reactos/base/applications/sndrec32/audio_membuffer.cpp

515 lines
6.8 KiB
C++
Raw Normal View History

/* PROJECT: ReactOS sndrec32
* LICENSE: GPL - See COPYING in the top level directory
* FILE: base/applications/sndrec32/audio_membuffer.cpp
* PURPOSE: Sound recording
* PROGRAMMERS: Marco Pagliaricci (irc: rendar)
*/
#include "stdafx.h"
#include "audio_membuffer.hpp"
_AUDIO_NAMESPACE_START_
//////////////////////////////////////
/////// Protected Functions /////////
//////////////////////////////////////
void
audio_membuffer::alloc_mem_( unsigned int bytes )
{
//
// Some checking
//
if ( bytes == 0 )
return;
//
// Checks previsiously alloc'd memory
// and frees it.
//
if ( audio_data )
delete[] audio_data;
//
// Allocs new memory and zeros it.
//
audio_data = new BYTE[ bytes ];
memset( audio_data, 0, bytes * sizeof( BYTE ));
//
// Sets the correct buffer size
//
buf_size = bytes;
init_size = bytes;
}
void
audio_membuffer::free_mem_( void )
{
if ( audio_data )
delete[] audio_data;
buf_size = 0;
audio_data = 0;
}
void
audio_membuffer::resize_mem_( unsigned int new_size )
{
if ( new_size == 0 )
return;
//
// The new_size, cannot be <= of the
// `bytes_received' member value of the
// parent class `audio_receiver'.
// We cannot touch received audio data,
// so we have to alloc at least
// bytes_received+1 bytes.
//
// But we can truncate unused memory, so
// `new_size' can be < of `buf_size'.
//
if ( new_size <= bytes_received )
return;
BYTE * new_mem;
//
// Allocs new memory and zeros it.
//
new_mem = new BYTE[ new_size ];
memset( new_mem, 0, new_size * sizeof( BYTE ));
if ( audio_data )
{
//
// Copies received audio data, and discard
// unused memory.
//
memcpy( new_mem, audio_data, bytes_received );
//
// Frees old memory.
//
delete[] audio_data;
//
// Commit new memory.
//
audio_data = new_mem;
buf_size = new_size;
} else {
audio_data = new_mem;
buf_size = new_size;
}
if ( buffer_resized )
buffer_resized( new_size );
}
void
audio_membuffer::truncate_( void )
{
//
// If `buf_size' is already = to the
// `bytes_received' of audio data, then
// this operation is useless; simply return.
//
if ( bytes_received == buf_size )
return;
if ( audio_data )
{
//
// Allocs a new buffer.
//
BYTE * newbuf = new BYTE[ bytes_received ];
//
// Copies audio data.
//
memcpy( newbuf, audio_data, bytes_received );
//
// Frees old memory.
//
delete[] audio_data;
//
// Commit the new buffer.
//
audio_data = newbuf;
buf_size = bytes_received;
//
// Buffer truncation successfull.
// Now the buffer size is exactly big
// as much audio data was received.
//
}
}
//////////////////////////////////////
/////// Public Functions ///////////
//////////////////////////////////////
void
audio_membuffer::clear( void )
{
free_mem_();
bytes_received = 0;
}
void
audio_membuffer::reset( void )
{
//
// Frees memory and reset
// to initial state.
//
clear();
//
// Alloc memory of size specified
// at the constructor.
//
alloc_mem_( init_size );
}
void
audio_membuffer::alloc_bytes( unsigned int bytes )
{
alloc_mem_( bytes );
}
void
audio_membuffer::alloc_seconds( unsigned int secs )
{
alloc_mem_( aud_info.byte_rate() * secs );
}
void
audio_membuffer::alloc_seconds( float secs )
{
alloc_mem_(( unsigned int )(( float ) aud_info.byte_rate() * secs ));
}
void
audio_membuffer::resize_bytes( unsigned int bytes )
{
resize_mem_( bytes );
}
void
audio_membuffer::resize_seconds( unsigned int secs )
{
resize_mem_( aud_info.byte_rate() * secs );
}
void
audio_membuffer::resize_seconds( float secs )
{
resize_mem_(( unsigned int )
(( float )aud_info.byte_rate() * secs )
);
}
///////////////////////////////////////
/////// Inherited Functions /////////
///////////////////////////////////////
void
audio_membuffer::audio_receive
( unsigned char * data, unsigned int size )
{
//
// If there isn't a buffer, allocs memory for
// it of size*2, and copies audio data arrival.
//
if (( audio_data == 0 ) || ( buf_size == 0 ))
{
alloc_mem_( size * 2 );
memcpy( audio_data, data, size );
return;
}
//
// If buffer's free memory is < of `size',
// we have to realloc buffer memory of
// buf_size*2, while free memory is enough
// to contain `size' bytes.
//
// In this case free memory is represented
// by `buf_size - bytes_recorded'.
//
unsigned int tot_mem = buf_size,
free_mem = buf_size - bytes_received;
if ( free_mem < size )
{
//
// Calcs new buffer size.
// TODO: flags for other behaviour?
while ( free_mem < size )
{
tot_mem *= 2;
free_mem = tot_mem - bytes_received;
}
//
// Resize buffer memory.
//
resize_mem_( tot_mem );
}
//
// Now we have enough free space in the
// buffer, so let's copy audio data arrivals.
//
memcpy( audio_data + bytes_received, data, size );
if ( audio_arrival )
audio_arrival( aud_info.samples_in_bytes( size ));
}
unsigned int
audio_membuffer::read( BYTE * out_buf, unsigned int bytes )
{
//
// Some checking
//
if ( !audio_data )
return 0;
if ( bytes_played_ >= bytes_received )
return 0;
unsigned int to_play =
bytes_received - bytes_played_;
unsigned int to_copy =
bytes > to_play ? to_play : bytes;
//
// Copies the audio data out.
//
if (( out_buf ) && ( to_copy ) && ( audio_data ))
memcpy( out_buf, audio_data + bytes_played_, to_copy );
//
// Increments the number of total bytes
// played (audio data gone out from the
// `audio_producer' object).
//
bytes_played_ += to_copy;
if ( audio_arrival )
audio_arrival( aud_info.samples_in_bytes( to_copy ));
//
// Returns the exact size of audio data
// produced.
//
return to_copy;
}
bool
audio_membuffer::finished( void )
{
if ( bytes_played_ < bytes_received )
return false;
else
return true;
}
_AUDIO_NAMESPACE_END_