reactos/rosapps/tests/regdump/regproc.c

1492 lines
49 KiB
C
Raw Normal View History

/*
* Registry processing routines. Routines, common for registry
* processing frontends.
*
* Copyright 1999 Sylvain St-Germain
* Copyright 2002 Andriy Palamarchuk
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef WIN32_REGDBG
#include <windows.h>
#include <tchar.h>
#ifndef __GNUC__
#include <ntsecapi.h>
#else
#include <ctype.h>
#endif
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
//#include <winreg.h>
#include "regdump.h"
#else
#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers
#include <windows.h>
#include <commctrl.h>
#include <stdlib.h>
#include <tchar.h>
#include <process.h>
#include <stdio.h>
#include <wchar.h>
#include <ctype.h>
#include <limits.h>
#include <winnt.h>
#include <winreg.h>
#include <assert.h>
#endif
#include "regproc.h"
#define REG_VAL_BUF_SIZE 4096
/* Delimiters used to parse the "value" to query queryValue*/
#define QUERY_VALUE_MAX_ARGS 1
/* maximal number of characters in hexadecimal data line,
not including '\' character */
#define REG_FILE_HEX_LINE_LEN 76
/* Globals used by the api setValue, queryValue */
static LPTSTR currentKeyName = NULL;
static HKEY currentKeyClass = 0;
static HKEY currentKeyHandle = 0;
static BOOL bTheKeyIsOpen = FALSE;
static TCHAR *reg_class_names[] = {
_T("HKEY_LOCAL_MACHINE"),
_T("HKEY_USERS"),
_T("HKEY_CLASSES_ROOT"),
_T("HKEY_CURRENT_CONFIG"),
_T("HKEY_CURRENT_USER")
};
#define REG_CLASS_NUMBER (sizeof(reg_class_names) / sizeof(reg_class_names[0]))
static HKEY reg_class_keys[REG_CLASS_NUMBER] = {
HKEY_LOCAL_MACHINE, HKEY_USERS, HKEY_CLASSES_ROOT,
HKEY_CURRENT_CONFIG, HKEY_CURRENT_USER
};
/* return values */
#define NOT_ENOUGH_MEMORY 1
#define IO_ERROR 2
/* processing macros */
/* common check of memory allocation results */
#ifdef UNICODE
#define CHECK_ENOUGH_MEMORY(p) \
if (!(p)) \
{ \
_tprintf(_T("file %S, line %d: Not enough memory"), __FILE__, __LINE__); \
assert(0);\
exit(NOT_ENOUGH_MEMORY); \
}
#else
#define CHECK_ENOUGH_MEMORY(p) \
if (!(p)) \
{ \
_tprintf(_T("file %s, line %d: Not enough memory"), __FILE__, __LINE__); \
assert(0);\
exit(NOT_ENOUGH_MEMORY); \
}
#endif
#ifdef UNICODE
#define _TEOF WEOF
#else
#define _TEOF EOF
#endif
/******************************************************************************
* This is a replacement for strsep which is not portable (missing on Solaris).
*/
#if 0
/* DISABLED */
char* getToken(char** str, const char* delims)
{
char* token;
if (*str==NULL) {
/* No more tokens */
return NULL;
}
token=*str;
while (**str!='\0') {
if (strchr(delims,**str)!=NULL) {
**str='\0';
(*str)++;
return token;
}
(*str)++;
}
/* There is no other token */
*str=NULL;
return token;
}
#endif
/******************************************************************************
* Copies file name from command line string to the buffer.
* Rewinds the command line string pointer to the next non-spece character
* after the file name.
* Buffer contains an empty string if no filename was found;
*
* params:
* command_line - command line current position pointer
* where *s[0] is the first symbol of the file name.
* file_name - buffer to write the file name to.
*/
void get_file_nameA(CHAR **command_line, CHAR *file_name, int max_filename)
{
CHAR *s = *command_line;
int pos = 0; /* position of pointer "s" in *command_line */
file_name[0] = 0;
if (!s[0]) {
return;
}
if (s[0] == '"') {
s++;
(*command_line)++;
while (s[0] != '"') {
if (!s[0]) {
_tprintf(_T("Unexpected end of file name!\n"));
assert(0);
//exit(1);
}
s++;
pos++;
}
} else {
while (s[0] && !isspace(s[0])) {
s++;
pos++;
}
}
memcpy(file_name, *command_line, pos * sizeof((*command_line)[0]));
/* remove the last backslash */
if (file_name[pos - 1] == '\\') {
file_name[pos - 1] = '\0';
} else {
file_name[pos] = '\0';
}
if (s[0]) {
s++;
pos++;
}
while (s[0] && isspace(s[0])) {
s++;
pos++;
}
(*command_line) += pos;
}
void get_file_nameW(CHAR** command_line, WCHAR* filename, int max_filename)
{
CHAR filenameA[_MAX_PATH];
int len;
get_file_nameA(command_line, filenameA, _MAX_PATH);
len = strlen(filenameA);
OemToCharBuffW(filenameA, filename, max_filename);
filename[len] = _T('\0');
/*
UNICODE_STRING UnicodeString;
ANSI_STRING AnsiString;
CHAR filenameA[_MAX_PATH];
get_file_nameA(command_line, filenameA, _MAX_PATH);
//RtlInitAnsiString(&AnsiString, filenameA);
UnicodeString.Buffer = filename;
UnicodeString.MaximumLength = max_filename;//MAX_PATH;
RtlAnsiStringToUnicodeString(&UnicodeString, &AnsiString, FALSE);
*/
}
/******************************************************************************
* Converts a hex representation of a DWORD into a DWORD.
*/
DWORD convertHexToDWord(TCHAR* str, BYTE* buf)
{
DWORD dw;
TCHAR xbuf[9];
memcpy(xbuf, str, 8 * sizeof(TCHAR));
xbuf[88 * sizeof(TCHAR)] = '\0';
_stscanf(xbuf, _T("%08lx"), &dw);
memcpy(buf, &dw, sizeof(DWORD));
return sizeof(DWORD);
}
/******************************************************************************
* Converts a hex buffer into a hex comma separated values
*/
TCHAR* convertHexToHexCSV(BYTE* buf, ULONG bufLen)
{
TCHAR* str;
TCHAR* ptrStr;
BYTE* ptrBuf;
ULONG current = 0;
str = HeapAlloc(GetProcessHeap(), 0, (bufLen+1)*2*sizeof(TCHAR));
memset(str, 0, (bufLen+1)*2);
ptrStr = str; /* Pointer to result */
ptrBuf = buf; /* Pointer to current */
while (current < bufLen) {
BYTE bCur = ptrBuf[current++];
TCHAR res[3];
_stprintf(res, _T("%02x"), (unsigned int)*&bCur);
_tcscat(str, res);
_tcscat(str, _T(","));
}
/* Get rid of the last comma */
str[_tcslen(str)-1] = _T('\0');
return str;
}
/******************************************************************************
* Converts a hex buffer into a DWORD string
*/
TCHAR* convertHexToDWORDStr(BYTE* buf, ULONG bufLen)
{
TCHAR* str;
DWORD dw;
if (bufLen != sizeof(DWORD)) return NULL;
str = HeapAlloc(GetProcessHeap(), 0, ((bufLen*2)+1)*sizeof(TCHAR));
memcpy(&dw, buf, sizeof(DWORD));
_stprintf(str, _T("%08lx"), dw);
/* Get rid of the last comma */
return str;
}
/******************************************************************************
* Converts a hex comma separated values list into a hex list.
* The Hex input string must be in exactly the correct form.
*/
DWORD convertHexCSVToHex(TCHAR* str, BYTE* buf, ULONG bufLen)
{
TCHAR* s = str; /* Pointer to current */
CHAR* b = buf; /* Pointer to result */
ULONG strLen = _tcslen(str);
ULONG strPos = 0;
DWORD byteCount = 0;
memset(buf, 0, bufLen);
/*
* warn the user if we are here with a string longer than 2 bytes that does
* not contains ",". It is more likely because the data is invalid.
*/
if ((strLen > 2) && (_tcschr(str, _T(',')) == NULL)) {
_tprintf(_T("WARNING converting CSV hex stream with no comma, ") \
_T("input data seems invalid.\n"));
}
if (strLen > 3*bufLen) {
_tprintf(_T("ERROR converting CSV hex stream. Too long\n"));
}
while (strPos < strLen) {
TCHAR xbuf[3];
TCHAR wc;
memcpy(xbuf, s, 2);
xbuf[3] = _T('\0');
_stscanf(xbuf, _T("%02x"), (UINT*)&wc);
if (byteCount < bufLen)
*b++ = (unsigned char)wc;
s += 3;
strPos += 3;
++byteCount;
}
return byteCount;
}
/******************************************************************************
* This function returns the HKEY associated with the data type encoded in the
* value. It modifies the input parameter (key value) in order to skip this
* "now useless" data type information.
*
* Note: Updated based on the algorithm used in 'server/registry.c'
*/
DWORD getDataType(LPTSTR* lpValue, DWORD* parse_type)
{
struct data_type { const TCHAR *tag; int len; int type; int parse_type; };
static const struct data_type data_types[] =
{ /* actual type */ /* type to assume for parsing */
{ _T("\""), 1, REG_SZ, REG_SZ },
{ _T("str:\""), 5, REG_SZ, REG_SZ },
// { _T("str(2):\""), 8, REG_EXPAND_SZ, REG_SZ },
{ _T("expand:\""), 8, REG_EXPAND_SZ, REG_EXPAND_SZ },
{ _T("hex:"), 4, REG_BINARY, REG_BINARY },
{ _T("dword:"), 6, REG_DWORD, REG_DWORD },
{ _T("hex("), 4, -1, REG_BINARY },
{ NULL, 0, 0, 0 }
};
const struct data_type *ptr;
int type;
for (ptr = data_types; ptr->tag; ptr++) {
if (memcmp(ptr->tag, *lpValue, ptr->len))
continue;
/* Found! */
*parse_type = ptr->parse_type;
type = ptr->type;
*lpValue += ptr->len;
if (type == -1) {
TCHAR* end;
/* "hex(xx):" is special */
type = (int)_tcstoul(*lpValue , &end, 16);
if (**lpValue == _T('\0') || *end != _T(')') || *(end+1) != _T(':')) {
type = REG_NONE;
} else {
*lpValue = end + 2;
}
}
return type;
}
return (**lpValue == _T('\0') ? REG_SZ : REG_NONE);
}
/******************************************************************************
* Returns an allocated buffer with a cleaned copy (removed the surrounding
* dbl quotes) of the passed value.
*/
LPTSTR getArg(LPTSTR arg)
{
LPTSTR tmp = NULL;
ULONG len;
if (arg == NULL) return NULL;
// Get rid of surrounding quotes
len = _tcslen(arg);
if (arg[len-1] == _T('\"')) arg[len-1] = _T('\0');
if (arg[0] == _T('\"')) arg++;
tmp = HeapAlloc(GetProcessHeap(), 0, (_tcslen(arg)+1) * sizeof(TCHAR));
_tcscpy(tmp, arg);
return tmp;
}
/******************************************************************************
* Replaces escape sequences with the characters.
*/
void REGPROC_unescape_string(LPTSTR str)
{
int str_idx = 0; /* current character under analysis */
int val_idx = 0; /* the last character of the unescaped string */
int len = _tcslen(str);
for (str_idx = 0; str_idx < len; str_idx++, val_idx++) {
if (str[str_idx] == _T('\\')) {
str_idx++;
switch (str[str_idx]) {
case _T('n'):
str[val_idx] = _T('\n');
break;
case _T('\\'):
case _T('"'):
str[val_idx] = str[str_idx];
break;
default:
_tprintf(_T("Warning! Unrecognized escape sequence: \\%c'\n"), str[str_idx]);
str[val_idx] = str[str_idx];
break;
}
} else {
str[val_idx] = str[str_idx];
}
}
str[val_idx] = _T('\0');
}
/******************************************************************************
* Sets the value with name val_name to the data in val_data for the currently
* opened key.
*
* Parameters:
* val_name - name of the registry value
* val_data - registry value data
*/
HRESULT setValue(LPTSTR val_name, LPTSTR val_data)
{
HRESULT hRes;
DWORD dwDataType, dwParseType;
LPBYTE lpbData;
BYTE convert[KEY_MAX_LEN];
BYTE *bBigBuffer = 0;
DWORD dwLen;
if ((val_name == NULL) || (val_data == NULL))
return ERROR_INVALID_PARAMETER;
/* Get the data type stored into the value field */
dwDataType = getDataType(&val_data, &dwParseType);
// if (dwParseType == REG_EXPAND_SZ) {
// }
// if (dwParseType == REG_SZ || dwParseType == REG_EXPAND_SZ) { /* no conversion for string */
if (dwParseType == REG_SZ) { /* no conversion for string */
dwLen = _tcslen(val_data);
if (dwLen > 0 && val_data[dwLen-1] == _T('"')) {
dwLen--;
val_data[dwLen] = _T('\0');
}
dwLen++;
dwLen *= sizeof(TCHAR);
REGPROC_unescape_string(val_data);
lpbData = val_data;
} else if (dwParseType == REG_DWORD) { /* Convert the dword types */
dwLen = convertHexToDWord(val_data, convert);
lpbData = convert;
} else { /* Convert the hexadecimal types */
int b_len = _tcslen(val_data)+2/3;
if (b_len > KEY_MAX_LEN) {
bBigBuffer = HeapAlloc (GetProcessHeap(), 0, b_len * sizeof(TCHAR));
if (bBigBuffer == NULL) {
return ERROR_REGISTRY_IO_FAILED;
}
CHECK_ENOUGH_MEMORY(bBigBuffer);
dwLen = convertHexCSVToHex(val_data, bBigBuffer, b_len);
lpbData = bBigBuffer;
} else {
dwLen = convertHexCSVToHex(val_data, convert, KEY_MAX_LEN);
lpbData = convert;
}
}
hRes = RegSetValueEx(currentKeyHandle, val_name,
0, /* Reserved */dwDataType, lpbData, dwLen);
_tprintf(_T(" Value: %s, Data: %s\n"), val_name, lpbData);
if (bBigBuffer)
HeapFree(GetProcessHeap(), 0, bBigBuffer);
return hRes;
}
/******************************************************************************
* Open the key
*/
HRESULT openKey(LPTSTR stdInput)
{
DWORD dwDisp;
HRESULT hRes;
/* Sanity checks */
if (stdInput == NULL)
return ERROR_INVALID_PARAMETER;
/* Get the registry class */
currentKeyClass = getRegClass(stdInput); /* Sets global variable */
if (currentKeyClass == (HKEY)ERROR_INVALID_PARAMETER)
return (HRESULT)ERROR_INVALID_PARAMETER;
/* Get the key name */
currentKeyName = getRegKeyName(stdInput); /* Sets global variable */
if (currentKeyName == NULL)
return ERROR_INVALID_PARAMETER;
hRes = RegCreateKeyEx(
currentKeyClass, /* Class */
currentKeyName, /* Sub Key */
0, /* MUST BE 0 */
NULL, /* object type */
REG_OPTION_NON_VOLATILE, /* option, REG_OPTION_NON_VOLATILE ... */
KEY_ALL_ACCESS, /* access mask, KEY_ALL_ACCESS */
NULL, /* security attribute */
&currentKeyHandle, /* result */
&dwDisp); /* disposition, REG_CREATED_NEW_KEY or
REG_OPENED_EXISTING_KEY */
if (hRes == ERROR_SUCCESS)
bTheKeyIsOpen = TRUE;
return hRes;
}
/******************************************************************************
* Extracts from [HKEY\some\key\path] or HKEY\some\key\path types of line
* the key name (what starts after the first '\')
*/
LPTSTR getRegKeyName(LPTSTR lpLine)
{
LPTSTR keyNameBeg;
TCHAR lpLineCopy[KEY_MAX_LEN];
if (lpLine == NULL)
return NULL;
_tcscpy(lpLineCopy, lpLine);
keyNameBeg = _tcschr(lpLineCopy, _T('\\')); /* The key name start by '\' */
if (keyNameBeg) {
LPTSTR keyNameEnd;
keyNameBeg++; /* is not part of the name */
keyNameEnd = _tcschr(lpLineCopy, _T(']'));
if (keyNameEnd) {
*keyNameEnd = _T('\0'); /* remove ']' from the key name */
}
} else {
keyNameBeg = lpLineCopy + _tcslen(lpLineCopy); /* branch - empty string */
}
currentKeyName = HeapAlloc(GetProcessHeap(), 0, (_tcslen(keyNameBeg)+1)*sizeof(TCHAR));
CHECK_ENOUGH_MEMORY(currentKeyName);
_tcscpy(currentKeyName, keyNameBeg);
return currentKeyName;
}
/******************************************************************************
* Extracts from [HKEY\some\key\path] or HKEY\some\key\path types of line
* the key class (what ends before the first '\')
*/
HKEY getRegClass(LPTSTR lpClass)
{
LPTSTR classNameEnd;
LPTSTR classNameBeg;
int i;
TCHAR lpClassCopy[KEY_MAX_LEN];
if (lpClass == NULL)
return (HKEY)ERROR_INVALID_PARAMETER;
_tcsncpy(lpClassCopy, lpClass, KEY_MAX_LEN);
classNameEnd = _tcschr(lpClassCopy, _T('\\')); /* The class name ends by '\' */
if (!classNameEnd) { /* or the whole string */
classNameEnd = lpClassCopy + _tcslen(lpClassCopy);
if (classNameEnd[-1] == _T(']')) {
classNameEnd--;
}
}
*classNameEnd = _T('\0'); /* Isolate the class name */
if (lpClassCopy[0] == _T('[')) {
classNameBeg = lpClassCopy + 1;
} else {
classNameBeg = lpClassCopy;
}
for (i = 0; i < REG_CLASS_NUMBER; i++) {
if (!_tcscmp(classNameBeg, reg_class_names[i])) {
return reg_class_keys[i];
}
}
return (HKEY)ERROR_INVALID_PARAMETER;
}
/******************************************************************************
* Close the currently opened key.
*/
void closeKey(VOID)
{
RegCloseKey(currentKeyHandle);
HeapFree(GetProcessHeap(), 0, currentKeyName); /* Allocated by getKeyName */
bTheKeyIsOpen = FALSE;
currentKeyName = NULL;
currentKeyClass = 0;
currentKeyHandle = 0;
}
/******************************************************************************
* This function is the main entry point to the setValue type of action. It
* receives the currently read line and dispatch the work depending on the
* context.
*/
void doSetValue(LPTSTR stdInput)
{
/*
* We encountered the end of the file, make sure we
* close the opened key and exit
*/
if (stdInput == NULL) {
if (bTheKeyIsOpen != FALSE)
closeKey();
return;
}
if (stdInput[0] == _T('[')) { /* We are reading a new key */
if (bTheKeyIsOpen != FALSE) {
closeKey(); /* Close the previous key before */
}
if (openKey(stdInput) != ERROR_SUCCESS) {
_tprintf(_T("doSetValue failed to open key %s\n"), stdInput);
}
} else if ((bTheKeyIsOpen) &&
((stdInput[0] == _T('@')) || /* reading a default @=data pair */
(stdInput[0] == _T('\"')))) { /* reading a new value=data pair */
processSetValue(stdInput);
} else { /* since we are assuming that the file format is */
if (bTheKeyIsOpen) /* valid we must be reading a blank line which */
closeKey(); /* indicate end of this key processing */
}
}
/******************************************************************************
* This funtion is the main entry point to the queryValue type of action. It
* receives the currently read line and dispatch the work depending on the
* context.
*/
void doQueryValue(LPTSTR stdInput) {
/*
* We encoutered the end of the file, make sure we
* close the opened key and exit
*/
if (stdInput == NULL) {
if (bTheKeyIsOpen != FALSE)
closeKey();
return;
}
if (stdInput[0] == _T('[')) { /* We are reading a new key */
if (bTheKeyIsOpen != FALSE)
closeKey(); /* Close the previous key before */
if (openKey(stdInput) != ERROR_SUCCESS ) {
_tprintf(_T("doQueryValue failed to open key %s\n"), stdInput);
}
}
else if( (bTheKeyIsOpen) &&
((stdInput[0] == _T('@')) || /* reading a default @=data pair */
(stdInput[0] == _T('\"')))) { /* reading a new value=data pair */
processQueryValue(stdInput);
} else { /* since we are assuming that the file format is */
if (bTheKeyIsOpen) /* valid we must be reading a blank line which */
closeKey(); /* indicate end of this key processing */
}
}
/******************************************************************************
* This funtion is the main entry point to the deletetValue type of action. It
* receives the currently read line and dispatch the work depending on the
* context.
*/
void doDeleteValue(LPTSTR line) {
_tprintf(_T("deleteValue not yet implemented\n"));
}
/******************************************************************************
* This funtion is the main entry point to the deleteKey type of action. It
* receives the currently read line and dispatch the work depending on the
* context.
*/
void doDeleteKey(LPTSTR line) {
_tprintf(_T("deleteKey not yet implemented\n"));
}
/******************************************************************************
* This funtion is the main entry point to the createKey type of action. It
* receives the currently read line and dispatch the work depending on the
* context.
*/
void doCreateKey(LPTSTR line) {
_tprintf(_T("createKey not yet implemented\n"));
}
/******************************************************************************
* This function is a wrapper for the setValue function. It prepares the
* land and clean the area once completed.
* Note: this function modifies the line parameter.
*
* line - registry file unwrapped line. Should have the registry value name and
* complete registry value data.
*/
void processSetValue(LPTSTR line)
{
LPTSTR val_name; /* registry value name */
LPTSTR val_data; /* registry value data */
int line_idx = 0; /* current character under analysis */
HRESULT hRes = 0;
/* get value name */
if (line[line_idx] == _T('@') && line[line_idx + 1] == _T('=')) {
line[line_idx] = _T('\0');
val_name = line;
line_idx++;
} else if (line[line_idx] == _T('\"')) {
line_idx++;
val_name = line + line_idx;
while (TRUE) {
if (line[line_idx] == _T('\\')) { /* skip escaped character */
line_idx += 2;
} else {
if (line[line_idx] == _T('\"')) {
line[line_idx] = _T('\0');
line_idx++;
break;
} else {
line_idx++;
}
}
}
if (line[line_idx] != _T('=')) {
line[line_idx] = _T('\"');
_tprintf(_T("Warning! uncrecognized line:\n%s\n"), line);
return;
}
} else {
_tprintf(_T("Warning! unrecognized line:\n%s\n"), line);
return;
}
line_idx++; /* skip the '=' character */
val_data = line + line_idx;
REGPROC_unescape_string(val_name);
_tprintf(_T("Key: %s, Value: %s, Data: %s\n"), currentKeyName, val_name, val_data);
hRes = setValue(val_name, val_data);
if (hRes != ERROR_SUCCESS) {
_tprintf(_T("ERROR Key %s not created. Value: %s, Data: %s\n"), currentKeyName, val_name, val_data);
}
}
/******************************************************************************
* This function is a wrapper for the queryValue function. It prepares the
* land and clean the area once completed.
*/
void processQueryValue(LPTSTR cmdline)
{
_tprintf(_T("ERROR!!! - temporary disabled"));
//exit(1);
return;
#if 0
LPSTR argv[QUERY_VALUE_MAX_ARGS];/* args storage */
LPSTR token = NULL; /* current token analized */
ULONG argCounter = 0; /* counter of args */
INT counter;
HRESULT hRes = 0;
LPSTR keyValue = NULL;
LPSTR lpsRes = NULL;
/*
* Init storage and parse the line
*/
for (counter = 0; counter < QUERY_VALUE_MAX_ARGS; counter++)
argv[counter] = NULL;
while ((token = getToken(&cmdline, queryValueDelim[argCounter])) != NULL) {
argv[argCounter++] = getArg(token);
if (argCounter == QUERY_VALUE_MAX_ARGS)
break; /* Stop processing args no matter what */
}
/* The value we look for is the first token on the line */
if (argv[0] == NULL)
return; /* SHOULD NOT HAPPEN */
else
keyValue = argv[0];
if ((keyValue[0] == '@') && (_tcslen(keyValue) == 1)) {
LONG lLen = KEY_MAX_LEN;
TCHAR* lpsData = HeapAlloc(GetProcessHeap(),HEAP_ZERO_MEMORY,KEY_MAX_LEN);
/*
* We need to query the key default value
*/
hRes = RegQueryValue(currentKeyHandle, currentKeyName, (LPBYTE)lpsData, &lLen);
if (hRes == ERROR_MORE_DATA) {
lpsData = HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, lpsData, lLen);
hRes = RegQueryValue(currentKeyHandle, currentKeyName, (LPBYTE)lpsData, &lLen);
}
if (hRes == ERROR_SUCCESS) {
lpsRes = HeapAlloc(GetProcessHeap(), 0, lLen);
strncpy(lpsRes, lpsData, lLen);
lpsRes[lLen-1]='\0';
}
} else {
DWORD dwLen = KEY_MAX_LEN;
BYTE* lpbData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, KEY_MAX_LEN);
DWORD dwType;
/*
* We need to query a specific value for the key
*/
hRes = RegQueryValueEx(
currentKeyHandle,
keyValue,
0,
&dwType,
(LPBYTE)lpbData,
&dwLen);
if (hRes == ERROR_MORE_DATA) {
lpbData = HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, lpbData, dwLen * sizeof(TCHAR));
hRes = RegQueryValueEx(currentKeyHandle, keyValue, NULL, &dwType, (LPBYTE)lpbData, &dwLen);
}
if (hRes == ERROR_SUCCESS) {
/*
* Convert the returned data to a displayable format
*/
switch (dwType) {
case REG_SZ:
case REG_EXPAND_SZ:
lpsRes = HeapAlloc(GetProcessHeap(), 0, dwLen * sizeof(TCHAR));
strncpy(lpsRes, lpbData, dwLen);
lpsRes[dwLen-1] = '\0';
break;
case REG_DWORD:
lpsRes = convertHexToDWORDStr(lpbData, dwLen);
break;
default:
lpsRes = convertHexToHexCSV(lpbData, dwLen);
break;
}
}
HeapFree(GetProcessHeap(), 0, lpbData);
}
if (hRes == ERROR_SUCCESS) {
_tprintf(_T("Value \"%s\" = \"%s\" in key [%s]\n"), keyValue, lpsRes, currentKeyName);
} else {
_tprintf(_T("ERROR Value \"%s\" not found. for key \"%s\"\n"), keyValue, currentKeyName);
}
/*
* Do some cleanup
*/
for (counter=0; counter<argCounter; counter++)
if (argv[counter] != NULL)
HeapFree(GetProcessHeap(), 0, argv[counter]);
if (lpsRes != NULL)
HeapFree(GetProcessHeap(), 0, lpsRes);
#endif
}
/******************************************************************************
* Calls command for each line of a registry file.
* Correctly processes comments (in # form), line continuation.
*
* Parameters:
* in - input stream to read from
* command - command to be called for each line
*/
void processRegLines(FILE *in, CommandAPI command)
{
LPTSTR line = NULL; /* line read from input stream */
ULONG lineSize = REG_VAL_BUF_SIZE;
line = HeapAlloc(GetProcessHeap(), 0, lineSize * sizeof(TCHAR));
CHECK_ENOUGH_MEMORY(line);
while (!feof(in)) {
LPTSTR s; /* The pointer into line for where the current fgets should read */
s = line;
for (;;) {
size_t size_remaining;
int size_to_get;
TCHAR *s_eol; /* various local uses */
/* Do we need to expand the buffer ? */
assert (s >= line && s <= line + lineSize);
size_remaining = lineSize - (s-line);
if (size_remaining < 2) { /* room for 1 character and the \0 */
TCHAR *new_buffer;
size_t new_size = lineSize + REG_VAL_BUF_SIZE;
if (new_size > lineSize) /* no arithmetic overflow */
new_buffer = HeapReAlloc (GetProcessHeap(), 0, line, new_size * sizeof(TCHAR));
else
new_buffer = NULL;
CHECK_ENOUGH_MEMORY(new_buffer);
line = new_buffer;
s = line + lineSize - size_remaining;
lineSize = new_size;
size_remaining = lineSize - (s-line);
}
/* Get as much as possible into the buffer, terminated either by
* eof, error, eol or getting the maximum amount. Abort on error.
*/
//
// This line is surely foobar, don't want to read INT_MAX in buffer at s, it's never going to be that big...
// size_to_get = (size_remaining > INT_MAX ? INT_MAX : size_remaining);
//
// Looks as if 'lineSize' contains the number of characters of buffer size
//
size_to_get = (size_remaining > lineSize ? lineSize : size_remaining);
if (NULL == _fgetts(s, size_to_get, in)) {
if (ferror(in)) {
//_tperror(_T("While reading input"));
perror ("While reading input");
//exit(IO_ERROR);
return;
} else {
assert (feof(in));
*s = _T('\0');
/* It is not clear to me from the definition that the
* contents of the buffer are well defined on detecting
* an eof without managing to read anything.
*/
}
}
/* If we didn't read the eol nor the eof go around for the rest */
s_eol = _tcschr (s, _T('\n'));
if (!feof (in) && !s_eol) {
s = _tcschr (s, _T('\0'));
/* It should be s + size_to_get - 1 but this is safer */
continue;
}
/* If it is a comment line then discard it and go around again */
if (line [0] == _T('#')) {
s = line;
continue;
}
/* Remove any line feed. Leave s_eol on the \0 */
if (s_eol) {
*s_eol = _T('\0');
if (s_eol > line && *(s_eol-1) == _T('\r'))
*--s_eol = _T('\0');
} else {
s_eol = _tcschr (s, _T('\0'));
}
/* If there is a concatenating \\ then go around again */
if (s_eol > line && *(s_eol-1) == _T('\\')) {
int c;
s = s_eol-1;
/* The following error protection could be made more self-
* correcting but I thought it not worth trying.
*/
if ((c = _fgettc(in)) == _TEOF || c != _T(' ') ||
(c = _fgettc(in)) == _TEOF || c != _T(' '))
_tprintf(_T("ERROR - invalid continuation.\n"));
continue;
}
break; /* That is the full virtual line */
}
command(line);
}
command(NULL);
HeapFree(GetProcessHeap(), 0, line);
}
/******************************************************************************
* This funtion is the main entry point to the registerDLL action. It
* receives the currently read line, then loads and registers the requested DLLs
*/
void doRegisterDLL(LPTSTR stdInput)
{
HMODULE theLib = 0;
UINT retVal = 0;
/* Check for valid input */
if (stdInput == NULL) return;
/* Load and register the library, then free it */
theLib = LoadLibrary(stdInput);
if (theLib) {
FARPROC lpfnDLLRegProc = GetProcAddress(theLib, "DllRegisterServer");
if (lpfnDLLRegProc) {
retVal = (*lpfnDLLRegProc)();
} else {
_tprintf(_T("Couldn't find DllRegisterServer proc in '%s'.\n"), stdInput);
}
if (retVal != S_OK) {
_tprintf(_T("Couldn't find DllRegisterServer proc in '%s'.\n"), stdInput);
}
FreeLibrary(theLib);
} else {
_tprintf(_T("Could not load DLL '%s'.\n"), stdInput);
}
}
/******************************************************************************
* This funtion is the main entry point to the unregisterDLL action. It
* receives the currently read line, then loads and unregisters the requested DLLs
*/
void doUnregisterDLL(LPTSTR stdInput)
{
HMODULE theLib = 0;
UINT retVal = 0;
/* Check for valid input */
if (stdInput == NULL) return;
/* Load and unregister the library, then free it */
theLib = LoadLibrary(stdInput);
if (theLib) {
FARPROC lpfnDLLRegProc = GetProcAddress(theLib, "DllUnregisterServer");
if (lpfnDLLRegProc) {
retVal = (*lpfnDLLRegProc)();
} else {
_tprintf(_T("Couldn't find DllUnregisterServer proc in '%s'.\n"), stdInput);
}
if (retVal != S_OK) {
_tprintf(_T("DLLUnregisterServer error 0x%x in '%s'.\n"), retVal, stdInput);
}
FreeLibrary(theLib);
} else {
_tprintf(_T("Could not load DLL '%s'.\n"), stdInput);
}
}
/****************************************************************************
* REGPROC_print_error
*
* Print the message for GetLastError
*/
void REGPROC_print_error(VOID)
{
LPVOID lpMsgBuf;
DWORD error_code;
int status;
error_code = GetLastError ();
status = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
NULL, error_code, 0, (LPTSTR) &lpMsgBuf, 0, NULL);
if (!status) {
_tprintf(_T("Cannot display message for error %ld, status %ld\n"), error_code, GetLastError());
} else {
_tprintf(_T("REGPROC_print_error() - "));
puts(lpMsgBuf);
LocalFree((HLOCAL)lpMsgBuf);
}
//exit(1);
}
/******************************************************************************
* Checks whether the buffer has enough room for the string or required size.
* Resizes the buffer if necessary.
*
* Parameters:
* buffer - pointer to a buffer for string
* len - current length of the buffer in characters.
* required_len - length of the string to place to the buffer in characters.
* The length does not include the terminating null character.
*/
void REGPROC_resize_char_buffer(TCHAR **buffer, DWORD *len, DWORD required_len)
{
required_len++;
if (required_len > *len) {
*len = required_len;
*buffer = HeapReAlloc(GetProcessHeap(), 0, *buffer, *len * sizeof(**buffer));
CHECK_ENOUGH_MEMORY(*buffer);
}
}
/******************************************************************************
* Prints string str to file
*/
void REGPROC_export_string(FILE *file, TCHAR *str)
{
size_t len = _tcslen(str);
size_t i;
/* escaping characters */
for (i = 0; i < len; i++) {
TCHAR c = str[i];
switch (c) {
//case _T('\\'): _fputts(_T("\\\\"), file); break;
case _T('\"'): _fputts(_T("\\\""), file); break;
case _T('\n'): _fputts(_T("\\\n"), file); break;
default: _fputtc(c, file); break;
}
}
}
/******************************************************************************
* Writes contents of the registry key to the specified file stream.
*
* Parameters:
* file - writable file stream to export registry branch to.
* key - registry branch to export.
* reg_key_name_buf - name of the key with registry class.
* Is resized if necessary.
* reg_key_name_len - length of the buffer for the registry class in characters.
* val_name_buf - buffer for storing value name.
* Is resized if necessary.
* val_name_len - length of the buffer for storing value names in characters.
* val_buf - buffer for storing values while extracting.
* Is resized if necessary.
* val_size - size of the buffer for storing values in bytes.
*/
void export_hkey(FILE *file, HKEY key,
TCHAR **reg_key_name_buf, DWORD *reg_key_name_len,
TCHAR **val_name_buf, DWORD *val_name_len,
BYTE **val_buf, DWORD *val_size)
{
DWORD max_sub_key_len;
DWORD max_val_name_len;
DWORD max_val_size;
DWORD curr_len;
DWORD i;
BOOL more_data;
LONG ret;
/* get size information and resize the buffers if necessary */
if (RegQueryInfoKey(key, NULL, NULL, NULL, NULL, &max_sub_key_len, NULL,
NULL, &max_val_name_len, &max_val_size, NULL, NULL) != ERROR_SUCCESS) {
REGPROC_print_error();
}
curr_len = _tcslen(*reg_key_name_buf);
REGPROC_resize_char_buffer(reg_key_name_buf, reg_key_name_len, max_sub_key_len + curr_len + 1);
REGPROC_resize_char_buffer(val_name_buf, val_name_len, max_val_name_len);
if (max_val_size > *val_size) {
*val_size = max_val_size;
*val_buf = HeapReAlloc(GetProcessHeap(), 0, *val_buf, *val_size * sizeof(TCHAR));
CHECK_ENOUGH_MEMORY(val_buf);
}
/* output data for the current key */
_fputts(_T("\n["), file);
_fputts(*reg_key_name_buf, file);
_fputts(_T("]\n"), file);
/* print all the values */
i = 0;
more_data = TRUE;
while (more_data) {
DWORD value_type;
DWORD val_name_len1 = *val_name_len;
DWORD val_size1 = *val_size;
ret = RegEnumValue(key, i, *val_name_buf, &val_name_len1, NULL, &value_type, *val_buf, &val_size1);
if (ret != ERROR_SUCCESS) {
more_data = FALSE;
if (ret != ERROR_NO_MORE_ITEMS) {
REGPROC_print_error();
}
} else {
i++;
if ((*val_name_buf)[0]) {
_fputts(_T("\""), file);
REGPROC_export_string(file, *val_name_buf);
_fputts(_T("\"="), file);
} else {
_fputts(_T("@="), file);
}
switch (value_type) {
case REG_EXPAND_SZ:
_fputts(_T("expand:"), file);
case REG_SZ:
_fputts(_T("\""), file);
REGPROC_export_string(file, *val_buf);
_fputts(_T("\"\n"), file);
break;
case REG_DWORD:
_ftprintf(file, _T("dword:%08lx\n"), *((DWORD *)*val_buf));
break;
default:
/*
_tprintf(_T("warning - unsupported registry format '%ld', ") \
_T("treating as binary\n"), value_type);
_tprintf(_T("key name: \"%s\"\n"), *reg_key_name_buf);
_tprintf(_T("value name:\"%s\"\n\n"), *val_name_buf);
*/
/* falls through */
case REG_MULTI_SZ:
/* falls through */
case REG_BINARY:
{
DWORD i1;
TCHAR *hex_prefix;
TCHAR buf[20];
int cur_pos;
if (value_type == REG_BINARY) {
hex_prefix = _T("hex:");
} else {
hex_prefix = buf;
_stprintf(buf, _T("hex(%ld):"), value_type);
}
/* position of where the next character will be printed */
/* NOTE: yes, _tcslen("hex:") is used even for hex(x): */
cur_pos = _tcslen(_T("\"\"=")) + _tcslen(_T("hex:")) +
_tcslen(*val_name_buf);
_fputts(hex_prefix, file);
for (i1 = 0; i1 < val_size1; i1++) {
_ftprintf(file, _T("%02x"), (unsigned int)(*val_buf)[i1]);
if (i1 + 1 < val_size1) {
_fputts(_T(","), file);
}
cur_pos += 3;
/* wrap the line */
if (cur_pos > REG_FILE_HEX_LINE_LEN) {
_fputts(_T("\\\n "), file);
cur_pos = 2;
}
}
_fputts(_T("\n"), file);
break;
}
}
}
}
i = 0;
more_data = TRUE;
(*reg_key_name_buf)[curr_len] = _T('\\');
while (more_data) {
DWORD buf_len = *reg_key_name_len - curr_len;
ret = RegEnumKeyEx(key, i, *reg_key_name_buf + curr_len + 1, &buf_len, NULL, NULL, NULL, NULL);
if (ret != ERROR_SUCCESS && ret != ERROR_MORE_DATA) {
more_data = FALSE;
if (ret != ERROR_NO_MORE_ITEMS) {
REGPROC_print_error();
}
} else {
HKEY subkey;
i++;
if (RegOpenKey(key, *reg_key_name_buf + curr_len + 1, &subkey) == ERROR_SUCCESS) {
export_hkey(file, subkey, reg_key_name_buf, reg_key_name_len, val_name_buf, val_name_len, val_buf, val_size);
RegCloseKey(subkey);
} else {
REGPROC_print_error();
}
}
}
(*reg_key_name_buf)[curr_len] = _T('\0');
}
/*
#define REG_NONE ( 0 ) // No value type
#define REG_SZ ( 1 ) // Unicode nul terminated string
#define REG_EXPAND_SZ ( 2 ) // Unicode nul terminated string
// (with environment variable references)
#define REG_BINARY ( 3 ) // Free form binary
#define REG_DWORD ( 4 ) // 32-bit number
#define REG_DWORD_LITTLE_ENDIAN ( 4 ) // 32-bit number (same as REG_DWORD)
#define REG_DWORD_BIG_ENDIAN ( 5 ) // 32-bit number
#define REG_LINK ( 6 ) // Symbolic Link (unicode)
#define REG_MULTI_SZ ( 7 ) // Multiple Unicode strings
#define REG_RESOURCE_LIST ( 8 ) // Resource list in the resource map
#define REG_FULL_RESOURCE_DESCRIPTOR ( 9 ) // Resource list in the hardware description
#define REG_RESOURCE_REQUIREMENTS_LIST ( 10 )
*/
/******************************************************************************
* Open file for export.
*/
FILE *REGPROC_open_export_file(TCHAR *file_name)
{
//_CRTIMP FILE * __cdecl _wfopen(const wchar_t *, const wchar_t *);
//FILE* fopen (const char* szFileName, const char* szMode);
//FILE* _wfopen(const wchar_t *file, const wchar_t *mode);
FILE *file = _tfopen(file_name, _T("w"));
if (!file) {
perror("");
_tprintf(_T("REGPROC_open_export_file(%s) - Can't open file.\n"), file_name);
//exit(1);
return NULL;
}
_fputts(_T("REGEDIT4\n"), file);
return file;
}
/******************************************************************************
* Writes contents of the registry key to the specified file stream.
*
* Parameters:
* file_name - name of a file to export registry branch to.
* reg_key_name - registry branch to export. The whole registry is exported if
* reg_key_name is NULL or contains an empty string.
*/
BOOL export_registry_key(TCHAR* file_name, TCHAR* reg_key_name)
{
HKEY reg_key_class;
TCHAR *reg_key_name_buf;
TCHAR *val_name_buf;
BYTE *val_buf;
DWORD reg_key_name_len = KEY_MAX_LEN;
DWORD val_name_len = KEY_MAX_LEN;
DWORD val_size = REG_VAL_BUF_SIZE;
FILE *file = NULL;
//_tprintf(_T("export_registry_key(%s, %s)\n"), reg_key_name, file_name);
reg_key_name_buf = HeapAlloc(GetProcessHeap(), 0, reg_key_name_len * sizeof(*reg_key_name_buf));
val_name_buf = HeapAlloc(GetProcessHeap(), 0, val_name_len * sizeof(*val_name_buf));
val_buf = HeapAlloc(GetProcessHeap(), 0, val_size);
CHECK_ENOUGH_MEMORY(reg_key_name_buf && val_name_buf && val_buf);
if (reg_key_name && reg_key_name[0]) {
TCHAR *branch_name;
HKEY key;
REGPROC_resize_char_buffer(&reg_key_name_buf, &reg_key_name_len,
_tcslen(reg_key_name));
_tcscpy(reg_key_name_buf, reg_key_name);
/* open the specified key */
reg_key_class = getRegClass(reg_key_name);
if (reg_key_class == (HKEY)ERROR_INVALID_PARAMETER) {
_tprintf(_T("Incorrect registry class specification in '%s\n"), reg_key_name);
//exit(1);
return FALSE;
}
branch_name = getRegKeyName(reg_key_name);
CHECK_ENOUGH_MEMORY(branch_name);
if (!branch_name[0]) {
/* no branch - registry class is specified */
file = REGPROC_open_export_file(file_name);
export_hkey(file, reg_key_class,
&reg_key_name_buf, &reg_key_name_len,
&val_name_buf, &val_name_len,
&val_buf, &val_size);
} else if (RegOpenKey(reg_key_class, branch_name, &key) == ERROR_SUCCESS) {
file = REGPROC_open_export_file(file_name);
export_hkey(file, key,
&reg_key_name_buf, &reg_key_name_len,
&val_name_buf, &val_name_len,
&val_buf, &val_size);
RegCloseKey(key);
} else {
_tprintf(_T("Can't export. Registry key '%s does not exist!\n"), reg_key_name);
REGPROC_print_error();
}
HeapFree(GetProcessHeap(), 0, branch_name);
} else {
int i;
/* export all registry classes */
file = REGPROC_open_export_file(file_name);
for (i = 0; i < REG_CLASS_NUMBER; i++) {
/* do not export HKEY_CLASSES_ROOT */
if (reg_class_keys[i] != HKEY_CLASSES_ROOT &&
reg_class_keys[i] != HKEY_CURRENT_USER &&
reg_class_keys[i] != HKEY_CURRENT_CONFIG) {
_tcscpy(reg_key_name_buf, reg_class_names[i]);
export_hkey(file, reg_class_keys[i],
&reg_key_name_buf, &reg_key_name_len,
&val_name_buf, &val_name_len,
&val_buf, &val_size);
}
}
}
if (file) {
fclose(file);
}
// HeapFree(GetProcessHeap(), 0, reg_key_name);
HeapFree(GetProcessHeap(), 0, val_buf);
HeapFree(GetProcessHeap(), 0, val_name_buf);
HeapFree(GetProcessHeap(), 0, reg_key_name_buf);
return TRUE;
}
/******************************************************************************
* Reads contents of the specified file into the registry.
*/
BOOL import_registry_file(LPTSTR filename)
{
FILE* reg_file = _tfopen(filename, _T("r"));
if (reg_file) {
processRegLines(reg_file, doSetValue);
return TRUE;
}
return FALSE;
}
/******************************************************************************
* Recursive function which removes the registry key with all subkeys.
*/
BOOL delete_branch(HKEY key, TCHAR** reg_key_name_buf, DWORD* reg_key_name_len)
{
HKEY branch_key;
DWORD max_sub_key_len;
DWORD subkeys;
DWORD curr_len;
LONG ret;
long int i;
if (RegOpenKey(key, *reg_key_name_buf, &branch_key) != ERROR_SUCCESS) {
REGPROC_print_error();
return FALSE;
}
/* get size information and resize the buffers if necessary */
if (RegQueryInfoKey(branch_key, NULL, NULL, NULL, &subkeys, &max_sub_key_len,
NULL, NULL, NULL, NULL, NULL, NULL) != ERROR_SUCCESS) {
REGPROC_print_error();
RegCloseKey(branch_key);
return FALSE;
}
curr_len = _tcslen(*reg_key_name_buf);
REGPROC_resize_char_buffer(reg_key_name_buf, reg_key_name_len, max_sub_key_len + curr_len + 1);
(*reg_key_name_buf)[curr_len] = '\\';
for (i = subkeys - 1; i >= 0; i--) {
DWORD buf_len = *reg_key_name_len - curr_len;
ret = RegEnumKeyEx(branch_key, i, *reg_key_name_buf + curr_len + 1, &buf_len, NULL, NULL, NULL, NULL);
if (ret != ERROR_SUCCESS && ret != ERROR_MORE_DATA && ret != ERROR_NO_MORE_ITEMS) {
REGPROC_print_error();
RegCloseKey(branch_key);
return FALSE;
} else {
delete_branch(key, reg_key_name_buf, reg_key_name_len);
}
}
(*reg_key_name_buf)[curr_len] = '\0';
RegCloseKey(branch_key);
RegDeleteKey(key, *reg_key_name_buf);
return TRUE;
}
/******************************************************************************
* Removes the registry key with all subkeys. Parses full key name.
*
* Parameters:
* reg_key_name - full name of registry branch to delete. Ignored if is NULL,
* empty, points to register key class, does not exist.
*/
void delete_registry_key(TCHAR* reg_key_name)
{
TCHAR* branch_name;
DWORD branch_name_len;
HKEY reg_key_class;
HKEY branch_key;
if (!reg_key_name || !reg_key_name[0]) {
return;
}
/* open the specified key */
reg_key_class = getRegClass(reg_key_name);
if (reg_key_class == (HKEY)ERROR_INVALID_PARAMETER) {
_tprintf(_T("Incorrect registry class specification in '%s'\n"), reg_key_name);
//exit(1);
return;
}
branch_name = getRegKeyName(reg_key_name);
CHECK_ENOUGH_MEMORY(branch_name);
branch_name_len = _tcslen(branch_name);
if (!branch_name[0]) {
_tprintf(_T("Can't delete registry class '%s'\n"), reg_key_name);
//exit(1);
return;
}
if (RegOpenKey(reg_key_class, branch_name, &branch_key) == ERROR_SUCCESS) {
/* check whether the key exists */
RegCloseKey(branch_key);
delete_branch(reg_key_class, &branch_name, &branch_name_len);
}
HeapFree(GetProcessHeap(), 0, branch_name);
}