reactos/subsystems/mvdm/ntvdm/hardware/cmos.h

155 lines
4.6 KiB
C
Raw Normal View History

/*
* COPYRIGHT: GPL - See COPYING in the top level directory
* PROJECT: ReactOS Virtual DOS Machine
* FILE: subsystems/mvdm/ntvdm/hardware/cmos.h
* PURPOSE: CMOS Real Time Clock emulation
* PROGRAMMERS: Aleksandar Andrejevic <theflash AT sdf DOT lonestar DOT org>
*/
#ifndef _CMOS_H_
#define _CMOS_H_
/* DEFINES ********************************************************************/
#define RTC_IRQ_NUMBER 8
#define CMOS_ADDRESS_PORT 0x70
#define CMOS_DATA_PORT 0x71
#define CMOS_DISABLE_NMI (1 << 7)
#define CMOS_BATTERY_OK 0x80
/* Status Register B flags */
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
#define CMOS_STB_DST (1 << 0)
#define CMOS_STB_24HOUR (1 << 1)
#define CMOS_STB_BINARY (1 << 2)
#define CMOS_STB_SQUARE_WAVE (1 << 3)
#define CMOS_STB_INT_ON_UPDATE (1 << 4)
#define CMOS_STB_INT_ON_ALARM (1 << 5)
#define CMOS_STB_INT_PERIODIC (1 << 6)
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
#define CMOS_STB_UPDATE_CYCLE (1 << 7)
/* Status Register C flags */
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
#define CMOS_STC_UF (1 << 4)
#define CMOS_STC_AF (1 << 5)
#define CMOS_STC_PF (1 << 6)
#define CMOS_STC_IRQF (1 << 7)
/* Default register values */
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
#define CMOS_DEFAULT_STA 0x26
#define CMOS_DEFAULT_STB CMOS_STB_24HOUR
// Bit 0: Floppy, Bit 1: FPU, Bit 2: Mouse, Bits 4-5: 80x25 Color Video, Bits 6-7: 2 floppy drives
#define CMOS_EQUIPMENT_LIST 0x6F
#define WRITE_CMOS_DATA(Cmos, Value) \
((Cmos).StatusRegB & CMOS_STB_BINARY) ? (Value) : BCD_TO_BINARY(Value)
#define READ_CMOS_DATA(Cmos, Value) \
((Cmos).StatusRegB & CMOS_STB_BINARY) ? (Value) : BINARY_TO_BCD(Value)
typedef enum _CMOS_REGISTERS
{
CMOS_REG_SECONDS,
CMOS_REG_ALARM_SEC,
CMOS_REG_MINUTES,
CMOS_REG_ALARM_MIN,
CMOS_REG_HOURS,
CMOS_REG_ALARM_HRS,
CMOS_REG_DAY_OF_WEEK,
CMOS_REG_DAY,
CMOS_REG_MONTH,
CMOS_REG_YEAR,
CMOS_REG_STATUS_A,
CMOS_REG_STATUS_B,
CMOS_REG_STATUS_C,
CMOS_REG_STATUS_D,
CMOS_REG_DIAGNOSTICS,
CMOS_REG_SHUTDOWN_STATUS,
CMOS_REG_EQUIPMENT_LIST = 0x14,
[NTVDM] - Move all the hardware initialization to EmulatorInitialize (since emulator.c can be viewed as support functions for emulating a PC motherboard) --> PS2 and VGA go there. - Break bios.c into bios.c and kbdbios.c (the keyboard bios module) (according to the IBM documentation as well as other emulator sources or SeaBIOS or...). - Move Exception handling from int32.c to emulator.c, because it's something tight to the emulator, not to the interrupt system by itself (yet it happens that INT 00h to 07h are commonly set to some exception handlers). In the bios.c, initialize those vectors with the default exception handler. - Handling IRQs is done fully in bios.c now: introduce PicSetIRQMask and EnableHwIRQ helper functions (adapted from their equivalents from SeaBIOS) that allows the bios to set (and activate in the PIC) a given IRQ with its corresponding handler. Also introduce PicIRQComplete that serves as a PIC IRQ completer (i.e. sends the EOI to the right PIC(s)). - Continuing on that, at the moment I set dumb default PIC IRQ handlers for IRQ 08h - 0Fh and IRQ 70h - 77h). - By default I disable all the IRQs; there are then set on-demand with EnableHwIRQ. - Rework the POST (aka. BiosInitialize function): * the memory size is now get from the CMOS (as well as the extended memory size via INT 12h, AH=88h), * then we initialize the interrupts, * then platform hardware (ie. the chips) are initialized, * and finally the keyboard and video bioses. - As said before, move memory sizes into the CMOS. - Simplify video bios initialization. svn path=/branches/ntvdm/; revision=61796
2014-01-25 00:21:51 +00:00
CMOS_REG_BASE_MEMORY_LOW = 0x15,
CMOS_REG_BASE_MEMORY_HIGH = 0x16,
CMOS_REG_EXT_MEMORY_LOW = 0x17,
CMOS_REG_EXT_MEMORY_HIGH = 0x18,
CMOS_REG_SYSOP = 0x2D,
[NTVDM] - Move all the hardware initialization to EmulatorInitialize (since emulator.c can be viewed as support functions for emulating a PC motherboard) --> PS2 and VGA go there. - Break bios.c into bios.c and kbdbios.c (the keyboard bios module) (according to the IBM documentation as well as other emulator sources or SeaBIOS or...). - Move Exception handling from int32.c to emulator.c, because it's something tight to the emulator, not to the interrupt system by itself (yet it happens that INT 00h to 07h are commonly set to some exception handlers). In the bios.c, initialize those vectors with the default exception handler. - Handling IRQs is done fully in bios.c now: introduce PicSetIRQMask and EnableHwIRQ helper functions (adapted from their equivalents from SeaBIOS) that allows the bios to set (and activate in the PIC) a given IRQ with its corresponding handler. Also introduce PicIRQComplete that serves as a PIC IRQ completer (i.e. sends the EOI to the right PIC(s)). - Continuing on that, at the moment I set dumb default PIC IRQ handlers for IRQ 08h - 0Fh and IRQ 70h - 77h). - By default I disable all the IRQs; there are then set on-demand with EnableHwIRQ. - Rework the POST (aka. BiosInitialize function): * the memory size is now get from the CMOS (as well as the extended memory size via INT 12h, AH=88h), * then we initialize the interrupts, * then platform hardware (ie. the chips) are initialized, * and finally the keyboard and video bioses. - As said before, move memory sizes into the CMOS. - Simplify video bios initialization. svn path=/branches/ntvdm/; revision=61796
2014-01-25 00:21:51 +00:00
CMOS_REG_ACTUAL_EXT_MEMORY_LOW = 0x30,
CMOS_REG_ACTUAL_EXT_MEMORY_HIGH = 0x31,
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
CMOS_REG_CENTURY = 0x32,
[NTVDM] - Move all the hardware initialization to EmulatorInitialize (since emulator.c can be viewed as support functions for emulating a PC motherboard) --> PS2 and VGA go there. - Break bios.c into bios.c and kbdbios.c (the keyboard bios module) (according to the IBM documentation as well as other emulator sources or SeaBIOS or...). - Move Exception handling from int32.c to emulator.c, because it's something tight to the emulator, not to the interrupt system by itself (yet it happens that INT 00h to 07h are commonly set to some exception handlers). In the bios.c, initialize those vectors with the default exception handler. - Handling IRQs is done fully in bios.c now: introduce PicSetIRQMask and EnableHwIRQ helper functions (adapted from their equivalents from SeaBIOS) that allows the bios to set (and activate in the PIC) a given IRQ with its corresponding handler. Also introduce PicIRQComplete that serves as a PIC IRQ completer (i.e. sends the EOI to the right PIC(s)). - Continuing on that, at the moment I set dumb default PIC IRQ handlers for IRQ 08h - 0Fh and IRQ 70h - 77h). - By default I disable all the IRQs; there are then set on-demand with EnableHwIRQ. - Rework the POST (aka. BiosInitialize function): * the memory size is now get from the CMOS (as well as the extended memory size via INT 12h, AH=88h), * then we initialize the interrupts, * then platform hardware (ie. the chips) are initialized, * and finally the keyboard and video bioses. - As said before, move memory sizes into the CMOS. - Simplify video bios initialization. svn path=/branches/ntvdm/; revision=61796
2014-01-25 00:21:51 +00:00
CMOS_REG_MAX = 0x40
} CMOS_REGISTERS, *PCMOS_REGISTERS;
/*
* CMOS Memory Map
*
* See the following documentation for more information:
* http://www.intel-assembler.it/portale/5/cmos-memory-map-123/cmos-memory-map-123.asp
* http://wiki.osdev.org/CMOS
* http://www.walshcomptech.com/ohlandl/config/cmos_registers.html
* http://www.fysnet.net/cmosinfo.htm
* http://www.bioscentral.com/misc/cmosmap.htm
*/
#pragma pack(push, 1)
typedef struct
{
BYTE Second; // 0x00
BYTE AlarmSecond; // 0x01
BYTE Minute; // 0x02
BYTE AlarmMinute; // 0x03
BYTE Hour; // 0x04
BYTE AlarmHour; // 0x05
BYTE DayOfWeek; // 0x06
BYTE Day; // 0x07
BYTE Month; // 0x08
BYTE Year; // 0x09
BYTE StatusRegA; // 0x0a
BYTE StatusRegB; // 0x0b
} CMOS_CLOCK, *PCMOS_CLOCK;
typedef struct
{
union
{
struct
{
CMOS_CLOCK; // 0x00 - 0x0b
BYTE StatusRegC; // 0x0c
BYTE StatusRegD; // 0x0d
BYTE Diagnostics; // 0x0e
BYTE ShutdownStatus; // 0x0f
BYTE FloppyDrivesType; // 0x10
BYTE Reserved0; // 0x11
BYTE HardDrivesType; // 0x12
BYTE Reserved1; // 0x13
BYTE EquipmentList; // 0x14
BYTE BaseMemoryLow; // 0x15
BYTE BaseMemoryHigh; // 0x16
BYTE ExtMemoryLow; // 0x17
BYTE ExtMemoryHigh; // 0x18
BYTE ExtHardDrivesType[2]; // 0x19 - 0x1a
BYTE Reserved2[0x15]; // 0x1b
BYTE ActualExtMemoryLow; // 0x30
BYTE ActualExtMemoryHigh; // 0x31
BYTE Century; // 0x32
};
BYTE Regs1[0x10]; // 0x00 - 0x0f
BYTE Regs [0x40]; // 0x00 - 0x3f
};
/*
* Extended information 0x40 - 0x7f
*/
} CMOS_MEMORY, *PCMOS_MEMORY;
#pragma pack(pop)
C_ASSERT(sizeof(CMOS_MEMORY) == 0x40);
/* FUNCTIONS ******************************************************************/
BOOLEAN IsNmiEnabled(VOID);
DWORD RtcGetTicksPerSecond(VOID);
VOID CmosInitialize(VOID);
VOID CmosCleanup(VOID);
#endif /* _CMOS_H_ */