reactos/sdk/lib/cmlib/cmcheck.c

1719 lines
59 KiB
C
Raw Normal View History

/*
* PROJECT: ReactOS Kernel
* LICENSE: GPL-2.0-or-later (https://spdx.org/licenses/GPL-2.0-or-later)
* PURPOSE: Configuration Manager Library - Registry Validation
* COPYRIGHT: Copyright 2022 George Bișoc <george.bisoc@reactos.org>
*/
#include "cmlib.h"
#define NDEBUG
#include <debug.h>
/* STRUCTURES ****************************************************************/
typedef struct _CMP_REGISTRY_STACK_WORK_STATE
{
ULONG ChildCellIndex;
HCELL_INDEX Parent;
HCELL_INDEX Current;
HCELL_INDEX Sibling;
} CMP_REGISTRY_STACK_WORK_STATE, *PCMP_REGISTRY_STACK_WORK_STATE;
/* DEFINES ******************************************************************/
#define GET_HHIVE(CmHive) (&((CmHive)->Hive))
#define GET_HHIVE_ROOT_CELL(Hive) ((Hive)->BaseBlock->RootCell)
#define GET_HHIVE_BIN(Hive, StorageIndex, BlockIndex) ((PHBIN)Hive->Storage[StorageIndex].BlockList[BlockIndex].BinAddress)
#define GET_CELL_BIN(Bin) ((PHCELL)((PUCHAR)Bin + sizeof(HBIN)))
#define IS_CELL_VOLATILE(Cell) (HvGetCellType(Cell) == Volatile)
#if !defined(CMLIB_HOST) && !defined(_BLDR_)
extern PCMHIVE CmiVolatileHive;
#endif
#define CMP_PRIOR_STACK 1
#define CMP_REGISTRY_MAX_LEVELS_TREE_DEPTH 512
#define CMP_KEY_SIZE_THRESHOLD 0x45C
#define CMP_VOLATILE_LIST_UNINTIALIZED 0xBAADF00D
/* PRIVATE FUNCTIONS **********************************************************/
/**
* @brief
* Validates the lexicographical order between a child
* and prior sibling of the said child.
*
* @param[in] Hive
* A pointer to a hive descriptor of which lexicographical
* order of keys are to be checked.
*
* @param[in] Child
* A child subkey cell used for lexicographical order
* validation checks.
*
* @param[in] Sibling
* A subkey cell which is the prior sibling of the child.
* This is used in conjuction with the child to perfrom
* lexical order checks.
*
* @return
* Returns TRUE if the order is legal, FALSE otherwise.
*/
static
BOOLEAN
CmpValidateLexicalOrder(
_In_ PHHIVE Hive,
_In_ HCELL_INDEX Child,
_In_ HCELL_INDEX Sibling)
{
LONG Result;
UNICODE_STRING ChildString, SiblingString;
PCM_KEY_NODE ChildNode, SiblingNode;
PAGED_CODE();
/* Obtain the child node */
ChildNode = (PCM_KEY_NODE)HvGetCell(Hive, Child);
if (!ChildNode)
{
/* Couldn't get the child node, bail out */
DPRINT1("Failed to get the child node\n");
return FALSE;
}
/* Obtain the sibling node */
SiblingNode = (PCM_KEY_NODE)HvGetCell(Hive, Sibling);
if (!SiblingNode)
{
/* Couldn't get the sibling node, bail out */
DPRINT1("Failed to get the sibling node\n");
return FALSE;
}
/* CASE 1: Two distinct non-compressed Unicode names */
if ((ChildNode->Flags & KEY_COMP_NAME) == 0 &&
(SiblingNode->Flags & KEY_COMP_NAME) == 0)
{
/* Build the sibling string */
SiblingString.Buffer = &(SiblingNode->Name[0]);
SiblingString.Length = SiblingNode->NameLength;
SiblingString.MaximumLength = SiblingNode->NameLength;
/* Build the child string */
ChildString.Buffer = &(ChildNode->Name[0]);
ChildString.Length = ChildNode->NameLength;
ChildString.MaximumLength = ChildNode->NameLength;
Result = RtlCompareUnicodeString(&SiblingString, &ChildString, TRUE);
if (Result >= 0)
{
DPRINT1("The sibling node name is greater or equal to that of the child\n");
return FALSE;
}
}
/* CASE 2: Both compressed Unicode names */
if ((ChildNode->Flags & KEY_COMP_NAME) &&
(SiblingNode->Flags & KEY_COMP_NAME))
{
/* FIXME: Checks for two compressed names not implemented yet */
DPRINT("Lexicographical order checks for two compressed names is UNIMPLEMENTED, assume the key is healthy...\n");
return TRUE;
}
/* CASE 3: The child name is compressed but the sibling is not */
if ((ChildNode->Flags & KEY_COMP_NAME) &&
(SiblingNode->Flags & KEY_COMP_NAME) == 0)
{
SiblingString.Buffer = &(SiblingNode->Name[0]);
SiblingString.Length = SiblingNode->NameLength;
SiblingString.MaximumLength = SiblingNode->NameLength;
Result = CmpCompareCompressedName(&SiblingString,
ChildNode->Name,
ChildNode->NameLength);
if (Result >= 0)
{
DPRINT1("The sibling node name is greater or equal to that of the compressed child\n");
return FALSE;
}
}
/* CASE 4: The sibling name is compressed but the child is not */
if ((SiblingNode->Flags & KEY_COMP_NAME) &&
(ChildNode->Flags & KEY_COMP_NAME) == 0)
{
ChildString.Buffer = &(ChildNode->Name[0]);
ChildString.Length = ChildNode->NameLength;
ChildString.MaximumLength = ChildNode->NameLength;
Result = CmpCompareCompressedName(&ChildString,
SiblingNode->Name,
SiblingNode->NameLength);
if (Result <= 0)
{
DPRINT1("The compressed sibling node name is lesser or equal to that of the child\n");
return FALSE;
}
}
/*
* One of the cases above has met the conditions
* successfully, the lexicographical order is legal.
*/
return TRUE;
}
/**
* @brief
* Validates the class of a given key cell.
*
* @param[in] Hive
* A pointer to a hive descriptor of which
* the registry call is to be validated.
*
* @param[in] CurrentCell
* The current key cell that the class points to.
*
* @param[in] CellData
* A pointer to cell data of the current key cell
* that contains the class to be validated.
*
* @return
* Returns CM_CHECK_REGISTRY_GOOD if the class is in good shape.
* The same CM status code is returned if the class doesn't
* but the class length says otherwise. CM_CHECK_REGISTRY_KEY_CLASS_UNALLOCATED
* is returned if the class cell is not allocated.
*/
static
CM_CHECK_REGISTRY_STATUS
CmpValidateClass(
_In_ PHHIVE Hive,
_In_ HCELL_INDEX CurrentCell,
_Inout_ PCELL_DATA CellData)
{
ULONG ClassLength;
HCELL_INDEX ClassCell;
PAGED_CODE();
ASSERT(CurrentCell != HCELL_NIL);
ASSERT(CellData);
/* Cache the class cell and validate it (if any) */
ClassCell = CellData->u.KeyNode.Class;
ClassLength = CellData->u.KeyNode.ClassLength;
if (ClassLength > 0)
{
if (ClassCell == HCELL_NIL)
{
/*
* Somebody has freed the class but left the
* length as is, reset it.
*/
DPRINT1("The key node class is NIL but the class length is not 0, resetting it\n");
HvMarkCellDirty(Hive, CurrentCell, FALSE);
CellData->u.KeyNode.ClassLength = 0;
return CM_CHECK_REGISTRY_GOOD;
}
if (!HvIsCellAllocated(Hive, ClassCell))
{
DPRINT1("The key class is not allocated\n");
return CM_CHECK_REGISTRY_KEY_CLASS_UNALLOCATED;
}
}
return CM_CHECK_REGISTRY_GOOD;
}
/**
* @brief
* Validates each value in the list by count. A
* value that is damaged gets removed from the list.
* This routine performs self-healing process in
* this case.
*
* @param[in] Hive
* A pointer to a hive descriptor of which a list
* of registry values is to be validated.
*
* @param[in] CurrentCell
* The current key cell that the value list points to.
*
* @param[in] ListCount
* The list count that describes the actual number of
* values in the list.
*
* @param[in] ValueListData
* A pointer to cell data of the current key cell
* that contains the value list to be validated.
*
* @param[out] ValuesRemoved
* When the function finishes doing its operations,
* this parameter contains the amount of removed values
* from the list. A value of 0 indicates no values have
* been removed (which that would imply a self-healing
* process of the value list has occurred).
*
* @param[in] FixHive
* If set to TRUE, the target hive will be fixed.
*
* @return
* Returns CM_CHECK_REGISTRY_GOOD if the value list is
* sane. CM_CHECK_REGISTRY_VALUE_CELL_NIL is returned
* if a certain value cell is HCELL_NIL at specific
* count index. CM_CHECK_REGISTRY_VALUE_CELL_UNALLOCATED is
* returned if a certain value cell is unallocated at specific
* count index. CM_CHECK_REGISTRY_VALUE_CELL_DATA_NOT_FOUND is
* returned if cell data could not be mapped from the value cell,
* the value list is totally torn apart in this case.
* CM_CHECK_REGISTRY_VALUE_CELL_SIZE_NOT_SANE is returned if the
* value's size is bogus. CM_CHECK_REGISTRY_CORRUPT_VALUE_DATA
* is returned if the data inside the value is HCELL_NIL.
* CM_CHECK_REGISTRY_DATA_CELL_NOT_ALLOCATED is returned if the
* data cell inside the value is not allocated.
* CM_CHECK_REGISTRY_BAD_KEY_VALUE_SIGNATURE is returned if the
* value's signature is not valid.
*/
static
CM_CHECK_REGISTRY_STATUS
CmpValidateValueListByCount(
_In_ PHHIVE Hive,
_In_ HCELL_INDEX CurrentCell,
_In_ ULONG ListCount,
_In_ PCELL_DATA ValueListData,
_Out_ PULONG ValuesRemoved,
_In_ BOOLEAN FixHive)
{
ULONG ValueDataSize;
ULONG ListCountIndex;
ULONG DataSize;
HCELL_INDEX DataCell;
HCELL_INDEX ValueCell;
PCELL_DATA ValueData;
ULONG ValueNameLength, TotalValueNameLength;
PAGED_CODE();
ASSERT(ValueListData);
ASSERT(ListCount != 0);
/* Assume we haven't removed any value counts for now */
*ValuesRemoved = 0;
/*
* Begin looping each value in the list and
* validate it accordingly.
*/
ListCountIndex = 0;
while (ListCountIndex < ListCount)
{
ValueCell = ValueListData->u.KeyList[ListCountIndex];
if (ValueCell == HCELL_NIL)
{
if (!CmpRepairValueListCount(Hive,
CurrentCell,
ListCountIndex,
ValueListData,
FixHive))
{
DPRINT1("The value cell is NIL (at index %lu, list count %lu)\n",
ListCountIndex, ListCount);
return CM_CHECK_REGISTRY_VALUE_CELL_NIL;
}
/* Decrease the list count and go to the next value */
ListCount--;
*ValuesRemoved++;
DPRINT1("Damaged value removed, continuing with the next value...\n");
continue;
}
if (!HvIsCellAllocated(Hive, ValueCell))
{
if (!CmpRepairValueListCount(Hive,
CurrentCell,
ListCountIndex,
ValueListData,
FixHive))
{
DPRINT1("The value cell is not allocated (at index %lu, list count %lu)\n",
ListCountIndex, ListCount);
return CM_CHECK_REGISTRY_VALUE_CELL_UNALLOCATED;
}
/* Decrease the list count and go to the next value */
ListCount--;
*ValuesRemoved++;
DPRINT1("Damaged value removed, continuing with the next value...\n");
continue;
}
/* Obtain a cell data from this value */
ValueData = (PCELL_DATA)HvGetCell(Hive, ValueCell);
if (!ValueData)
{
DPRINT1("Cell data of the value cell not found (at index %lu, value count %lu)\n",
ListCountIndex, ListCount);
return CM_CHECK_REGISTRY_VALUE_CELL_DATA_NOT_FOUND;
}
/* Check that the value size is sane */
ValueDataSize = HvGetCellSize(Hive, ValueData);
ValueNameLength = ValueData->u.KeyValue.NameLength;
TotalValueNameLength = ValueNameLength + FIELD_OFFSET(CM_KEY_VALUE, Name);
if (TotalValueNameLength > ValueDataSize)
{
if (!CmpRepairValueListCount(Hive,
CurrentCell,
ListCountIndex,
ValueListData,
FixHive))
{
DPRINT1("The total size is bigger than the actual cell size (total size %lu, cell size %lu, at index %lu)\n",
TotalValueNameLength, ValueDataSize, ListCountIndex);
return CM_CHECK_REGISTRY_VALUE_CELL_SIZE_NOT_SANE;
}
/* Decrease the list count and go to the next value */
ListCount--;
*ValuesRemoved++;
DPRINT1("Damaged value removed, continuing with the next value...\n");
continue;
}
/*
* The value cell has a sane size. The last thing
* to validate is the actual data of the value cell.
* That is, we want that the data itself and length
* are consistent. Technically speaking, value keys
* that are small are directly located in the value
* cell and it's built-in, in other words, the data
* is immediately present in the cell so we don't have
* to bother validating them since they're alright on
* their own. This can't be said the same about normal
* values though.
*/
DataCell = ValueData->u.KeyValue.Data;
if (!CmpIsKeyValueSmall(&DataSize, ValueData->u.KeyValue.DataLength))
{
/* Validate the actual data based on size */
if (DataSize == 0)
{
if (DataCell != HCELL_NIL)
{
if (!CmpRepairValueListCount(Hive,
CurrentCell,
ListCountIndex,
ValueListData,
FixHive))
{
DPRINT1("The data is not NIL on a 0 length, data is corrupt\n");
return CM_CHECK_REGISTRY_CORRUPT_VALUE_DATA;
}
/* Decrease the list count and go to the next value */
ListCount--;
*ValuesRemoved++;
DPRINT1("Damaged value removed, continuing with the next value...\n");
continue;
}
}
else
{
if (!HvIsCellAllocated(Hive, DataCell))
{
if (!CmpRepairValueListCount(Hive,
CurrentCell,
ListCountIndex,
ValueListData,
FixHive))
{
DPRINT1("The data is not NIL on a 0 length, data is corrupt\n");
return CM_CHECK_REGISTRY_DATA_CELL_NOT_ALLOCATED;
}
/* Decrease the list count and go to the next value */
ListCount--;
*ValuesRemoved++;
DPRINT1("Damaged value removed, continuing with the next value...\n");
continue;
}
}
/* FIXME: Big values not supported yet */
ASSERT_VALUE_BIG(Hive, DataSize);
}
/* Is the signature valid? */
if (ValueData->u.KeyValue.Signature != CM_KEY_VALUE_SIGNATURE)
{
if (!CmpRepairValueListCount(Hive,
CurrentCell,
ListCountIndex,
ValueListData,
FixHive))
{
DPRINT1("The key value signature is invalid\n");
return CM_CHECK_REGISTRY_BAD_KEY_VALUE_SIGNATURE;
}
/* Decrease the list count and go to the next value */
ListCount--;
*ValuesRemoved++;
DPRINT1("Damaged value removed, continuing with the next value...\n");
continue;
}
/* Advance to the next value */
ListCountIndex++;
}
return CM_CHECK_REGISTRY_GOOD;
}
/**
* @brief
* Validates the value list of a key. If the list
* is damaged due to corruption, the whole list
* is expunged. This function performs self-healing
* procedures in this case.
*
* @param[in] Hive
* A pointer to a hive descriptor of which a list of
* registry values is to be validated.
*
* @param[in] CurrentCell
* The current key cell that the value list points to.
*
* @param[in] CellData
* The cell data of the current cell of which the value
* list comes from.
*
* @param[in] FixHive
* If set to TRUE, the target hive will be fixed.
*
* @return
* Returns CM_CHECK_REGISTRY_GOOD if the value list is
* sane. CM_CHECK_REGISTRY_VALUE_LIST_UNALLOCATED is returned
* if the value list cell is not allocated. CM_CHECK_REGISTRY_VALUE_LIST_DATA_NOT_FOUND
* is returned if cell data could not be mapped from the value
* list cell. CM_CHECK_REGISTRY_VALUE_LIST_SIZE_NOT_SANE is returned
* if the size of the value list is bogus. A failure CM status code
* is returned otherwise.
*/
static
CM_CHECK_REGISTRY_STATUS
CmpValidateValueList(
_In_ PHHIVE Hive,
_In_ HCELL_INDEX CurrentCell,
_Inout_ PCELL_DATA CellData,
_In_ BOOLEAN FixHive)
{
CM_CHECK_REGISTRY_STATUS CmStatusCode;
ULONG TotalValueLength, ValueSize;
ULONG ValueListCount;
ULONG ValuesRemoved;
HCELL_INDEX ValueListCell;
PCELL_DATA ValueListData;
PAGED_CODE();
ASSERT(CurrentCell != HCELL_NIL);
ASSERT(CellData);
/* Cache the value list and validate it */
ValueListCell = CellData->u.KeyNode.ValueList.List;
ValueListCount = CellData->u.KeyNode.ValueList.Count;
if (ValueListCount > 0)
{
if (!HvIsCellAllocated(Hive, ValueListCell))
{
DPRINT1("The value list is not allocated\n");
return CM_CHECK_REGISTRY_VALUE_LIST_UNALLOCATED;
}
/* Obtain cell data from the value list cell */
ValueListData = (PCELL_DATA)HvGetCell(Hive, ValueListCell);
if (!ValueListData)
{
DPRINT1("Could not get cell data from the value list\n");
return CM_CHECK_REGISTRY_VALUE_LIST_DATA_NOT_FOUND;
}
/*
* Cache the value size and total length and
* assert ourselves this is a sane value list
* to begin with.
*/
ValueSize = HvGetCellSize(Hive, ValueListData);
TotalValueLength = ValueListCount * sizeof(HCELL_INDEX);
if (TotalValueLength > ValueSize)
{
DPRINT1("The value list is bigger than the cell (value list size %lu, cell size %lu)\n",
TotalValueLength, ValueSize);
return CM_CHECK_REGISTRY_VALUE_LIST_SIZE_NOT_SANE;
}
/*
* The value list is sane, now we would
* need to validate the actual list
* by its count.
*/
CmStatusCode = CmpValidateValueListByCount(Hive,
CurrentCell,
ValueListCount,
ValueListData,
&ValuesRemoved,
FixHive);
if (!CM_CHECK_REGISTRY_SUCCESS(CmStatusCode))
{
DPRINT1("One of the values is corrupt and couldn't be repaired\n");
return CmStatusCode;
}
/* Log how much values have been removed */
if (ValuesRemoved > 0)
{
DPRINT1("Values removed in the list -- %lu\n", ValuesRemoved);
}
}
return CM_CHECK_REGISTRY_GOOD;
}
/**
* @brief
* Validates the subkeys list of a key. If the list is
* damaged from corruption, the function can either
* salvage this list or purge the whole of it. The
* function performs different validation steps for
* different storage types.
*
* @param[in] Hive
* A pointer to a hive descriptor of which a list of
* subkeys is to be validated.
*
* @param[in] CurrentCell
* The current key cell that the subkeys list points to.
*
* @param[in] CellData
* The cell data of the current cell of which the subkeys
* list comes from.
*
* @param[in] FixHive
* If set to TRUE, the target hive will be fixed.
*
* @param[out] DoRepair
* A pointer to a boolean value set up by the function itself.
* The function automatically sets this to FALSE indicating
* that repairs can't be done onto the list itself. If the
* list can be salvaged, then the function sets this to TRUE.
* See Remarks for further information.
*
* @return
* Returns CM_CHECK_REGISTRY_GOOD if the subkeys list is in
* perfect shape. CM_CHECK_REGISTRY_STABLE_KEYS_ON_VOLATILE is
* returned if the volatile storage has stable data which
* that should not happen (this is only for the case of volatile
* cells). CM_CHECK_REGISTRY_SUBKEYS_LIST_UNALLOCATED is returned
* if the subkeys list cell is not allocated. CM_CHECK_REGISTRY_CORRUPT_SUBKEYS_INDEX
* is returned if a key index could not be mapped from the subkeys
* list cell. CM_CHECK_REGISTRY_BAD_SUBKEY_COUNT is returned if
* the key index is a leaf and the subkeys count doesn't match up
* with that of the leaf. CM_CHECK_REGISTRY_KEY_INDEX_CELL_UNALLOCATED is
* returned if the key index cell at the specific index in the list of
* the index is not allocated. CM_CHECK_REGISTRY_CORRUPT_LEAF_ON_ROOT is
* returned if a leaf could not be mapped from an index.
* CM_CHECK_REGISTRY_CORRUPT_LEAF_SIGNATURE is returned if the leaf has
* an invalid signature. CM_CHECK_REGISTRY_CORRUPT_KEY_INDEX_SIGNATURE
* is returned if the key index has an invalid signature, that is, it's
* not a leaf nor a root.
*
* @remarks
* Deep subkeys list healing can be done in specific cases where only
* a subkey doesn't actually affect the key itself. The function will
* mark the subkeys list as repairable by setting DoRepair parameter
* to TRUE and the caller is responsible to heal the key by purging
* the whole subkeys list. If the damage is so bad that there's
* possibility the key itself is even damaged, no healing is done.
*/
static
CM_CHECK_REGISTRY_STATUS
CmpValidateSubKeyList(
_In_ PHHIVE Hive,
_In_ HCELL_INDEX CurrentCell,
_Inout_ PCELL_DATA CellData,
_In_ BOOLEAN FixHive,
_Out_ PBOOLEAN DoRepair)
{
ULONG SubKeyCounts;
HCELL_INDEX KeyIndexCell, SubKeysListCell;
PCM_KEY_INDEX RootKeyIndex, LeafKeyIndex;
ULONG RootIndex;
ULONG TotalLeafCount;
PAGED_CODE();
ASSERT(CurrentCell != HCELL_NIL);
ASSERT(CellData);
RootKeyIndex = NULL;
LeafKeyIndex = NULL;
TotalLeafCount = 0;
/*
* Assume for now that the caller should not
* do any kind of repairs on the subkeys list,
* unless explicitly given the consent by us.
*/
*DoRepair = FALSE;
/*
* For volatile keys they have data that can
* fluctuate and change on the fly so there's
* pretty much nothing that we can validate those.
* But still, we would want that the volatile key
* is not damaged by external factors, like e.g.,
* having stable keys on a volatile space.
*/
if (IS_CELL_VOLATILE(CurrentCell))
{
if (CellData->u.KeyNode.SubKeyCounts[Stable] != 0)
{
DPRINT1("The volatile key has stable subkeys\n");
return CM_CHECK_REGISTRY_STABLE_KEYS_ON_VOLATILE;
}
return CM_CHECK_REGISTRY_GOOD;
}
/*
* This is not a volatile key, cache the subkeys list
* and validate it.
*/
SubKeysListCell = CellData->u.KeyNode.SubKeyLists[Stable];
SubKeyCounts = CellData->u.KeyNode.SubKeyCounts[Stable];
if (SubKeyCounts > 0)
{
if (!HvIsCellAllocated(Hive, SubKeysListCell))
{
DPRINT1("The subkeys list cell is not allocated\n");
*DoRepair = TRUE;
return CM_CHECK_REGISTRY_SUBKEYS_LIST_UNALLOCATED;
}
/* Obtain a root index and validate it */
RootKeyIndex = (PCM_KEY_INDEX)HvGetCell(Hive, SubKeysListCell);
if (!RootKeyIndex)
{
DPRINT1("Could not get the root key index of the subkeys list cell\n");
return CM_CHECK_REGISTRY_CORRUPT_SUBKEYS_INDEX;
}
/*
* For simple, fast and hashed leaves we would want
* that the corresponding root index count matches with
* that of the subkey counts itself. If this is not the
* case we can isolate this problem and fix the count.
*/
if (RootKeyIndex->Signature == CM_KEY_INDEX_LEAF ||
RootKeyIndex->Signature == CM_KEY_FAST_LEAF ||
RootKeyIndex->Signature == CM_KEY_HASH_LEAF)
{
if (SubKeyCounts != RootKeyIndex->Count)
{
if (!CmpRepairSubKeyCounts(Hive,
CurrentCell,
RootKeyIndex->Count,
CellData,
FixHive))
{
DPRINT1("The subkeys list has invalid count (subkeys count %lu, root key index count %lu)\n",
SubKeyCounts, RootKeyIndex->Count);
return CM_CHECK_REGISTRY_BAD_SUBKEY_COUNT;
}
}
return CM_CHECK_REGISTRY_GOOD;
}
/*
* The root index is not a leaf, check if the index
* is an actual root then.
*/
if (RootKeyIndex->Signature == CM_KEY_INDEX_ROOT)
{
/*
* For the root we have to loop each leaf
* from it and increase the total leaf count
* in the root after we determined the validity
* of a leaf. This way we can see if the subcount
* matches with that of the subkeys list count.
*/
for (RootIndex = 0; RootIndex < RootKeyIndex->Count; RootIndex++)
{
KeyIndexCell = RootKeyIndex->List[RootIndex];
if (!HvIsCellAllocated(Hive, KeyIndexCell))
{
DPRINT1("The key index cell is not allocated at index %lu\n", RootIndex);
*DoRepair = TRUE;
return CM_CHECK_REGISTRY_KEY_INDEX_CELL_UNALLOCATED;
}
/* Obtain a leaf from the root */
LeafKeyIndex = (PCM_KEY_INDEX)HvGetCell(Hive, KeyIndexCell);
if (!LeafKeyIndex)
{
DPRINT1("The root key index's signature is invalid!\n");
return CM_CHECK_REGISTRY_CORRUPT_LEAF_ON_ROOT;
}
/* Check that the leaf has valid signature */
if (LeafKeyIndex->Signature != CM_KEY_INDEX_LEAF &&
LeafKeyIndex->Signature != CM_KEY_FAST_LEAF &&
LeafKeyIndex->Signature != CM_KEY_HASH_LEAF)
{
DPRINT1("The leaf's signature is invalid!\n");
*DoRepair = TRUE;
return CM_CHECK_REGISTRY_CORRUPT_LEAF_SIGNATURE;
}
/* Add up the count of the leaf */
TotalLeafCount += LeafKeyIndex->Count;
}
/*
* We have built up the total leaf count,
* we have to determine this count is exactly
* the same as the subkeys list count. Otherwise
* just fix it.
*/
if (SubKeyCounts != TotalLeafCount)
{
if (!CmpRepairSubKeyCounts(Hive,
CurrentCell,
TotalLeafCount,
CellData,
FixHive))
{
DPRINT1("The subkeys list has invalid count (subkeys count %lu, total leaf count %lu)\n",
SubKeyCounts, TotalLeafCount);
return CM_CHECK_REGISTRY_BAD_SUBKEY_COUNT;
}
}
return CM_CHECK_REGISTRY_GOOD;
}
/*
* None of the valid signatures match with that of
* the root key index. By definition, the whole subkey
* list is total toast.
*/
DPRINT1("The root key index's signature is invalid\n");
*DoRepair = TRUE;
return CM_CHECK_REGISTRY_CORRUPT_KEY_INDEX_SIGNATURE;
}
/* If we reach here then this key has no subkeys */
return CM_CHECK_REGISTRY_GOOD;
}
/**
* @brief
* Purges the volatile storage of a registry
* hive. This operation is done mainly during
* the bootup of the system.
*
* @param[in] Hive
* A pointer to a hive descriptor of which volatiles
* are to be purged.
*
* @param[in] CurrentCell
* The current key cell that the volatile storage of
* the hive points to.
*
* @param[in] CellData
* The cell data of the current cell of which the volatile
* subkeys storage comes from.
*
* @param[in] Flags
* A bit mask flag that is used to influence how is the
* purging operation to be done. See CmCheckRegistry documentation
* below for more information.
*/
static
VOID
CmpPurgeVolatiles(
_In_ PHHIVE Hive,
_In_ HCELL_INDEX CurrentCell,
_Inout_ PCELL_DATA CellData,
_In_ ULONG Flags)
{
PAGED_CODE();
ASSERT(CellData);
/* Did the caller ask to purge volatiles? */
if (((Flags & CM_CHECK_REGISTRY_PURGE_VOLATILES) ||
(Flags & CM_CHECK_REGISTRY_BOOTLOADER_PURGE_VOLATILES)) &&
(CellData->u.KeyNode.SubKeyCounts[Volatile] != 0))
{
/*
* OK, the caller wants them cleaned from this
* hive. For XP Beta 1 or newer hives, we unintialize
* the whole volatile subkeys list. For older hives,
* we just do a cleanup.
*/
#if !defined(_BLDR_)
HvMarkCellDirty(Hive, CurrentCell, FALSE);
#endif
if ((Flags & CM_CHECK_REGISTRY_BOOTLOADER_PURGE_VOLATILES) &&
(Hive->Version >= HSYS_WHISTLER_BETA1))
{
CellData->u.KeyNode.SubKeyLists[Volatile] = CMP_VOLATILE_LIST_UNINTIALIZED;
}
else
{
CellData->u.KeyNode.SubKeyLists[Volatile] = HCELL_NIL;
}
/* Clear the count */
CellData->u.KeyNode.SubKeyCounts[Volatile] = 0;
}
}
/**
* @brief
* Validates the key cell, ensuring that
* the key in the registry is valid and not corrupted.
*
* @param[in] Hive
* A pointer to a hive descriptor of the registry where
* the key is to be validated.
*
* @param[in] SecurityDefaulted
* If the caller sets this to TRUE, this indicates the
* hive has its security property defaulted due to
* heal recovery of the said security. If the caller
* sets this to FALSE, the hive comes with its own
* security details. This parameter is currently unused.
*
* @param[in] ParentCell
* The parent key cell that comes before the current cell.
* This parameter can be HCELL_NIL if the first cell is
* the root cell which is the parent of its own.
*
* @param[in] CurrentCell
* The current child key cell that is to be validated.
*
* @param[in] Flags
* A bit mask flag that is used to influence how is the
* purging operation of volatile keys in the volatile storage
* to be done. See CmCheckRegistry documentation below for more
* information.
*
* @param[in] FixHive
* If set to TRUE, the target hive will be fixed.
*
* @return
* Returns CM_CHECK_REGISTRY_GOOD if the key that has been validated
* is valid and not corrupted. CM_CHECK_REGISTRY_KEY_CELL_NOT_ALLOCATED is
* returned if the key cell is not allocated. CM_CHECK_REGISTRY_CELL_DATA_NOT_FOUND
* is returned if cell data could not be mapped from the key cell.
* CM_CHECK_REGISTRY_CELL_SIZE_NOT_SANE is returned if the key cell
* has an abnormal size that is above the trehshold the validation checks
* can permit. CM_CHECK_REGISTRY_KEY_NAME_LENGTH_ZERO is returned if the
* name length of the key node is 0, meaning that the key has no name.
* CM_CHECK_REGISTRY_KEY_TOO_BIG_THAN_CELL is returned if the key is too
* big than the cell itself. CM_CHECK_REGISTRY_BAD_KEY_NODE_PARENT is
* returned if the parent node of the key is incosistent and it couldn't
* be fixed. CM_CHECK_REGISTRY_BAD_KEY_NODE_SIGNATURE is returned if
* the signature of the key node is corrupt and it couldn't be fixed.
* A failure CM status code is returned otherwise.
*/
static
CM_CHECK_REGISTRY_STATUS
CmpValidateKey(
_In_ PHHIVE Hive,
_In_ BOOLEAN SecurityDefaulted,
_In_ HCELL_INDEX ParentCell,
_In_ HCELL_INDEX CurrentCell,
_In_ ULONG Flags,
_In_ BOOLEAN FixHive)
{
CM_CHECK_REGISTRY_STATUS CmStatusCode;
PCELL_DATA CellData;
ULONG CellSize;
BOOLEAN DoSubkeysRepair;
ULONG TotalKeyNameLength, NameLength;
PAGED_CODE();
/* The current key cell mustn't be NIL here! */
ASSERT(CurrentCell != HCELL_NIL);
/* TODO: To be removed once we support security caching in Cm */
UNREFERENCED_PARAMETER(SecurityDefaulted);
/*
* We must ensure that the key cell is
* allocated in the first place before
* we go further.
*/
if (!HvIsCellAllocated(Hive, CurrentCell))
{
DPRINT1("The key cell is not allocated\n");
return CM_CHECK_REGISTRY_KEY_CELL_NOT_ALLOCATED;
}
/* Obtain cell data from it */
CellData = (PCELL_DATA)HvGetCell(Hive, CurrentCell);
if (!CellData)
{
DPRINT1("Could not get cell data from the cell\n");
return CM_CHECK_REGISTRY_CELL_DATA_NOT_FOUND;
}
/* Get the size of this cell and validate its size */
CellSize = HvGetCellSize(Hive, CellData);
if (CellSize > CMP_KEY_SIZE_THRESHOLD)
{
DPRINT1("The cell size is above the threshold size (size %lu)\n", CellSize);
return CM_CHECK_REGISTRY_CELL_SIZE_NOT_SANE;
}
/*
* The cell size is OK but we must ensure
* the key is not bigger than the container
* of the cell.
*/
NameLength = CellData->u.KeyNode.NameLength;
if (NameLength == 0)
{
DPRINT1("The key node name length is 0!\n");
return CM_CHECK_REGISTRY_KEY_NAME_LENGTH_ZERO;
}
TotalKeyNameLength = NameLength + FIELD_OFFSET(CM_KEY_NODE, Name);
if (TotalKeyNameLength > CellSize)
{
DPRINT1("The key is too big than the cell (key size %lu, cell size %lu)\n", TotalKeyNameLength, CellSize);
return CM_CHECK_REGISTRY_KEY_TOO_BIG_THAN_CELL;
}
/* Is the parent cell consistent? */
if (ParentCell != HCELL_NIL &&
ParentCell != CellData->u.KeyNode.Parent)
{
if (!CmpRepairParentNode(Hive,
CurrentCell,
ParentCell,
CellData,
FixHive))
{
DPRINT1("The parent key node doesn't point to the actual parent\n");
return CM_CHECK_REGISTRY_BAD_KEY_NODE_PARENT;
}
}
/* Is the key node signature valid? */
if (CellData->u.KeyNode.Signature != CM_KEY_NODE_SIGNATURE)
{
if (!CmpRepairKeyNodeSignature(Hive,
CurrentCell,
CellData,
FixHive))
{
DPRINT1("The parent key node signature is not valid\n");
return CM_CHECK_REGISTRY_BAD_KEY_NODE_SIGNATURE;
}
}
/*
* FIXME: Security cell checks have to be implemented here
* once we properly and reliably implement security caching
* in the kernel.
*/
/* Validate the class */
CmStatusCode = CmpValidateClass(Hive, CurrentCell, CellData);
if (!CM_CHECK_REGISTRY_SUCCESS(CmStatusCode))
{
if (!CmpRepairClassOfNodeKey(Hive,
CurrentCell,
CellData,
FixHive))
{
DPRINT1("Failed to repair the hive, the cell class is not valid\n");
return CmStatusCode;
}
}
/* Validate the value list */
CmStatusCode = CmpValidateValueList(Hive, CurrentCell, CellData, FixHive);
if (!CM_CHECK_REGISTRY_SUCCESS(CmStatusCode))
{
/*
* It happens that a certain value in the list
* is so bad like we couldn't map a cell data from it
* or the list itself is toast. In such cases what we
* can do here is to do a "value list sacrifice", aka
* purge the whole list.
*/
if (!CmpRepairValueList(Hive, CurrentCell, FixHive))
{
DPRINT1("Failed to repair the hive, the value list is corrupt\n");
return CmStatusCode;
}
}
/* Validate the subkeys list */
CmStatusCode = CmpValidateSubKeyList(Hive, CurrentCell, CellData, FixHive, &DoSubkeysRepair);
if (!CM_CHECK_REGISTRY_SUCCESS(CmStatusCode))
{
/*
* The subkeys list is in trouble. Worse when the actual
* subkey list is so severed this key is also kaput on itself.
*/
if (!DoSubkeysRepair)
{
DPRINT1("The subkeys list is totally corrupt, can't repair\n");
return CmStatusCode;
}
/*
* OK, there's still some salvation for this key.
* Purge the whole subkeys list in order to fix it.
*/
if (!CmpRepairSubKeyList(Hive,
CurrentCell,
CellData,
FixHive))
{
DPRINT1("Failed to repair the hive, the subkeys list is corrupt!\n");
return CmStatusCode;
}
}
/* Purge volatile data if needed */
CmpPurgeVolatiles(Hive, CurrentCell, CellData, Flags);
return CM_CHECK_REGISTRY_GOOD;
}
/**
* @brief
* Performs deep checking of the registry by walking
* down the registry tree using a stack based pool.
* This function is the guts of CmCheckRegistry.
*
* @param[in] Hive
* A pointer to a hive descriptor of the registry where
* the validation is to be performed.
*
* @param[in] Flags
* Bit mask flag used for volatiles purging. Such
* flags influence on how volatile purging is actually
* done. See CmCheckRegistry documentation for more
* information.
*
* @param[in] SecurityDefaulted
* If the caller sets this to FALSE, the registry hive
* uses its own unique security details. Otherwise
* registry hive has the security details defaulted.
*
* @param[in] FixHive
* If set to TRUE, the target hive will be fixed.
*
* @return
* Returns CM_CHECK_REGISTRY_GOOD is returned if the function
* has successfully performed deep registry checking and
* the registry contents are valid. CM_CHECK_REGISTRY_ALLOCATE_MEM_STACK_FAIL
* is returned if the function has failed to allocate the
* stack work state buffer in memory which is necessary for
* deep checking of the registry. CM_CHECK_REGISTRY_ROOT_CELL_NOT_FOUND
* is returned if no root cell has been found of this hive.
* CM_CHECK_REGISTRY_BAD_LEXICOGRAPHICAL_ORDER is returned if the lexical
* order is not valid. CM_CHECK_REGISTRY_NODE_NOT_FOUND is returned if
* the no key node could be mapped from the key. CM_CHECK_REGISTRY_SUBKEY_NOT_FOUND
* is returned if no subkey child cell could be found. CM_CHECK_REGISTRY_TREE_TOO_MANY_LEVELS
* is returned if we have reached the maximum stack limit which means the registry that
* we have checked is too fat.
*/
static
CM_CHECK_REGISTRY_STATUS
CmpValidateRegistryInternal(
_In_ PHHIVE Hive,
_In_ ULONG Flags,
_In_ BOOLEAN SecurityDefaulted,
_In_ BOOLEAN FixHive)
{
CM_CHECK_REGISTRY_STATUS CmStatusCode;
PCMP_REGISTRY_STACK_WORK_STATE WorkState;
HCELL_INDEX RootCell, ParentCell, CurrentCell;
HCELL_INDEX ChildSubKeyCell;
PCM_KEY_NODE KeyNode;
ULONG WorkStateLength;
LONG StackDepth;
BOOLEAN AllChildrenChecked;
PAGED_CODE();
ASSERT(Hive);
/*
* Allocate some memory blocks for the stack
* state structure. We'll be using it to walk
* down the registry hive tree in a recursive
* way without worrying that we explode the
* kernel stack in the most gruesome and gross
* ways.
*/
WorkStateLength = CMP_REGISTRY_MAX_LEVELS_TREE_DEPTH * sizeof(CMP_REGISTRY_STACK_WORK_STATE);
WorkState = CmpAllocate(WorkStateLength,
TRUE,
TAG_REGISTRY_STACK);
if (!WorkState)
{
DPRINT1("Couldn't allocate memory for registry stack work state\n");
return CM_CHECK_REGISTRY_ALLOCATE_MEM_STACK_FAIL;
}
/* Obtain the root cell of the hive */
RootCell = GET_HHIVE_ROOT_CELL(Hive);
if (RootCell == HCELL_NIL)
{
DPRINT1("Couldn't get the root cell of the hive\n");
CmpFree(WorkState, WorkStateLength);
return CM_CHECK_REGISTRY_ROOT_CELL_NOT_FOUND;
}
RestartValidation:
/*
* Prepare the stack state and start from
* the root cell. Ensure that the root cell
* itself is OK before we go forward.
*/
StackDepth = 0;
WorkState[StackDepth].ChildCellIndex = 0;
WorkState[StackDepth].Current = RootCell;
WorkState[StackDepth].Parent = HCELL_NIL;
WorkState[StackDepth].Sibling = HCELL_NIL;
/*
* As we start checking the root cell which
* is the top element of a registry hive,
* we'll be going to look for child keys
* in the course of walking down the tree.
*/
AllChildrenChecked = FALSE;
while (StackDepth >= 0)
{
/* Cache the current and parent cells */
CurrentCell = WorkState[StackDepth].Current;
ParentCell = WorkState[StackDepth].Parent;
/* Do we have still have children to validate? */
if (!AllChildrenChecked)
{
/* Check that the key is OK */
CmStatusCode = CmpValidateKey(Hive,
SecurityDefaulted,
ParentCell,
CurrentCell,
Flags,
FixHive);
if (!CM_CHECK_REGISTRY_SUCCESS(CmStatusCode))
{
/*
* The key cell is damaged. We have to pray and
* hope that this is not the root cell as any
* damage done to the root is catastrophically
* fatal.
*/
if (CurrentCell == RootCell)
{
DPRINT1("THE ROOT CELL IS BROKEN\n");
CmpFree(WorkState, WorkStateLength);
return CmStatusCode;
}
/*
* It is not the root, remove the faulting
* damaged cell from the parent so that we
* can heal the hive.
*/
if (!CmpRepairParentKey(Hive, CurrentCell, ParentCell, FixHive))
{
DPRINT1("The key is corrupt (current cell %lu, parent cell %lu)\n",
CurrentCell, ParentCell);
CmpFree(WorkState, WorkStateLength);
return CmStatusCode;
}
/* Damaged cell removed, restart the loop */
DPRINT1("Hive repaired, restarting the validation loop...\n");
goto RestartValidation;
}
/*
* The key is in perfect shape. If we have advanced
* the stack depth then check the lexicographical
* order of the keys as well.
*/
if (StackDepth > 0 &&
CM_CHECK_REGISTRY_SUCCESS(CmStatusCode))
{
if (WorkState[StackDepth - CMP_PRIOR_STACK].Sibling != HCELL_NIL)
{
if (!CmpValidateLexicalOrder(Hive,
CurrentCell,
WorkState[StackDepth - CMP_PRIOR_STACK].Sibling))
{
/*
* The lexicographical order is bad,
* attempt to heal the hive.
*/
if (!CmpRepairParentKey(Hive, CurrentCell, ParentCell, FixHive))
{
DPRINT1("The lexicographical order is invalid (sibling %lu, current cell %lu)\n",
CurrentCell, WorkState[StackDepth - CMP_PRIOR_STACK].Sibling);
CmpFree(WorkState, WorkStateLength);
return CM_CHECK_REGISTRY_BAD_LEXICOGRAPHICAL_ORDER;
}
/* Damaged cell removed, restart the loop */
DPRINT1("Hive repaired, restarting the validation loop...\n");
goto RestartValidation;
}
}
/* Assign the prior sibling for upcoming iteration */
WorkState[StackDepth - CMP_PRIOR_STACK].Sibling = CurrentCell;
}
}
/* Obtain a node for this key */
KeyNode = (PCM_KEY_NODE)HvGetCell(Hive, CurrentCell);
if (!KeyNode)
{
DPRINT1("Couldn't get the node of key (current cell %lu)\n", CurrentCell);
CmpFree(WorkState, WorkStateLength);
return CM_CHECK_REGISTRY_NODE_NOT_FOUND;
}
/*
* If we have processed all the children from this
* node then adjust the stack depth work state by
* going back and restart the loop to lookup for
* the rest of the tree. Acknowledge the code path
* above that we checked all the children so that
* we don't have to validate the same subkey again.
*/
if (WorkState[StackDepth].ChildCellIndex < KeyNode->SubKeyCounts[Stable])
{
/*
* We have children to process, obtain the
* child subkey in question so that we can
* cache it later for the next key validation.
*/
ChildSubKeyCell = CmpFindSubKeyByNumber(Hive, KeyNode, WorkState[StackDepth].ChildCellIndex);
if (ChildSubKeyCell == HCELL_NIL)
{
DPRINT1("Couldn't get the child subkey cell (at stack index %lu)\n", StackDepth);
CmpFree(WorkState, WorkStateLength);
return CM_CHECK_REGISTRY_SUBKEY_NOT_FOUND;
}
/*
* As we got the subkey advance the child index as
* well as the stack depth work state for the next
* key validation. However we must ensure since
* we're advancing the stack depth that we don't
* go over the maximum tree level depth. A registry
* tree can be at maximum 512 levels deep.
*
* For more information see https://docs.microsoft.com/en-us/windows/win32/sysinfo/registry-element-size-limits.
*/
WorkState[StackDepth].ChildCellIndex++;
StackDepth++;
if (StackDepth >= CMP_REGISTRY_MAX_LEVELS_TREE_DEPTH - 1)
{
/*
* This registry has so many levels it's
* so fat. We don't want to explode our
* kernel stack, so just simply bail out...
*/
DPRINT1("The registry tree has so many levels!\n");
CmpFree(WorkState, WorkStateLength);
return CM_CHECK_REGISTRY_TREE_TOO_MANY_LEVELS;
}
/* Prepare the work state for the next key */
WorkState[StackDepth].ChildCellIndex = 0;
WorkState[StackDepth].Current = ChildSubKeyCell;
WorkState[StackDepth].Parent = WorkState[StackDepth - CMP_PRIOR_STACK].Current;
WorkState[StackDepth].Sibling = HCELL_NIL;
/*
* As we prepared the work state, acknowledge the
* code path at the top of the loop that we need
* to process and validate the next child subkey.
*/
AllChildrenChecked = FALSE;
continue;
}
/*
* We have validated all the child subkeys
* of the node. Decrease the stack depth
* and tell the above code we looked for all
* children so that we don't need to validate
* the same children again but go for the next
* node.
*/
AllChildrenChecked = TRUE;
StackDepth--;
continue;
}
CmpFree(WorkState, WorkStateLength);
return CM_CHECK_REGISTRY_GOOD;
}
/* PUBLIC FUNCTIONS ***********************************************************/
/**
* @brief
* Validates a bin from a hive. It performs checks
* against the cells from this bin, ensuring the
* bin is not corrupt and that the cells are consistent
* with each other.
*
* @param[in] Hive
* A pointer to a hive descriptor of which a hive bin
* is to be validated.
*
* @param[in] Bin
* A pointer to a bin where its cells are to be
* validated.
*
* @return
* CM_CHECK_REGISTRY_GOOD is returned if the bin is
* valid and not corrupt. CM_CHECK_REGISTRY_BIN_SIGNATURE_HEADER_CORRUPT
* is returned if this bin has a corrupt signature. CM_CHECK_REGISTRY_BAD_FREE_CELL
* is returned if the free cell has a bogus size. CM_CHECK_REGISTRY_BAD_ALLOC_CELL
* is returned for the allocated cell has a bogus size.
*/
CM_CHECK_REGISTRY_STATUS
NTAPI
HvValidateBin(
_In_ PHHIVE Hive,
_In_ PHBIN Bin)
{
PHCELL Cell, Basket;
PAGED_CODE();
ASSERT(Bin);
ASSERT(Hive);
/* Ensure that this bin we got has valid signature header */
if (Bin->Signature != HV_HBIN_SIGNATURE)
{
DPRINT1("The bin's signature header is corrupt\n");
return CM_CHECK_REGISTRY_BIN_SIGNATURE_HEADER_CORRUPT;
}
/*
* Walk over all the cells from this bin and
* validate that they're consistent with the bin.
* Namely we want that each cell from this bin doesn't
* have a bogus size.
*/
Basket = (PHCELL)((PUCHAR)Bin + Bin->Size);
for (Cell = GET_CELL_BIN(Bin);
Cell < Basket;
Cell = (PHCELL)((PUCHAR)Cell + abs(Cell->Size)))
{
if (IsFreeCell(Cell))
{
/*
* This cell is free, check that
* the size of this cell is not bogus.
*/
if (Cell->Size > Bin->Size ||
Cell->Size == 0)
{
/*
* This cell has too much free space that
* exceeds the boundary of the bin size.
* Otherwise the cell doesn't have actual
* free space (aka Size == 0) which is a
* no go for a bin.
*/
DPRINT1("The free cell exceeds the bin size or cell size equal to 0 (cell 0x%p, cell size %d, bin size %lu)\n",
Cell, Cell->Size, Bin->Size);
return CM_CHECK_REGISTRY_BAD_FREE_CELL;
}
}
else
{
/*
* This cell is allocated, make sure that
* the size of this cell is not bogus.
*/
if (abs(Cell->Size) > Bin->Size)
{
/*
* This cell allocated too much space
* that exceeds the boundary of the
* bin size.
*/
DPRINT1("The allocated cell exceeds the bin size (cell 0x%p, cell size %d, bin size %lu)\n",
Cell, abs(Cell->Size), Bin->Size);
return CM_CHECK_REGISTRY_BAD_ALLOC_CELL;
}
}
}
return CM_CHECK_REGISTRY_GOOD;
}
/**
* @brief
* Validates a registry hive. This function ensures
* that the storage of this hive has valid bins.
*
* @param[in] Hive
* A pointer to a hive descriptor where validation on
* its hive bins is to be performed.
*
* @return
* CM_CHECK_REGISTRY_GOOD is returned if the hive
* is valid. CM_CHECK_REGISTRY_HIVE_CORRUPT_SIGNATURE is
* returned if the hive has a corrupted signature.
* CM_CHECK_REGISTRY_BIN_SIZE_OR_OFFSET_CORRUPT is returned
* if the captured bin has a bad size. A failure CM status
* code is returned otherwise.
*/
CM_CHECK_REGISTRY_STATUS
NTAPI
HvValidateHive(
_In_ PHHIVE Hive)
{
CM_CHECK_REGISTRY_STATUS CmStatusCode;
ULONG StorageIndex;
ULONG BlockIndex;
ULONG StorageLength;
PHBIN Bin;
PAGED_CODE();
ASSERT(Hive);
/* Is the hive signature valid? */
if (Hive->Signature != HV_HHIVE_SIGNATURE)
{
DPRINT1("Hive's signature corrupted (signature %lu)\n", Hive->Signature);
return CM_CHECK_REGISTRY_HIVE_CORRUPT_SIGNATURE;
}
/*
* Now loop each bin in the storage of this
* hive.
*/
for (StorageIndex = 0; StorageIndex < Hive->StorageTypeCount; StorageIndex++)
{
/* Get the storage length at this index */
StorageLength = Hive->Storage[StorageIndex].Length;
for (BlockIndex = 0; BlockIndex < StorageLength;)
{
/* Go to the next if this bin does not exist */
if (Hive->Storage[StorageIndex].BlockList[BlockIndex].BinAddress == (ULONG_PTR)NULL)
{
continue;
}
/*
* Capture this bin and ensure that such
* bin is within the offset and the size
* is not bogus.
*/
Bin = GET_HHIVE_BIN(Hive, StorageIndex, BlockIndex);
if (Bin->Size > (StorageLength * HBLOCK_SIZE) ||
(Bin->FileOffset / HBLOCK_SIZE) != BlockIndex)
{
DPRINT1("Bin size or offset is corrupt (bin size %lu, file offset %lu, storage length %lu)\n",
Bin->Size, Bin->FileOffset, StorageLength);
return CM_CHECK_REGISTRY_BIN_SIZE_OR_OFFSET_CORRUPT;
}
/* Validate the rest of the bin */
CmStatusCode = HvValidateBin(Hive, Bin);
if (!CM_CHECK_REGISTRY_SUCCESS(CmStatusCode))
{
DPRINT1("This bin is not valid (bin 0x%p)\n", Bin);
return CmStatusCode;
}
/* Go to the next block */
BlockIndex += Bin->Size / HBLOCK_SIZE;
}
}
return CM_CHECK_REGISTRY_GOOD;
}
/**
* @brief
* Checks the registry that is consistent and its
* contents valid and not corrupted. More specifically
* this function performs a deep check of the registry
* for the following properties:
*
* - That the security cache cell of the registry is OK
* - That bins and cells are consistent with each other
* - That the child subkey cell points to the parent
* - That the key itself has sane sizes
* - That the class, values and subkeys lists are valid
* - Much more
*
* @param[in] Hive
* A pointer to a CM hive of the registry to be checked
* in question.
*
* @param[in] Flags
* A bit mask flag used to influence the process of volatile
* keys purging. See Remarks for further information.
*
* @return
* This function returns a CM (Configuration Manager) check
* registry status code. A code of CM_CHECK_REGISTRY_GOOD of
* value 0 indicates the registry hive is valid and not corrupted.
* A non zero unsigned integer value indicates a failure. Consult
* other private routines in this file for other failure status
* codes.
*
* @remarks
* During a load operation CmCheckRegistry can purge the volatile
* data of registry (or not) depending on the submitted flag bit mask
* by the caller. The following supported flags are:
*
* CM_CHECK_REGISTRY_DONT_PURGE_VOLATILES -- Tells the function that
* volatile data purging must not be done.
*
* CM_CHECK_REGISTRY_PURGE_VOLATILES - Tells the function to purge out
* volatile information data from a registry hive, on demand. Purging
* doesn't come into action if no volatile data has been found.
*
* CM_CHECK_REGISTRY_BOOTLOADER_PURGE_VOLATILES - A special flag used
* by FreeLdr and Environ. When this flag is set the function will not
* clean up the volatile storage but it will unintialize the storage
* instead (this is the case if the given registry hive for validation
* is a XP Beta 1 hive or newer). Otherwise it will perform a normal
* cleanup of the volatile storage.
*
* CM_CHECK_REGISTRY_VALIDATE_HIVE - Tells the function to perform a
* thorough analysation of the underlying hive's bins and cells before
* doing validation of the registry tree. HvValidateHive function is called
* in this case.
*
* CM_CHECK_REGISTRY_FIX_HIVE - Tells the function to fix the target registry
* hive if it is damaged. Usually this flag comes from a registry repair tool
* where the user asked to for its damaged hive to be fixed. In this case
* a self-heal procedure against the hive is performed.
*/
CM_CHECK_REGISTRY_STATUS
NTAPI
CmCheckRegistry(
_In_ PCMHIVE RegistryHive,
_In_ ULONG Flags)
{
CM_CHECK_REGISTRY_STATUS CmStatusCode;
PHHIVE Hive;
BOOLEAN ShouldFixHive = FALSE;
PAGED_CODE();
/* Bail out if the caller did not give a hive */
if (!RegistryHive)
{
DPRINT1("No registry hive given for check\n");
return CM_CHECK_REGISTRY_INVALID_PARAMETER;
}
#if !defined(CMLIB_HOST) && !defined(_BLDR_)
/*
* The master hive is the root of the registry,
* it holds all other hives together. So do not
* do any validation checks.
*/
if (RegistryHive == CmiVolatileHive)
{
DPRINT("This is master registry hive, don't do anything\n");
return CM_CHECK_REGISTRY_GOOD;
}
#endif
/* Bail out if no valid flag is given */
if (Flags & ~(CM_CHECK_REGISTRY_DONT_PURGE_VOLATILES |
CM_CHECK_REGISTRY_PURGE_VOLATILES |
CM_CHECK_REGISTRY_BOOTLOADER_PURGE_VOLATILES |
CM_CHECK_REGISTRY_VALIDATE_HIVE |
CM_CHECK_REGISTRY_FIX_HIVE))
{
DPRINT1("Invalid flag for registry check given (flag %lu)\n", Flags);
return CM_CHECK_REGISTRY_INVALID_PARAMETER;
}
/*
* Obtain the hive and check if the caller wants
* that the hive to be validated.
*/
Hive = GET_HHIVE(RegistryHive);
if (Flags & CM_CHECK_REGISTRY_VALIDATE_HIVE)
{
CmStatusCode = HvValidateHive(Hive);
if (!CM_CHECK_REGISTRY_SUCCESS(CmStatusCode))
{
DPRINT1("The hive is not valid (hive 0x%p, check status code %lu)\n", Hive, CmStatusCode);
return CmStatusCode;
}
}
/*
* A registry repair tool such as the ReactOS Check Registry
* Utility wants the damaged hive to be fixed as we check the
* target hive.
*/
if (Flags & CM_CHECK_REGISTRY_FIX_HIVE)
{
ShouldFixHive = TRUE;
}
/*
* FIXME: Currently ReactOS does not implement security
* caching algorithms so it's pretty pointless to implement
* security descriptors validation checks at this moment.
* When the time comes to implement these, we would need
* to implement security checks here as well.
*/
/* Call the internal API to do the rest of the work bulk */
CmStatusCode = CmpValidateRegistryInternal(Hive, Flags, FALSE, ShouldFixHive);
if (!CM_CHECK_REGISTRY_SUCCESS(CmStatusCode))
{
DPRINT1("The hive is not valid (hive 0x%p, check status code %lu)\n", Hive, CmStatusCode);
return CmStatusCode;
}
return CmStatusCode;
}
/* EOF */