heap; /* cannot delete the main process heap */
/* remove it from the per-process list */
RtlEnterHeapLock( &processHeap->critSection );
list_remove( &heapPtr->entry );
RtlLeaveHeapLock( &processHeap->critSection );
}
RtlDeleteHeapLock( &heapPtr->critSection );
subheap = &heapPtr->subheap;
while (subheap)
{
SUBHEAP *next = subheap->next;
SIZE_T size = 0;
void *addr = subheap;
ZwFreeVirtualMemory( NtCurrentProcess(), &addr, &size, MEM_RELEASE );
subheap = next;
}
return (HANDLE)NULL;
}
/***********************************************************************
* HeapAlloc (KERNEL32.334)
* RETURNS
* Pointer to allocated memory block
* NULL: Failure
* 0x7d030f60--invalid flags in RtlHeapAllocate
* @implemented
*/
PVOID NTAPI
RtlAllocateHeap(HANDLE heap, /* [in] Handle of private heap block */
ULONG flags, /* [in] Heap allocation control flags */
ULONG size) /* [in] Number of bytes to allocate */
{
ARENA_FREE *pArena;
ARENA_INUSE *pInUse;
SUBHEAP *subheap;
HEAP *heapPtr = HEAP_GetPtr( heap );
SIZE_T rounded_size;
/* Validate the parameters */
if (!heapPtr)
{
if (flags & HEAP_GENERATE_EXCEPTIONS)
RtlRaiseStatus( STATUS_NO_MEMORY );
return NULL;
}
//flags &= HEAP_GENERATE_EXCEPTIONS | HEAP_NO_SERIALIZE | HEAP_ZERO_MEMORY;
flags |= heapPtr->flags;
rounded_size = ROUND_SIZE(size);
if (rounded_size < size) /* overflow */
{
if (flags & HEAP_GENERATE_EXCEPTIONS) RtlRaiseStatus( STATUS_NO_MEMORY );
return NULL;
}
if (rounded_size < HEAP_MIN_DATA_SIZE) rounded_size = HEAP_MIN_DATA_SIZE;
if (!(flags & HEAP_NO_SERIALIZE)) RtlEnterHeapLock( &heapPtr->critSection );
/* Locate a suitable free block */
if (!(pArena = HEAP_FindFreeBlock( heapPtr, rounded_size, &subheap )))
{
TRACE("(%p,%08lx,%08lx): returning NULL\n",
heap, flags, size );
if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection );
if (flags & HEAP_GENERATE_EXCEPTIONS) RtlRaiseStatus( STATUS_NO_MEMORY );
return NULL;
}
/* Remove the arena from the free list */
list_remove( &pArena->entry );
/* Build the in-use arena */
pInUse = (ARENA_INUSE *)pArena;
/* in-use arena is smaller than free arena,
* so we have to add the difference to the size */
pInUse->size = (pInUse->size & ~ARENA_FLAG_FREE) + sizeof(ARENA_FREE) - sizeof(ARENA_INUSE);
pInUse->magic = ARENA_INUSE_MAGIC;
pInUse->has_user_data = 0;
/* Shrink the block */
HEAP_ShrinkBlock( subheap, pInUse, rounded_size );
pInUse->unused_bytes = (pInUse->size & ARENA_SIZE_MASK) - size;
if (flags & HEAP_ZERO_MEMORY)
{
clear_block( pInUse + 1, size );
mark_block_uninitialized( (char *)(pInUse + 1) + size, pInUse->unused_bytes );
}
else
mark_block_uninitialized( pInUse + 1, pInUse->size & ARENA_SIZE_MASK );
if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection );
TRACE("(%p,%08lx,%08lx): returning %p\n", heap, flags, size, pInUse + 1 );
return (LPVOID)(pInUse + 1);
}
/***********************************************************************
* HeapFree (KERNEL32.338)
* RETURNS
* TRUE: Success
* FALSE: Failure
*
* @implemented
*/
BOOLEAN NTAPI RtlFreeHeap(
HANDLE heap, /* [in] Handle of heap */
ULONG flags, /* [in] Heap freeing flags */
PVOID ptr /* [in] Address of memory to free */
)
{
ARENA_INUSE *pInUse;
SUBHEAP *subheap;
HEAP *heapPtr;
/* Validate the parameters */
if (!ptr) return TRUE; /* freeing a NULL ptr isn't an error in Win2k */
heapPtr = HEAP_GetPtr( heap );
if (!heapPtr)
{
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE );
return FALSE;
}
flags &= HEAP_NO_SERIALIZE;
flags |= heapPtr->flags;
if (!(flags & HEAP_NO_SERIALIZE)) RtlEnterHeapLock( &heapPtr->critSection );
if (!HEAP_IsRealArena( heapPtr, HEAP_NO_SERIALIZE, ptr, QUIET ))
{
if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection );
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_PARAMETER );
TRACE("(%p,%08lx,%p): returning FALSE\n", heap, flags, ptr );
return FALSE;
}
/* Some sanity checks */
pInUse = (ARENA_INUSE *)ptr - 1;
subheap = HEAP_FindSubHeap( heapPtr, pInUse );
if ((char *)pInUse < (char *)subheap + subheap->headerSize) goto error;
if (!HEAP_ValidateInUseArena( subheap, pInUse, QUIET )) goto error;
/* Turn the block into a free block */
HEAP_MakeInUseBlockFree( subheap, pInUse );
if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection );
TRACE("(%p,%08lx,%p): returning TRUE\n", heap, flags, ptr );
return TRUE;
error:
if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection );
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_PARAMETER );
TRACE("(%p,%08x,%p): returning FALSE\n", heap, flags, ptr );
return FALSE;
}
/***********************************************************************
* RtlReAllocateHeap
* PARAMS
* Heap [in] Handle of heap block
* Flags [in] Heap reallocation flags
* Ptr, [in] Address of memory to reallocate
* Size [in] Number of bytes to reallocate
*
* RETURNS
* Pointer to reallocated memory block
* NULL: Failure
* 0x7d030f60--invalid flags in RtlHeapAllocate
* @implemented
*/
PVOID NTAPI RtlReAllocateHeap(
HANDLE heap,
ULONG flags,
PVOID ptr,
SIZE_T size
)
{
ARENA_INUSE *pArena;
HEAP *heapPtr;
SUBHEAP *subheap;
SIZE_T oldBlockSize, oldActualSize, rounded_size;
if (!ptr) return NULL;
if (!(heapPtr = HEAP_GetPtr( heap )))
{
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE );
return NULL;
}
/* Validate the parameters */
//Flags &= HEAP_GENERATE_EXCEPTIONS | HEAP_NO_SERIALIZE | HEAP_ZERO_MEMORY |
// HEAP_REALLOC_IN_PLACE_ONLY;
flags |= heapPtr->flags;
if (!(flags & HEAP_NO_SERIALIZE)) RtlEnterHeapLock( &heapPtr->critSection );
rounded_size = ROUND_SIZE(size);
if (rounded_size < size) goto oom; /* overflow */
if (rounded_size < HEAP_MIN_DATA_SIZE) rounded_size = HEAP_MIN_DATA_SIZE;
pArena = (ARENA_INUSE *)ptr - 1;
if(!(subheap = HEAP_FindSubHeap( heapPtr, pArena ))) goto done;
if ((char *)pArena < (char *)subheap + subheap->headerSize) goto error;
if (!HEAP_ValidateInUseArena( subheap, pArena, QUIET )) goto error;
oldBlockSize = (pArena->size & ARENA_SIZE_MASK);
oldActualSize = (pArena->size & ARENA_SIZE_MASK) - pArena->unused_bytes;
if (rounded_size > oldBlockSize)
{
char *pNext = (char *)(pArena + 1) + oldBlockSize;
if ((pNext < (char *)subheap + subheap->size) &&
(*(DWORD *)pNext & ARENA_FLAG_FREE) &&
(oldBlockSize + (*(DWORD *)pNext & ARENA_SIZE_MASK) + sizeof(ARENA_FREE) >= rounded_size))
{
ARENA_FREE *pFree = (ARENA_FREE *)pNext;
list_remove( &pFree->entry );
pArena->size += (pFree->size & ARENA_SIZE_MASK) + sizeof(*pFree);
if (!HEAP_Commit( subheap, pArena, rounded_size )) goto oom;
HEAP_ShrinkBlock( subheap, pArena, rounded_size );
mark_block_initialized( pArena + 1, oldActualSize );
}
else /* Do it the hard way */
{
ARENA_FREE *pNew;
ARENA_INUSE *pInUse;
SUBHEAP *newsubheap;
if ((flags & HEAP_REALLOC_IN_PLACE_ONLY) ||
!(pNew = HEAP_FindFreeBlock( heapPtr, rounded_size, &newsubheap )))
goto oom;
/* Build the in-use arena */
list_remove( &pNew->entry );
pInUse = (ARENA_INUSE *)pNew;
pInUse->size = (pInUse->size & ~ARENA_FLAG_FREE)
+ sizeof(ARENA_FREE) - sizeof(ARENA_INUSE);
pInUse->magic = ARENA_INUSE_MAGIC;
HEAP_ShrinkBlock( newsubheap, pInUse, rounded_size );
mark_block_initialized( pInUse + 1, oldActualSize );
memcpy( pInUse + 1, pArena + 1, oldActualSize );
/* Free the previous block */
HEAP_MakeInUseBlockFree( subheap, pArena );
subheap = newsubheap;
pArena = pInUse;
}
}
else
{
HEAP_ShrinkBlock( subheap, pArena, rounded_size ); /* Shrink the block */
mark_block_initialized( pArena + 1, size );
}
pArena->unused_bytes = (pArena->size & ARENA_SIZE_MASK) - size;
/* Clear the extra bytes if needed */
if (size > oldActualSize)
{
if (flags & HEAP_ZERO_MEMORY)
{
clear_block( (char *)(pArena + 1) + oldActualSize, size - oldActualSize );
mark_block_uninitialized( (char *)(pArena + 1) + size,
(pArena->size & ARENA_SIZE_MASK) - oldActualSize );
}
else
mark_block_uninitialized( (char *)(pArena + 1) + oldActualSize,
(pArena->size & ARENA_SIZE_MASK) - oldActualSize );
}
/* Return the new arena */
done:
if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection );
TRACE("(%p,%08lx,%p,%08lx): returning %p\n", heap, flags, ptr, size, pArena + 1 );
return (LPVOID)(pArena + 1);
oom:
if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection );
if (flags & HEAP_GENERATE_EXCEPTIONS) RtlRaiseStatus( STATUS_NO_MEMORY );
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_NO_MEMORY );
TRACE("(%p,%08x,%p,%08lx): returning oom\n", heap, flags, ptr, size );
return NULL;
error:
if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection );
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_PARAMETER );
TRACE("(%p,%08x,%p,%08lx): returning error\n", heap, flags, ptr, size );
return NULL;
}
/***********************************************************************
* RtlCompactHeap
*
* @unimplemented
*/
ULONG NTAPI
RtlCompactHeap(HANDLE Heap,
ULONG Flags)
{
UNIMPLEMENTED;
return 0;
}
/***********************************************************************
* RtlLockHeap
* Attempts to acquire the critical section object for a specified heap.
*
* PARAMS
* Heap [in] Handle of heap to lock for exclusive access
*
* RETURNS
* TRUE: Success
* FALSE: Failure
*
* @implemented
*/
BOOLEAN NTAPI
RtlLockHeap(IN HANDLE Heap)
{
HEAP *heapPtr = HEAP_GetPtr( Heap );
if (!heapPtr)
return FALSE;
RtlEnterHeapLock( &heapPtr->critSection );
return TRUE;
}
/***********************************************************************
* RtlUnlockHeap
* Releases ownership of the critical section object.
*
* PARAMS
* Heap [in] Handle to the heap to unlock
*
* RETURNS
* TRUE: Success
* FALSE: Failure
*
* @implemented
*/
BOOLEAN NTAPI
RtlUnlockHeap(HANDLE Heap)
{
HEAP *heapPtr = HEAP_GetPtr( Heap );
if (!heapPtr)
return FALSE;
RtlLeaveHeapLock( &heapPtr->critSection );
return TRUE;
}
/***********************************************************************
* RtlSizeHeap
* PARAMS
* Heap [in] Handle of heap
* Flags [in] Heap size control flags
* Ptr [in] Address of memory to return size for
*
* RETURNS
* Size in bytes of allocated memory
* 0xffffffff: Failure
*
* @implemented
*/
ULONG NTAPI
RtlSizeHeap(
HANDLE heap,
ULONG flags,
PVOID ptr
)
{
SIZE_T ret;
HEAP *heapPtr = HEAP_GetPtr( heap );
if (!heapPtr)
{
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE );
return MAXULONG;
}
flags &= HEAP_NO_SERIALIZE;
flags |= heapPtr->flags;
if (!(flags & HEAP_NO_SERIALIZE)) RtlEnterHeapLock( &heapPtr->critSection );
if (!HEAP_IsRealArena( heapPtr, HEAP_NO_SERIALIZE, ptr, QUIET ))
{
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_PARAMETER );
ret = MAXULONG;
}
else
{
const ARENA_INUSE *pArena = (const ARENA_INUSE *)ptr - 1;
ret = (pArena->size & ARENA_SIZE_MASK) - pArena->unused_bytes;
}
if (!(flags & HEAP_NO_SERIALIZE)) RtlLeaveHeapLock( &heapPtr->critSection );
TRACE("(%p,%08lx,%p): returning %08lx\n", heap, flags, ptr, ret );
return ret;
}
/***********************************************************************
* RtlValidateHeap
* Validates a specified heap.
*
* PARAMS
* Heap [in] Handle to the heap
* Flags [in] Bit flags that control access during operation
* Block [in] Optional pointer to memory block to validate
*
* NOTES
* Flags is ignored.
*
* RETURNS
* TRUE: Success
* FALSE: Failure
*
* @implemented
*/
BOOLEAN NTAPI RtlValidateHeap(
HANDLE Heap,
ULONG Flags,
PVOID Block
)
{
HEAP *heapPtr = HEAP_GetPtr( Heap );
if (!heapPtr)
return FALSE;
return HEAP_IsRealArena( heapPtr, Flags, Block, QUIET );
}
VOID
RtlInitializeHeapManager(VOID)
{
PPEB Peb;
Peb = NtCurrentPeb();
Peb->NumberOfHeaps = 0;
Peb->MaximumNumberOfHeaps = -1; /* no limit */
Peb->ProcessHeaps = NULL;
//RtlInitializeHeapLock(&RtlpProcessHeapsListLock);
}
/*
* @implemented
*/
NTSTATUS NTAPI
RtlEnumProcessHeaps(PHEAP_ENUMERATION_ROUTINE HeapEnumerationRoutine,
PVOID lParam)
{
NTSTATUS Status = STATUS_SUCCESS;
struct list *ptr=NULL;
RtlEnterHeapLock(&processHeap->critSection);
Status=HeapEnumerationRoutine(processHeap,lParam);
LIST_FOR_EACH( ptr, &processHeap->entry )
{
if (!NT_SUCCESS(Status)) break;
Status = HeapEnumerationRoutine(ptr,lParam);
}
RtlLeaveHeapLock(&processHeap->critSection);
return Status;
}
/*
* @implemented
*/
ULONG NTAPI
RtlGetProcessHeaps(ULONG count,
HANDLE *heaps )
{
ULONG total = 1; /* main heap */
struct list *ptr;
ULONG i=0;
RtlEnterHeapLock( &processHeap->critSection );
LIST_FOR_EACH( ptr, &processHeap->entry ) total++;
//if (total <= count)
{
*(heaps++) = processHeap;
i++;
LIST_FOR_EACH( ptr, &processHeap->entry )
{
if (i >= count) break;
i++;
*(heaps++) = LIST_ENTRY( ptr, HEAP, entry );
}
}
RtlLeaveHeapLock( &processHeap->critSection );
return i;
}
/*
* @implemented
*/
BOOLEAN NTAPI
RtlValidateProcessHeaps(VOID)
{
BOOLEAN Result = TRUE;
HEAP ** pptr;
RtlEnterHeapLock( &processHeap->critSection );
for (pptr = (HEAP**)&NtCurrentPeb()->ProcessHeaps; *pptr; pptr++)
{
if (!RtlValidateHeap(*pptr, 0, NULL))
{
Result = FALSE;
break;
}
}
RtlLeaveHeapLock( &processHeap->critSection );
return Result;
}
/*
* @unimplemented
*/
BOOLEAN NTAPI
RtlZeroHeap(
IN PVOID HeapHandle,
IN ULONG Flags
)
{
UNIMPLEMENTED;
return FALSE;
}
/*
* @implemented
*/
BOOLEAN
NTAPI
RtlSetUserValueHeap(IN PVOID HeapHandle,
IN ULONG Flags,
IN PVOID BaseAddress,
IN PVOID UserValue)
{
HEAP *heapPtr;
PHEAP_USER_DATA udata;
heapPtr = HEAP_GetPtr(HeapHandle);
if (!heapPtr)
{
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE );
return FALSE;
}
udata = HEAP_GetUserData(heapPtr, BaseAddress);
if (!udata)
{
udata = HEAP_AllocUserData(heapPtr, BaseAddress);
if (!udata) return FALSE;
}
udata->UserValue = UserValue;
return TRUE;
}
/*
* @implemented
*/
BOOLEAN
NTAPI
RtlSetUserFlagsHeap(IN PVOID HeapHandle,
IN ULONG Flags,
IN PVOID BaseAddress,
IN ULONG UserFlags)
{
HEAP *heapPtr;
PHEAP_USER_DATA udata;
heapPtr = HEAP_GetPtr(HeapHandle);
if (!heapPtr)
{
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE );
return FALSE;
}
udata = HEAP_GetUserData(heapPtr, BaseAddress);
if (!udata)
{
udata = HEAP_AllocUserData(heapPtr, BaseAddress);
if (!udata) return FALSE;
}
udata->UserFlags = UserFlags & HEAP_SETTABLE_USER_FLAGS;
return TRUE;
}
/*
* @implemented
*/
BOOLEAN
NTAPI
RtlGetUserInfoHeap(IN PVOID HeapHandle,
IN ULONG Flags,
IN PVOID BaseAddress,
OUT PVOID *UserValue,
OUT PULONG UserFlags)
{
HEAP *heapPtr;
PHEAP_USER_DATA udata;
heapPtr = HEAP_GetPtr(HeapHandle);
if (!heapPtr)
{
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_HANDLE );
return FALSE;
}
udata = HEAP_GetUserData(heapPtr, BaseAddress);
if (!udata)
{
RtlSetLastWin32ErrorAndNtStatusFromNtStatus( STATUS_INVALID_PARAMETER );
return FALSE;
}
if (UserValue) *UserValue = udata->UserValue;
if (UserFlags) *UserFlags = udata->UserFlags;
return TRUE;
}
/*
* @unimplemented
*/
NTSTATUS
NTAPI
RtlUsageHeap(IN HANDLE Heap,
IN ULONG Flags,
OUT PRTL_HEAP_USAGE Usage)
{
/* TODO */
UNIMPLEMENTED;
return STATUS_NOT_IMPLEMENTED;
}
PWSTR
NTAPI
RtlQueryTagHeap(IN PVOID HeapHandle,
IN ULONG Flags,
IN USHORT TagIndex,
IN BOOLEAN ResetCounters,
OUT PRTL_HEAP_TAG_INFO HeapTagInfo)
{
/* TODO */
UNIMPLEMENTED;
return NULL;
}
ULONG
NTAPI
RtlExtendHeap(IN HANDLE Heap,
IN ULONG Flags,
IN PVOID P,
IN ULONG Size)
{
/* TODO */
UNIMPLEMENTED;
return 0;
}
ULONG
NTAPI
RtlCreateTagHeap(IN HANDLE HeapHandle,
IN ULONG Flags,
IN PWSTR TagName,
IN PWSTR TagSubName)
{
/* TODO */
UNIMPLEMENTED;
return 0;
}
NTSTATUS
NTAPI
RtlWalkHeap(IN HANDLE HeapHandle,
IN PVOID HeapEntry)
{
UNIMPLEMENTED;
return STATUS_NOT_IMPLEMENTED;
}
PVOID
NTAPI
RtlProtectHeap(IN PVOID HeapHandle,
IN BOOLEAN ReadOnly)
{
UNIMPLEMENTED;
return NULL;
}
DWORD
NTAPI
RtlSetHeapInformation(IN HANDLE HeapHandle OPTIONAL,
IN HEAP_INFORMATION_CLASS HeapInformationClass,
IN PVOID HeapInformation,
IN SIZE_T HeapInformationLength)
{
UNIMPLEMENTED;
return 0;
}
DWORD
NTAPI
RtlQueryHeapInformation(HANDLE HeapHandle,
HEAP_INFORMATION_CLASS HeapInformationClass,
PVOID HeapInformation OPTIONAL,
SIZE_T HeapInformationLength OPTIONAL,
PSIZE_T ReturnLength OPTIONAL)
{
UNIMPLEMENTED;
return 0;
}
DWORD
NTAPI
RtlMultipleAllocateHeap(IN PVOID HeapHandle,
IN DWORD Flags,
IN SIZE_T Size,
IN DWORD Count,
OUT PVOID *Array)
{
UNIMPLEMENTED;
return 0;
}
DWORD
NTAPI
RtlMultipleFreeHeap(IN PVOID HeapHandle,
IN DWORD Flags,
IN DWORD Count,
OUT PVOID *Array)
{
UNIMPLEMENTED;
return 0;
}