reactos/base/applications/mstsc/tcp.c

927 lines
20 KiB
C
Raw Normal View History

/* -*- c-basic-offset: 8 -*-
rdesktop: A Remote Desktop Protocol client.
Protocol services - TCP layer
Copyright (C) Matthew Chapman <matthewc.unsw.edu.au> 1999-2008
Copyright 2005-2011 Peter Astrand <astrand@cendio.se> for Cendio AB
Copyright 2012-2013 Henrik Andersson <hean01@cendio.se> for Cendio AB
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precomp.h"
#ifdef WITH_SSL
#include <sspi.h>
#include <schannel.h>
#endif
#ifdef _WIN32
#define socklen_t int
#define TCP_CLOSE(_sck) closesocket(_sck)
#define TCP_STRERROR "tcp error"
#define TCP_SLEEP(_n) Sleep(_n)
#define TCP_BLOCKS (WSAGetLastError() == WSAEWOULDBLOCK)
#else /* _WIN32 */
#define TCP_CLOSE(_sck) close(_sck)
#define TCP_STRERROR strerror(errno)
#define TCP_SLEEP(_n) sleep(_n)
#define TCP_BLOCKS (errno == EWOULDBLOCK)
#endif /* _WIN32 */
#ifndef INADDR_NONE
#define INADDR_NONE ((unsigned long) -1)
#endif
#ifdef WITH_SCARD
#define STREAM_COUNT 8
#else
#define STREAM_COUNT 1
#endif
#ifdef WITH_SSL
typedef struct
{
CtxtHandle ssl_ctx;
SecPkgContext_StreamSizes ssl_sizes;
char *ssl_buf;
char *extra_buf;
size_t extra_len;
char *peek_msg;
char *peek_msg_mem;
size_t peek_len;
DWORD security_flags;
} netconn_t;
static char * g_ssl_server = NULL;
static RD_BOOL g_ssl_initialized = False;
static RD_BOOL cred_handle_initialized = False;
static RD_BOOL have_compat_cred_handle = False;
static SecHandle cred_handle, compat_cred_handle;
static netconn_t g_ssl1;
static netconn_t *g_ssl = NULL;
#endif /* WITH_SSL */
static int g_sock;
static struct stream g_in;
static struct stream g_out[STREAM_COUNT];
int g_tcp_port_rdp = TCP_PORT_RDP;
extern RD_BOOL g_user_quit;
extern RD_BOOL g_network_error;
extern RD_BOOL g_reconnect_loop;
/* Initialise TCP transport data packet */
STREAM
tcp_init(uint32 maxlen)
{
static int cur_stream_id = 0;
STREAM result = NULL;
#ifdef WITH_SCARD
scard_lock(SCARD_LOCK_TCP);
#endif
result = &g_out[cur_stream_id];
cur_stream_id = (cur_stream_id + 1) % STREAM_COUNT;
if (maxlen > result->size)
{
result->data = (uint8 *) xrealloc(result->data, maxlen);
result->size = maxlen;
}
result->p = result->data;
result->end = result->data + result->size;
#ifdef WITH_SCARD
scard_unlock(SCARD_LOCK_TCP);
#endif
return result;
}
#ifdef WITH_SSL
RD_BOOL send_ssl_chunk(const void *msg, size_t size)
{
SecBuffer bufs[4] = {
{g_ssl->ssl_sizes.cbHeader, SECBUFFER_STREAM_HEADER, g_ssl->ssl_buf},
{size, SECBUFFER_DATA, g_ssl->ssl_buf+g_ssl->ssl_sizes.cbHeader},
{g_ssl->ssl_sizes.cbTrailer, SECBUFFER_STREAM_TRAILER, g_ssl->ssl_buf+g_ssl->ssl_sizes.cbHeader+size},
{0, SECBUFFER_EMPTY, NULL}
};
SecBufferDesc buf_desc = {SECBUFFER_VERSION, sizeof(bufs)/sizeof(*bufs), bufs};
SECURITY_STATUS res;
int tcp_res;
memcpy(bufs[1].pvBuffer, msg, size);
res = EncryptMessage(&g_ssl->ssl_ctx, 0, &buf_desc, 0);
if (res != SEC_E_OK)
{
error("EncryptMessage failed: %d\n", res);
return False;
}
tcp_res = send(g_sock, g_ssl->ssl_buf, bufs[0].cbBuffer+bufs[1].cbBuffer+bufs[2].cbBuffer, 0);
if (tcp_res < 1)
{
error("send failed: %d (%s)\n", tcp_res, TCP_STRERROR);
return False;
}
return True;
}
DWORD read_ssl_chunk(void *buf, SIZE_T buf_size, BOOL blocking, SIZE_T *ret_size, BOOL *eof)
{
const SIZE_T ssl_buf_size = g_ssl->ssl_sizes.cbHeader+g_ssl->ssl_sizes.cbMaximumMessage+g_ssl->ssl_sizes.cbTrailer;
SecBuffer bufs[4];
SecBufferDesc buf_desc = {SECBUFFER_VERSION, sizeof(bufs)/sizeof(*bufs), bufs};
SSIZE_T size, buf_len = 0;
int i;
SECURITY_STATUS res;
//assert(conn->extra_len < ssl_buf_size);
if (g_ssl->extra_len)
{
memcpy(g_ssl->ssl_buf, g_ssl->extra_buf, g_ssl->extra_len);
buf_len = g_ssl->extra_len;
g_ssl->extra_len = 0;
xfree(g_ssl->extra_buf);
g_ssl->extra_buf = NULL;
}
size = recv(g_sock, g_ssl->ssl_buf+buf_len, ssl_buf_size-buf_len, 0);
if (size < 0)
{
if (!buf_len)
{
if (size == -1 && TCP_BLOCKS)
{
return WSAEWOULDBLOCK;
}
error("recv failed: %d (%s)\n", size, TCP_STRERROR);
return -1;//ERROR_INTERNET_CONNECTION_ABORTED;
}
}
else
{
buf_len += size;
}
if (!buf_len)
{
*eof = TRUE;
*ret_size = 0;
return ERROR_SUCCESS;
}
*eof = FALSE;
do
{
memset(bufs, 0, sizeof(bufs));
bufs[0].BufferType = SECBUFFER_DATA;
bufs[0].cbBuffer = buf_len;
bufs[0].pvBuffer = g_ssl->ssl_buf;
res = DecryptMessage(&g_ssl->ssl_ctx, &buf_desc, 0, NULL);
switch (res)
{
case SEC_E_OK:
break;
case SEC_I_CONTEXT_EXPIRED:
*eof = TRUE;
return ERROR_SUCCESS;
case SEC_E_INCOMPLETE_MESSAGE:
//assert(buf_len < ssl_buf_size);
size = recv(g_sock, g_ssl->ssl_buf+buf_len, ssl_buf_size-buf_len, 0);
if (size < 1)
{
if (size == -1 && TCP_BLOCKS)
{
/* FIXME: Optimize extra_buf usage. */
g_ssl->extra_buf = xmalloc(buf_len);
if (!g_ssl->extra_buf)
return ERROR_NOT_ENOUGH_MEMORY;
g_ssl->extra_len = buf_len;
memcpy(g_ssl->extra_buf, g_ssl->ssl_buf, g_ssl->extra_len);
return WSAEWOULDBLOCK;
}
error("recv failed: %d (%s)\n", size, TCP_STRERROR);
return -1;//ERROR_INTERNET_CONNECTION_ABORTED;
}
buf_len += size;
continue;
default:
error("DecryptMessage failed: %d\n", res);
return -1;//ERROR_INTERNET_CONNECTION_ABORTED;
}
}
while (res != SEC_E_OK);
for (i=0; i < sizeof(bufs)/sizeof(*bufs); i++)
{
if (bufs[i].BufferType == SECBUFFER_DATA)
{
size = min(buf_size, bufs[i].cbBuffer);
memcpy(buf, bufs[i].pvBuffer, size);
if (size < bufs[i].cbBuffer)
{
//assert(!conn->peek_len);
g_ssl->peek_msg_mem = g_ssl->peek_msg = xmalloc(bufs[i].cbBuffer - size);
if (!g_ssl->peek_msg)
return ERROR_NOT_ENOUGH_MEMORY;
g_ssl->peek_len = bufs[i].cbBuffer-size;
memcpy(g_ssl->peek_msg, (char*)bufs[i].pvBuffer+size, g_ssl->peek_len);
}
*ret_size = size;
}
}
for (i=0; i < sizeof(bufs)/sizeof(*bufs); i++)
{
if (bufs[i].BufferType == SECBUFFER_EXTRA)
{
g_ssl->extra_buf = xmalloc(bufs[i].cbBuffer);
if (!g_ssl->extra_buf)
return ERROR_NOT_ENOUGH_MEMORY;
g_ssl->extra_len = bufs[i].cbBuffer;
memcpy(g_ssl->extra_buf, bufs[i].pvBuffer, g_ssl->extra_len);
}
}
return ERROR_SUCCESS;
}
#endif /* WITH_SSL */
/* Send TCP transport data packet */
void
tcp_send(STREAM s)
{
int length = s->end - s->data;
int sent, total = 0;
if (g_network_error == True)
return;
#ifdef WITH_SCARD
scard_lock(SCARD_LOCK_TCP);
#endif
while (total < length)
{
#ifdef WITH_SSL
if (g_ssl)
{
const BYTE *ptr = s->data + total;
size_t chunk_size;
sent = 0;
while (length - total)
{
chunk_size = min(length - total, g_ssl->ssl_sizes.cbMaximumMessage);
if (!send_ssl_chunk(ptr, chunk_size))
{
#ifdef WITH_SCARD
scard_unlock(SCARD_LOCK_TCP);
#endif
//error("send_ssl_chunk: %d (%s)\n", sent, TCP_STRERROR);
g_network_error = True;
return;
}
sent += chunk_size;
ptr += chunk_size;
length -= chunk_size;
}
}
else
{
#endif /* WITH_SSL */
sent = send(g_sock, (const char *)s->data + total, length - total, 0);
if (sent <= 0)
{
if (sent == -1 && TCP_BLOCKS)
{
TCP_SLEEP(0);
sent = 0;
}
else
{
#ifdef WITH_SCARD
scard_unlock(SCARD_LOCK_TCP);
#endif
error("send: %d (%s)\n", sent, TCP_STRERROR);
g_network_error = True;
return;
}
}
#ifdef WITH_SSL
}
#endif /* WITH_SSL */
total += sent;
}
#ifdef WITH_SCARD
scard_unlock(SCARD_LOCK_TCP);
#endif
}
/* Receive a message on the TCP layer */
STREAM
tcp_recv(STREAM s, uint32 length)
{
uint32 new_length, end_offset, p_offset;
int rcvd = 0;
if (g_network_error == True)
return NULL;
if (s == NULL)
{
/* read into "new" stream */
if (length > g_in.size)
{
g_in.data = (uint8 *) xrealloc(g_in.data, length);
g_in.size = length;
}
g_in.end = g_in.p = g_in.data;
s = &g_in;
}
else
{
/* append to existing stream */
new_length = (s->end - s->data) + length;
if (new_length > s->size)
{
p_offset = s->p - s->data;
end_offset = s->end - s->data;
s->data = (uint8 *) xrealloc(s->data, new_length);
s->size = new_length;
s->p = s->data + p_offset;
s->end = s->data + end_offset;
}
}
while (length > 0)
{
#ifdef WITH_SSL
if (!g_ssl)
#endif /* WITH_SSL */
{
if (!ui_select(g_sock))
{
/* User quit */
g_user_quit = True;
return NULL;
}
}
#ifdef WITH_SSL
if (g_ssl)
{
SIZE_T size = 0;
BOOL eof;
DWORD res;
if (g_ssl->peek_msg)
{
size = min(length, g_ssl->peek_len);
memcpy(s->end, g_ssl->peek_msg, size);
g_ssl->peek_len -= size;
g_ssl->peek_msg += size;
s->end += size;
if (!g_ssl->peek_len)
{
xfree(g_ssl->peek_msg_mem);
g_ssl->peek_msg_mem = g_ssl->peek_msg = NULL;
}
return s;
}
do
{
res = read_ssl_chunk((BYTE*)s->end, length, TRUE, &size, &eof);
if (res != ERROR_SUCCESS)
{
if (res == WSAEWOULDBLOCK)
{
if (size)
{
res = ERROR_SUCCESS;
}
}
else
{
error("read_ssl_chunk: %d (%s)\n", res, TCP_STRERROR);
g_network_error = True;
return NULL;
}
break;
}
}
while (!size && !eof);
rcvd = size;
}
else
{
#endif /* WITH_SSL */
rcvd = recv(g_sock, (char *)s->end, length, 0);
if (rcvd < 0)
{
if (rcvd == -1 && TCP_BLOCKS)
{
rcvd = 0;
}
else
{
error("recv: %d (%s)\n", rcvd, TCP_STRERROR);
g_network_error = True;
return NULL;
}
}
else if (rcvd == 0)
{
error("Connection closed\n");
return NULL;
}
#ifdef WITH_SSL
}
#endif /* WITH_SSL */
s->end += rcvd;
length -= rcvd;
}
return s;
}
#ifdef WITH_SSL
RD_BOOL
ensure_cred_handle(void)
{
SECURITY_STATUS res = SEC_E_OK;
if (!cred_handle_initialized)
{
SCHANNEL_CRED cred = {SCHANNEL_CRED_VERSION};
SecPkgCred_SupportedProtocols prots;
res = AcquireCredentialsHandleW(NULL, (WCHAR*)UNISP_NAME_W, SECPKG_CRED_OUTBOUND, NULL, &cred,
NULL, NULL, &cred_handle, NULL);
if (res == SEC_E_OK)
{
res = QueryCredentialsAttributesA(&cred_handle, SECPKG_ATTR_SUPPORTED_PROTOCOLS, &prots);
if (res != SEC_E_OK || (prots.grbitProtocol & SP_PROT_TLS1_1PLUS_CLIENT))
{
cred.grbitEnabledProtocols = prots.grbitProtocol & ~SP_PROT_TLS1_1PLUS_CLIENT;
res = AcquireCredentialsHandleW(NULL, (WCHAR*)UNISP_NAME_W, SECPKG_CRED_OUTBOUND, NULL, &cred,
NULL, NULL, &compat_cred_handle, NULL);
have_compat_cred_handle = res == SEC_E_OK;
}
}
cred_handle_initialized = res == SEC_E_OK;
}
if (res != SEC_E_OK)
{
error("ensure_cred_handle failed: %ld\n", res);
return False;
}
return True;
}
DWORD
ssl_handshake(RD_BOOL compat_mode)
{
SecBuffer out_buf = {0, SECBUFFER_TOKEN, NULL}, in_bufs[2] = {{0, SECBUFFER_TOKEN}, {0, SECBUFFER_EMPTY}};
SecBufferDesc out_desc = {SECBUFFER_VERSION, 1, &out_buf}, in_desc = {SECBUFFER_VERSION, 2, in_bufs};
SecHandle *cred = &cred_handle;
BYTE *read_buf;
SIZE_T read_buf_size = 2048;
ULONG attrs = 0;
CtxtHandle ctx;
SSIZE_T size;
SECURITY_STATUS status;
DWORD res = ERROR_SUCCESS;
const DWORD isc_req_flags = ISC_REQ_ALLOCATE_MEMORY|ISC_REQ_USE_SESSION_KEY|ISC_REQ_CONFIDENTIALITY
|ISC_REQ_SEQUENCE_DETECT|ISC_REQ_REPLAY_DETECT|ISC_REQ_MANUAL_CRED_VALIDATION;
if (!ensure_cred_handle())
return -1;
if (compat_mode) {
if (!have_compat_cred_handle)
return -1;
cred = &compat_cred_handle;
}
read_buf = xmalloc(read_buf_size);
if (!read_buf)
return ERROR_OUTOFMEMORY;
if (!g_ssl_server)
return -1;
status = InitializeSecurityContextA(cred, NULL, g_ssl_server, isc_req_flags, 0, 0, NULL, 0,
&ctx, &out_desc, &attrs, NULL);
//assert(status != SEC_E_OK);
while (status == SEC_I_CONTINUE_NEEDED || status == SEC_E_INCOMPLETE_MESSAGE)
{
if (out_buf.cbBuffer)
{
//assert(status == SEC_I_CONTINUE_NEEDED);
size = send(g_sock, out_buf.pvBuffer, out_buf.cbBuffer, 0);
if (size != out_buf.cbBuffer)
{
error("send failed: %d (%s)\n", size, TCP_STRERROR);
status = -1;
break;
}
FreeContextBuffer(out_buf.pvBuffer);
out_buf.pvBuffer = NULL;
out_buf.cbBuffer = 0;
}
if (status == SEC_I_CONTINUE_NEEDED)
{
//assert(in_bufs[1].cbBuffer < read_buf_size);
memmove(read_buf, (BYTE*)in_bufs[0].pvBuffer+in_bufs[0].cbBuffer-in_bufs[1].cbBuffer, in_bufs[1].cbBuffer);
in_bufs[0].cbBuffer = in_bufs[1].cbBuffer;
in_bufs[1].BufferType = SECBUFFER_EMPTY;
in_bufs[1].cbBuffer = 0;
in_bufs[1].pvBuffer = NULL;
}
//assert(in_bufs[0].BufferType == SECBUFFER_TOKEN);
//assert(in_bufs[1].BufferType == SECBUFFER_EMPTY);
if (in_bufs[0].cbBuffer + 1024 > read_buf_size)
{
BYTE *new_read_buf = xrealloc(read_buf, read_buf_size + 1024);
if (!new_read_buf)
{
status = E_OUTOFMEMORY;
break;
}
in_bufs[0].pvBuffer = read_buf = new_read_buf;
read_buf_size += 1024;
}
size = recv(g_sock, (char *)read_buf + in_bufs[0].cbBuffer, read_buf_size - in_bufs[0].cbBuffer, 0);
if (size < 1)
{
error("recv failed: %d (%s)\n", size, TCP_STRERROR);
res = -1;
break;
}
in_bufs[0].cbBuffer += size;
in_bufs[0].pvBuffer = read_buf;
status = InitializeSecurityContextA(cred, &ctx, g_ssl_server, isc_req_flags, 0, 0, &in_desc,
0, NULL, &out_desc, &attrs, NULL);
if (status == SEC_E_OK) {
if (SecIsValidHandle(&g_ssl->ssl_ctx))
DeleteSecurityContext(&g_ssl->ssl_ctx);
g_ssl->ssl_ctx = ctx;
if (in_bufs[1].BufferType == SECBUFFER_EXTRA)
{
//FIXME("SECBUFFER_EXTRA not supported\n");
}
status = QueryContextAttributesW(&ctx, SECPKG_ATTR_STREAM_SIZES, &g_ssl->ssl_sizes);
if (status != SEC_E_OK)
{
//error("Can't determine ssl buffer sizes: %ld\n", status);
break;
}
g_ssl->ssl_buf = xmalloc(g_ssl->ssl_sizes.cbHeader + g_ssl->ssl_sizes.cbMaximumMessage
+ g_ssl->ssl_sizes.cbTrailer);
if (!g_ssl->ssl_buf)
{
res = GetLastError();
break;
}
}
}
xfree(read_buf);
if (status != SEC_E_OK || res != ERROR_SUCCESS)
{
error("Failed to establish SSL connection: %08x (%u)\n", status, res);
xfree(g_ssl->ssl_buf);
g_ssl->ssl_buf = NULL;
return res ? res : -1;
}
return ERROR_SUCCESS;
}
/* Establish a SSL/TLS 1.0 connection */
RD_BOOL
tcp_tls_connect(void)
{
int err;
char tcp_port_rdp_s[10];
if (!g_ssl_initialized)
{
g_ssl = &g_ssl1;
SecInvalidateHandle(&g_ssl->ssl_ctx);
g_ssl_initialized = True;
}
snprintf(tcp_port_rdp_s, 10, "%d", g_tcp_port_rdp);
if ((err = ssl_handshake(FALSE)) != 0)
{
goto fail;
}
return True;
fail:
g_ssl = NULL;
return False;
}
/* Get public key from server of TLS 1.0 connection */
RD_BOOL
tcp_tls_get_server_pubkey(STREAM s)
{
const CERT_CONTEXT *cert = NULL;
SECURITY_STATUS status;
s->data = s->p = NULL;
s->size = 0;
if (g_ssl == NULL)
goto out;
status = QueryContextAttributesW(&g_ssl->ssl_ctx, SECPKG_ATTR_REMOTE_CERT_CONTEXT, (void*)&cert);
if (status != SEC_E_OK)
{
error("tcp_tls_get_server_pubkey: QueryContextAttributesW() failed %ld\n", status);
goto out;
}
s->size = cert->cbCertEncoded;
if (s->size < 1)
{
error("tcp_tls_get_server_pubkey: cert->cbCertEncoded = %ld\n", cert->cbCertEncoded);
goto out;
}
s->data = s->p = (unsigned char *)xmalloc(s->size);
memcpy(cert->pbCertEncoded, &s->p, s->size);
s->p = s->data;
s->end = s->p + s->size;
out:
if (cert)
CertFreeCertificateContext(cert);
return (s->size != 0);
}
#endif /* WITH_SSL */
/* Establish a connection on the TCP layer */
RD_BOOL
tcp_connect(char *server)
{
socklen_t option_len;
uint32 option_value;
int i;
#ifdef IPv6
int n;
struct addrinfo hints, *res, *ressave;
char tcp_port_rdp_s[10];
snprintf(tcp_port_rdp_s, 10, "%d", g_tcp_port_rdp);
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
if ((n = getaddrinfo(server, tcp_port_rdp_s, &hints, &res)))
{
error("getaddrinfo: %s\n", gai_strerror(n));
return False;
}
ressave = res;
g_sock = -1;
while (res)
{
g_sock = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (!(g_sock < 0))
{
if (connect(g_sock, res->ai_addr, res->ai_addrlen) == 0)
break;
TCP_CLOSE(g_sock);
g_sock = -1;
}
res = res->ai_next;
}
freeaddrinfo(ressave);
if (g_sock == -1)
{
error("%s: unable to connect\n", server);
return False;
}
#else /* no IPv6 support */
struct hostent *nslookup;
struct sockaddr_in servaddr;
if ((nslookup = gethostbyname(server)) != NULL)
{
memcpy(&servaddr.sin_addr, nslookup->h_addr, sizeof(servaddr.sin_addr));
}
else if ((servaddr.sin_addr.s_addr = inet_addr(server)) == INADDR_NONE)
{
error("%s: unable to resolve host\n", server);
return False;
}
if ((g_sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
error("socket: %s\n", TCP_STRERROR);
return False;
}
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons((uint16) g_tcp_port_rdp);
if (connect(g_sock, (struct sockaddr *) &servaddr, sizeof(struct sockaddr)) < 0)
{
if (!g_reconnect_loop)
error("connect: %s\n", TCP_STRERROR);
TCP_CLOSE(g_sock);
g_sock = -1;
return False;
}
#endif /* IPv6 */
option_value = 1;
option_len = sizeof(option_value);
setsockopt(g_sock, IPPROTO_TCP, TCP_NODELAY, (void *) &option_value, option_len);
/* receive buffer must be a least 16 K */
if (getsockopt(g_sock, SOL_SOCKET, SO_RCVBUF, (void *) &option_value, &option_len) == 0)
{
if (option_value < (1024 * 16))
{
option_value = 1024 * 16;
option_len = sizeof(option_value);
setsockopt(g_sock, SOL_SOCKET, SO_RCVBUF, (void *) &option_value,
option_len);
}
}
g_in.size = 4096;
g_in.data = (uint8 *) xmalloc(g_in.size);
for (i = 0; i < STREAM_COUNT; i++)
{
g_out[i].size = 4096;
g_out[i].data = (uint8 *) xmalloc(g_out[i].size);
}
#ifdef WITH_SSL
g_ssl_server = xmalloc(strlen(server)+1);
#endif /* WITH_SSL */
return True;
}
/* Disconnect on the TCP layer */
void
tcp_disconnect(void)
{
#ifdef WITH_SSL
if (g_ssl)
{
xfree(g_ssl->peek_msg_mem);
g_ssl->peek_msg_mem = NULL;
g_ssl->peek_msg = NULL;
g_ssl->peek_len = 0;
xfree(g_ssl->ssl_buf);
g_ssl->ssl_buf = NULL;
xfree(g_ssl->extra_buf);
g_ssl->extra_buf = NULL;
g_ssl->extra_len = 0;
if (SecIsValidHandle(&g_ssl->ssl_ctx))
DeleteSecurityContext(&g_ssl->ssl_ctx);
if (cred_handle_initialized)
FreeCredentialsHandle(&cred_handle);
if (have_compat_cred_handle)
FreeCredentialsHandle(&compat_cred_handle);
if (g_ssl_server)
{
xfree(g_ssl_server);
g_ssl_server = NULL;
}
g_ssl = NULL;
g_ssl_initialized = False;
}
#endif /* WITH_SSL */
TCP_CLOSE(g_sock);
g_sock = -1;
}
char *
tcp_get_address()
{
static char ipaddr[32];
struct sockaddr_in sockaddr;
socklen_t len = sizeof(sockaddr);
if (getsockname(g_sock, (struct sockaddr *) &sockaddr, &len) == 0)
{
uint8 *ip = (uint8 *) & sockaddr.sin_addr;
sprintf(ipaddr, "%d.%d.%d.%d", ip[0], ip[1], ip[2], ip[3]);
}
else
strcpy(ipaddr, "127.0.0.1");
return ipaddr;
}
RD_BOOL
tcp_is_connected()
{
struct sockaddr_in sockaddr;
socklen_t len = sizeof(sockaddr);
if (getpeername(g_sock, (struct sockaddr *) &sockaddr, &len))
return True;
return False;
}
/* reset the state of the tcp layer */
/* Support for Session Directory */
void
tcp_reset_state(void)
{
int i;
/* Clear the incoming stream */
if (g_in.data != NULL)
xfree(g_in.data);
g_in.p = NULL;
g_in.end = NULL;
g_in.data = NULL;
g_in.size = 0;
g_in.iso_hdr = NULL;
g_in.mcs_hdr = NULL;
g_in.sec_hdr = NULL;
g_in.rdp_hdr = NULL;
g_in.channel_hdr = NULL;
/* Clear the outgoing stream(s) */
for (i = 0; i < STREAM_COUNT; i++)
{
if (g_out[i].data != NULL)
xfree(g_out[i].data);
g_out[i].p = NULL;
g_out[i].end = NULL;
g_out[i].data = NULL;
g_out[i].size = 0;
g_out[i].iso_hdr = NULL;
g_out[i].mcs_hdr = NULL;
g_out[i].sec_hdr = NULL;
g_out[i].rdp_hdr = NULL;
g_out[i].channel_hdr = NULL;
}
}