reactos/sdk/tools/mkisofs/schilytools/libmdigest/sha3.c

508 lines
12 KiB
C
Raw Normal View History

/* @(#)sha3.c 1.4 15/12/27 2015 J. Schilling */
#include <schily/mconfig.h>
#ifndef lint
static UConst char sccsid[] =
"@(#)sha3.c 1.4 15/12/27 2015 J. Schilling";
#endif
/*
* SHA3 hash code taken from
* https://github.com/rhash/RHash/tree/master/librhash
*
* Portions Copyright (c) 2015 J. Schilling
*/
/*
* sha3.c - an implementation of Secure Hash Algorithm 3 (Keccak).
* based on the
* The Keccak SHA-3 submission. Submission to NIST (Round 3), 2011
* by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
*
* Copyright: 2013 Aleksey Kravchenko <rhash.admin@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. Use this program at your own risk!
*/
#include <schily/assert.h>
#include <schily/string.h>
#include "byte_order.h"
#include <schily/sha3.h>
#ifdef HAVE_LONGLONG
#if !defined(HAVE_MEMCPY) || !defined(HAVE_MEMSET)
#include <schily/schily.h>
#endif
#if !defined(HAVE_MEMCPY) && !defined(memcpy)
#define memcpy(s1, s2, n) movebytes(s2, s1, n)
#endif
#if !defined(HAVE_MEMSET) && !defined(memset)
#define memset(s, c, n) fillbytes(s, n, c)
#endif
static void rhash_keccak_init __PR((sha3_ctx *ctx, unsigned bits));
static void keccak_theta __PR((UInt64_t *A));
static void keccak_pi __PR((UInt64_t *A));
static void keccak_chi __PR((UInt64_t *A));
static void rhash_sha3_permutation __PR((UInt64_t *state));
static void rhash_sha3_process_block __PR((UInt64_t hash[25],
const UInt64_t *block,
size_t block_size));
/*
* The Cygwin compile environment incorrectly implements #pragma weak.
* The weak symbols are only defined as local symbols making it impossible
* to use them from outside the scope of this source file.
* A platform that allows linking with global symbols has HAVE_LINK_WEAK
* defined.
*/
#if defined(HAVE_PRAGMA_WEAK) && defined(HAVE_LINK_WEAK)
#pragma weak SHA3_224_Init = rhash_sha3_224_init
#pragma weak SHA3_256_Init = rhash_sha3_256_init
#pragma weak SHA3_384_Init = rhash_sha3_384_init
#pragma weak SHA3_512_Init = rhash_sha3_512_init
#pragma weak SHA3_Update = rhash_sha3_update
#else
void SHA3_224_Init __PR((SHA3_CTX *ctx));
void SHA3_256_Init __PR((SHA3_CTX *ctx));
void SHA3_384_Init __PR((SHA3_CTX *ctx));
void SHA3_512_Init __PR((SHA3_CTX *ctx));
void SHA3_Update __PR((SHA3_CTX *ctx,
const unsigned char *msg,
size_t size));
void
SHA3_224_Init(ctx)
SHA3_CTX *ctx;
{
rhash_sha3_224_init(ctx);
}
void
SHA3_256_Init(ctx)
SHA3_CTX *ctx;
{
rhash_sha3_256_init(ctx);
}
void
SHA3_384_Init(ctx)
SHA3_CTX *ctx;
{
rhash_sha3_384_init(ctx);
}
void
SHA3_512_Init(ctx)
SHA3_CTX *ctx;
{
rhash_sha3_512_init(ctx);
}
void
SHA3_Update(ctx, msg, size)
SHA3_CTX *ctx;
const unsigned char *msg;
size_t size;
{
rhash_sha3_update(ctx, msg, size);
}
#endif /* defined(HAVE_PRAGMA_WEAK) && defined(HAVE_LINK_WEAK) */
/* constants */
#define NumberOfRounds 24
/* SHA3 (Keccak) constants for 24 rounds */
static UInt64_t keccak_round_constants[NumberOfRounds] = {
UI64(0x0000000000000001), UI64(0x0000000000008082),
UI64(0x800000000000808A), UI64(0x8000000080008000),
UI64(0x000000000000808B), UI64(0x0000000080000001),
UI64(0x8000000080008081), UI64(0x8000000000008009),
UI64(0x000000000000008A), UI64(0x0000000000000088),
UI64(0x0000000080008009), UI64(0x000000008000000A),
UI64(0x000000008000808B), UI64(0x800000000000008B),
UI64(0x8000000000008089), UI64(0x8000000000008003),
UI64(0x8000000000008002), UI64(0x8000000000000080),
UI64(0x000000000000800A), UI64(0x800000008000000A),
UI64(0x8000000080008081), UI64(0x8000000000008080),
UI64(0x0000000080000001), UI64(0x8000000080008008)
};
/* Initializing a sha3 context for given number of output bits */
static void
rhash_keccak_init(ctx, bits)
sha3_ctx *ctx;
unsigned bits;
{
/* NB: The Keccak capacity parameter = bits * 2 */
unsigned rate = 1600 - bits * 2;
memset(ctx, 0, sizeof (sha3_ctx));
ctx->block_size = rate / 8;
assert(rate <= 1600 && (rate % 64) == 0);
}
/*
* Initialize context before calculating hash.
*
* @param ctx context to initialize
*/
void
rhash_sha3_224_init(ctx)
sha3_ctx *ctx;
{
rhash_keccak_init(ctx, 224);
}
/*
* Initialize context before calculating hash.
*
* @param ctx context to initialize
*/
void
rhash_sha3_256_init(ctx)
sha3_ctx *ctx;
{
rhash_keccak_init(ctx, 256);
}
/*
* Initialize context before calculating hash.
*
* @param ctx context to initialize
*/
void
rhash_sha3_384_init(ctx)
sha3_ctx *ctx;
{
rhash_keccak_init(ctx, 384);
}
/*
* Initialize context before calculating hash.
*
* @param ctx context to initialize
*/
void
rhash_sha3_512_init(ctx)
sha3_ctx *ctx;
{
rhash_keccak_init(ctx, 512);
}
/* Keccak theta() transformation */
static void
keccak_theta(A)
UInt64_t *A;
{
unsigned int x;
UInt64_t C[5], D[5];
for (x = 0; x < 5; x++) {
C[x] = A[x] ^ A[x + 5] ^ A[x + 10] ^ A[x + 15] ^ A[x + 20];
}
D[0] = ROTL64(C[1], 1) ^ C[4];
D[1] = ROTL64(C[2], 1) ^ C[0];
D[2] = ROTL64(C[3], 1) ^ C[1];
D[3] = ROTL64(C[4], 1) ^ C[2];
D[4] = ROTL64(C[0], 1) ^ C[3];
for (x = 0; x < 5; x++) {
A[x] ^= D[x];
A[x + 5] ^= D[x];
A[x + 10] ^= D[x];
A[x + 15] ^= D[x];
A[x + 20] ^= D[x];
}
}
/* Keccak pi() transformation */
static void
keccak_pi(A)
UInt64_t *A;
{
UInt64_t A1;
A1 = A[1];
A[ 1] = A[ 6];
A[ 6] = A[ 9];
A[ 9] = A[22];
A[22] = A[14];
A[14] = A[20];
A[20] = A[ 2];
A[ 2] = A[12];
A[12] = A[13];
A[13] = A[19];
A[19] = A[23];
A[23] = A[15];
A[15] = A[ 4];
A[ 4] = A[24];
A[24] = A[21];
A[21] = A[ 8];
A[ 8] = A[16];
A[16] = A[ 5];
A[ 5] = A[ 3];
A[ 3] = A[18];
A[18] = A[17];
A[17] = A[11];
A[11] = A[ 7];
A[ 7] = A[10];
A[10] = A1;
/* note: A[ 0] is left as is */
}
/* Keccak chi() transformation */
static void
keccak_chi(A)
UInt64_t *A;
{
int i;
for (i = 0; i < 25; i += 5) {
UInt64_t A0 = A[0 + i], A1 = A[1 + i];
A[0 + i] ^= ~A1 & A[2 + i];
A[1 + i] ^= ~A[2 + i] & A[3 + i];
A[2 + i] ^= ~A[3 + i] & A[4 + i];
A[3 + i] ^= ~A[4 + i] & A0;
A[4 + i] ^= ~A0 & A1;
}
}
static void
rhash_sha3_permutation(state)
UInt64_t *state;
{
int round;
for (round = 0; round < NumberOfRounds; round++)
{
keccak_theta(state);
/* apply Keccak rho() transformation */
state[ 1] = ROTL64(state[ 1], 1);
state[ 2] = ROTL64(state[ 2], 62);
state[ 3] = ROTL64(state[ 3], 28);
state[ 4] = ROTL64(state[ 4], 27);
state[ 5] = ROTL64(state[ 5], 36);
state[ 6] = ROTL64(state[ 6], 44);
state[ 7] = ROTL64(state[ 7], 6);
state[ 8] = ROTL64(state[ 8], 55);
state[ 9] = ROTL64(state[ 9], 20);
state[10] = ROTL64(state[10], 3);
state[11] = ROTL64(state[11], 10);
state[12] = ROTL64(state[12], 43);
state[13] = ROTL64(state[13], 25);
state[14] = ROTL64(state[14], 39);
state[15] = ROTL64(state[15], 41);
state[16] = ROTL64(state[16], 45);
state[17] = ROTL64(state[17], 15);
state[18] = ROTL64(state[18], 21);
state[19] = ROTL64(state[19], 8);
state[20] = ROTL64(state[20], 18);
state[21] = ROTL64(state[21], 2);
state[22] = ROTL64(state[22], 61);
state[23] = ROTL64(state[23], 56);
state[24] = ROTL64(state[24], 14);
keccak_pi(state);
keccak_chi(state);
/* apply iota(state, round) */
*state ^= keccak_round_constants[round];
}
}
/*
* The core transformation. Process the specified block of data.
*
* @param hash the algorithm state
* @param block the message block to process
* @param block_size the size of the processed block in bytes
*/
static void
rhash_sha3_process_block(hash, block, block_size)
UInt64_t hash[25];
const UInt64_t *block;
size_t block_size;
{
/* expanded loop */
hash[ 0] ^= le2me_64(block[ 0]);
hash[ 1] ^= le2me_64(block[ 1]);
hash[ 2] ^= le2me_64(block[ 2]);
hash[ 3] ^= le2me_64(block[ 3]);
hash[ 4] ^= le2me_64(block[ 4]);
hash[ 5] ^= le2me_64(block[ 5]);
hash[ 6] ^= le2me_64(block[ 6]);
hash[ 7] ^= le2me_64(block[ 7]);
hash[ 8] ^= le2me_64(block[ 8]);
/* if not sha3-512 */
if (block_size > 72) {
hash[ 9] ^= le2me_64(block[ 9]);
hash[10] ^= le2me_64(block[10]);
hash[11] ^= le2me_64(block[11]);
hash[12] ^= le2me_64(block[12]);
/* if not sha3-384 */
if (block_size > 104) {
hash[13] ^= le2me_64(block[13]);
hash[14] ^= le2me_64(block[14]);
hash[15] ^= le2me_64(block[15]);
hash[16] ^= le2me_64(block[16]);
/* if not sha3-256 */
if (block_size > 136) {
hash[17] ^= le2me_64(block[17]);
#ifdef FULL_SHA3_FAMILY_SUPPORT
/* if not sha3-224 */
if (block_size > 144) {
hash[18] ^= le2me_64(block[18]);
hash[19] ^= le2me_64(block[19]);
hash[20] ^= le2me_64(block[20]);
hash[21] ^= le2me_64(block[21]);
hash[22] ^= le2me_64(block[22]);
hash[23] ^= le2me_64(block[23]);
hash[24] ^= le2me_64(block[24]);
}
#endif
}
}
}
/* make a permutation of the hash */
rhash_sha3_permutation(hash);
}
#define SHA3_FINALIZED 0x80000000
/*
* Calculate message hash.
* Can be called repeatedly with chunks of the message to be hashed.
*
* @param ctx the algorithm context containing current hashing state
* @param msg message chunk
* @param size length of the message chunk
*/
void
rhash_sha3_update(ctx, msg, size)
sha3_ctx *ctx;
const unsigned char *msg;
size_t size;
{
size_t idx = (size_t)ctx->rest;
size_t block_size = (size_t)ctx->block_size;
if (ctx->rest & SHA3_FINALIZED)
return; /* too late for additional input */
ctx->rest = (unsigned)((ctx->rest + size) % block_size);
/* fill partial block */
if (idx) {
size_t left = block_size - idx;
memcpy((char *)ctx->message + idx, msg,
(size < left ? size : left));
if (size < left)
return;
/* process partial block */
rhash_sha3_process_block(ctx->hash, ctx->message, block_size);
msg += left;
size -= left;
}
while (size >= block_size) {
UInt64_t *aligned_message_block;
if (IS_ALIGNED_64(msg)) {
/*
* the most common case is processing of an already
* aligned message without copying it
*/
aligned_message_block = (UInt64_t *)msg;
} else {
memcpy(ctx->message, msg, block_size);
aligned_message_block = ctx->message;
}
rhash_sha3_process_block(ctx->hash, aligned_message_block,
block_size);
msg += block_size;
size -= block_size;
}
if (size) {
memcpy(ctx->message, msg, size); /* save leftovers */
}
}
/*
* Store calculated hash into the given array.
*
* @param ctx the algorithm context containing current hashing state
* @param result calculated hash in binary form
*/
void
rhash_sha3_final(ctx, result)
sha3_ctx *ctx;
unsigned char *result;
{
size_t digest_length = 100 - ctx->block_size / 2;
const size_t block_size = ctx->block_size;
if (!(ctx->rest & SHA3_FINALIZED))
{
/* clear the rest of the data queue */
memset((char *)ctx->message + ctx->rest, 0,
block_size - ctx->rest);
((char *)ctx->message)[ctx->rest] |= 0x06;
((char *)ctx->message)[block_size - 1] |= 0x80;
/* process final block */
rhash_sha3_process_block(ctx->hash, ctx->message, block_size);
ctx->rest = SHA3_FINALIZED; /* mark context as finalized */
}
assert(block_size > digest_length);
if (result) me64_to_le_str(result, ctx->hash, digest_length);
}
void
SHA3_Final(result, ctx)
UInt8_t *result;
SHA3_CTX *ctx;
{
rhash_sha3_final(ctx, result);
}
#ifdef USE_KECCAK
/*
* Store calculated hash into the given array.
*
* @param ctx the algorithm context containing current hashing state
* @param result calculated hash in binary form
*/
void
rhash_keccak_final(sha3_ctx *ctx, unsigned char *result)
{
size_t digest_length = 100 - ctx->block_size / 2;
const size_t block_size = ctx->block_size;
if (!(ctx->rest & SHA3_FINALIZED)) {
/* clear the rest of the data queue */
memset((char *)ctx->message + ctx->rest, 0,
block_size - ctx->rest);
((char *)ctx->message)[ctx->rest] |= 0x01;
((char *)ctx->message)[block_size - 1] |= 0x80;
/* process final block */
rhash_sha3_process_block(ctx->hash, ctx->message, block_size);
ctx->rest = SHA3_FINALIZED; /* mark context as finalized */
}
assert(block_size > digest_length);
if (result)
me64_to_le_str(result, ctx->hash, digest_length);
}
#endif /* USE_KECCAK */
#endif /* HAVE_LONGLONG */