reactos/include/c++/stlport/stl/_tree.c

731 lines
26 KiB
C
Raw Normal View History

/*
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Copyright (c) 1997
* Moscow Center for SPARC Technology
*
* Copyright (c) 1999
* Boris Fomitchev
*
* This material is provided "as is", with absolutely no warranty expressed
* or implied. Any use is at your own risk.
*
* Permission to use or copy this software for any purpose is hereby granted
* without fee, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
* Modified CRP 7/10/00 for improved conformance / efficiency on insert_unique /
* insert_equal with valid hint -- efficiency is improved all around, and it is
* should now be standard conforming for complexity on insert point immediately
* after hint (amortized constant time).
*
*/
#ifndef _STLP_TREE_C
#define _STLP_TREE_C
#ifndef _STLP_INTERNAL_TREE_H
# include <stl/_tree.h>
#endif
#if defined (_STLP_DEBUG)
# define _Rb_tree _STLP_NON_DBG_NAME(Rb_tree)
#endif
// fbp: these defines are for outline methods definitions.
// needed for definitions to be portable. Should not be used in method bodies.
#if defined (_STLP_NESTED_TYPE_PARAM_BUG)
# define __iterator__ _Rb_tree_iterator<_Value, _STLP_HEADER_TYPENAME _Traits::_NonConstTraits>
# define __size_type__ size_t
# define iterator __iterator__
#else
# define __iterator__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::iterator
# define __size_type__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::size_type
#endif
_STLP_BEGIN_NAMESPACE
_STLP_MOVE_TO_PRIV_NAMESPACE
#if defined (_STLP_EXPOSE_GLOBALS_IMPLEMENTATION)
template <class _Dummy> void _STLP_CALL
_Rb_global<_Dummy>::_Rotate_left(_Rb_tree_node_base* __x,
_Rb_tree_node_base*& __root) {
_Rb_tree_node_base* __y = __x->_M_right;
__x->_M_right = __y->_M_left;
if (__y->_M_left != 0)
__y->_M_left->_M_parent = __x;
__y->_M_parent = __x->_M_parent;
if (__x == __root)
__root = __y;
else if (__x == __x->_M_parent->_M_left)
__x->_M_parent->_M_left = __y;
else
__x->_M_parent->_M_right = __y;
__y->_M_left = __x;
__x->_M_parent = __y;
}
template <class _Dummy> void _STLP_CALL
_Rb_global<_Dummy>::_Rotate_right(_Rb_tree_node_base* __x,
_Rb_tree_node_base*& __root) {
_Rb_tree_node_base* __y = __x->_M_left;
__x->_M_left = __y->_M_right;
if (__y->_M_right != 0)
__y->_M_right->_M_parent = __x;
__y->_M_parent = __x->_M_parent;
if (__x == __root)
__root = __y;
else if (__x == __x->_M_parent->_M_right)
__x->_M_parent->_M_right = __y;
else
__x->_M_parent->_M_left = __y;
__y->_M_right = __x;
__x->_M_parent = __y;
}
template <class _Dummy> void _STLP_CALL
_Rb_global<_Dummy>::_Rebalance(_Rb_tree_node_base* __x,
_Rb_tree_node_base*& __root) {
__x->_M_color = _S_rb_tree_red;
while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) {
if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) {
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
if (__y && __y->_M_color == _S_rb_tree_red) {
__x->_M_parent->_M_color = _S_rb_tree_black;
__y->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
__x = __x->_M_parent->_M_parent;
}
else {
if (__x == __x->_M_parent->_M_right) {
__x = __x->_M_parent;
_Rotate_left(__x, __root);
}
__x->_M_parent->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
_Rotate_right(__x->_M_parent->_M_parent, __root);
}
}
else {
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
if (__y && __y->_M_color == _S_rb_tree_red) {
__x->_M_parent->_M_color = _S_rb_tree_black;
__y->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
__x = __x->_M_parent->_M_parent;
}
else {
if (__x == __x->_M_parent->_M_left) {
__x = __x->_M_parent;
_Rotate_right(__x, __root);
}
__x->_M_parent->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
_Rotate_left(__x->_M_parent->_M_parent, __root);
}
}
}
__root->_M_color = _S_rb_tree_black;
}
template <class _Dummy> _Rb_tree_node_base* _STLP_CALL
_Rb_global<_Dummy>::_Rebalance_for_erase(_Rb_tree_node_base* __z,
_Rb_tree_node_base*& __root,
_Rb_tree_node_base*& __leftmost,
_Rb_tree_node_base*& __rightmost) {
_Rb_tree_node_base* __y = __z;
_Rb_tree_node_base* __x;
_Rb_tree_node_base* __x_parent;
if (__y->_M_left == 0) // __z has at most one non-null child. y == z.
__x = __y->_M_right; // __x might be null.
else {
if (__y->_M_right == 0) // __z has exactly one non-null child. y == z.
__x = __y->_M_left; // __x is not null.
else { // __z has two non-null children. Set __y to
__y = _Rb_tree_node_base::_S_minimum(__y->_M_right); // __z's successor. __x might be null.
__x = __y->_M_right;
}
}
if (__y != __z) { // relink y in place of z. y is z's successor
__z->_M_left->_M_parent = __y;
__y->_M_left = __z->_M_left;
if (__y != __z->_M_right) {
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
__y->_M_parent->_M_left = __x; // __y must be a child of _M_left
__y->_M_right = __z->_M_right;
__z->_M_right->_M_parent = __y;
}
else
__x_parent = __y;
if (__root == __z)
__root = __y;
else if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __y;
else
__z->_M_parent->_M_right = __y;
__y->_M_parent = __z->_M_parent;
_STLP_STD::swap(__y->_M_color, __z->_M_color);
__y = __z;
// __y now points to node to be actually deleted
}
else { // __y == __z
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
if (__root == __z)
__root = __x;
else {
if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __x;
else
__z->_M_parent->_M_right = __x;
}
if (__leftmost == __z) {
if (__z->_M_right == 0) // __z->_M_left must be null also
__leftmost = __z->_M_parent;
// makes __leftmost == _M_header if __z == __root
else
__leftmost = _Rb_tree_node_base::_S_minimum(__x);
}
if (__rightmost == __z) {
if (__z->_M_left == 0) // __z->_M_right must be null also
__rightmost = __z->_M_parent;
// makes __rightmost == _M_header if __z == __root
else // __x == __z->_M_left
__rightmost = _Rb_tree_node_base::_S_maximum(__x);
}
}
if (__y->_M_color != _S_rb_tree_red) {
while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
if (__x == __x_parent->_M_left) {
_Rb_tree_node_base* __w = __x_parent->_M_right;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rotate_left(__x_parent, __root);
__w = __x_parent->_M_right;
}
if ((__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black) && (__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black) {
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rotate_right(__w, __root);
__w = __x_parent->_M_right;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
_Rotate_left(__x_parent, __root);
break;
}
} else { // same as above, with _M_right <-> _M_left.
_Rb_tree_node_base* __w = __x_parent->_M_left;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rotate_right(__x_parent, __root);
__w = __x_parent->_M_left;
}
if ((__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black) && (__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black) {
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rotate_left(__w, __root);
__w = __x_parent->_M_left;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
_Rotate_right(__x_parent, __root);
break;
}
}
if (__x) __x->_M_color = _S_rb_tree_black;
}
return __y;
}
template <class _Dummy> _Rb_tree_node_base* _STLP_CALL
_Rb_global<_Dummy>::_M_decrement(_Rb_tree_node_base* _M_node) {
if (_M_node->_M_color == _S_rb_tree_red && _M_node->_M_parent->_M_parent == _M_node)
_M_node = _M_node->_M_right;
else if (_M_node->_M_left != 0) {
_M_node = _Rb_tree_node_base::_S_maximum(_M_node->_M_left);
}
else {
_Base_ptr __y = _M_node->_M_parent;
while (_M_node == __y->_M_left) {
_M_node = __y;
__y = __y->_M_parent;
}
_M_node = __y;
}
return _M_node;
}
template <class _Dummy> _Rb_tree_node_base* _STLP_CALL
_Rb_global<_Dummy>::_M_increment(_Rb_tree_node_base* _M_node) {
if (_M_node->_M_right != 0) {
_M_node = _Rb_tree_node_base::_S_minimum(_M_node->_M_right);
}
else {
_Base_ptr __y = _M_node->_M_parent;
while (_M_node == __y->_M_right) {
_M_node = __y;
__y = __y->_M_parent;
}
// check special case: This is necessary if _M_node is the
// _M_head and the tree contains only a single node __y. In
// that case parent, left and right all point to __y!
if (_M_node->_M_right != __y)
_M_node = __y;
}
return _M_node;
}
#endif /* _STLP_EXPOSE_GLOBALS_IMPLEMENTATION */
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>&
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::operator=(
const _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>& __x) {
if (this != &__x) {
// Note that _Key may be a constant type.
clear();
_M_node_count = 0;
_M_key_compare = __x._M_key_compare;
if (__x._M_root() == 0) {
_M_root() = 0;
_M_leftmost() = &this->_M_header._M_data;
_M_rightmost() = &this->_M_header._M_data;
}
else {
_M_root() = _M_copy(__x._M_root(), &this->_M_header._M_data);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
_M_node_count = __x._M_node_count;
}
}
return *this;
}
// CRP 7/10/00 inserted argument __on_right, which is another hint (meant to
// act like __on_left and ignore a portion of the if conditions -- specify
// __on_right != 0 to bypass comparison as false or __on_left != 0 to bypass
// comparison as true)
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
__iterator__
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_insert(_Rb_tree_node_base * __parent,
const _Value& __val,
_Rb_tree_node_base * __on_left,
_Rb_tree_node_base * __on_right) {
// We do not create the node here as, depending on tests, we might call
// _M_key_compare that can throw an exception.
_Base_ptr __new_node;
if ( __parent == &this->_M_header._M_data ) {
__new_node = _M_create_node(__val);
_S_left(__parent) = __new_node; // also makes _M_leftmost() = __new_node
_M_root() = __new_node;
_M_rightmost() = __new_node;
}
else if ( __on_right == 0 && // If __on_right != 0, the remainder fails to false
( __on_left != 0 || // If __on_left != 0, the remainder succeeds to true
_M_key_compare( _KeyOfValue()(__val), _S_key(__parent) ) ) ) {
__new_node = _M_create_node(__val);
_S_left(__parent) = __new_node;
if (__parent == _M_leftmost())
_M_leftmost() = __new_node; // maintain _M_leftmost() pointing to min node
}
else {
__new_node = _M_create_node(__val);
_S_right(__parent) = __new_node;
if (__parent == _M_rightmost())
_M_rightmost() = __new_node; // maintain _M_rightmost() pointing to max node
}
_S_parent(__new_node) = __parent;
_Rb_global_inst::_Rebalance(__new_node, this->_M_header._M_data._M_parent);
++_M_node_count;
return iterator(__new_node);
}
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
__iterator__
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(const _Value& __val) {
_Base_ptr __y = &this->_M_header._M_data;
_Base_ptr __x = _M_root();
while (__x != 0) {
__y = __x;
if (_M_key_compare(_KeyOfValue()(__val), _S_key(__x))) {
__x = _S_left(__x);
}
else
__x = _S_right(__x);
}
return _M_insert(__y, __val, __x);
}
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
pair<__iterator__, bool>
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(const _Value& __val) {
_Base_ptr __y = &this->_M_header._M_data;
_Base_ptr __x = _M_root();
bool __comp = true;
while (__x != 0) {
__y = __x;
__comp = _M_key_compare(_KeyOfValue()(__val), _S_key(__x));
__x = __comp ? _S_left(__x) : _S_right(__x);
}
iterator __j = iterator(__y);
if (__comp) {
if (__j == begin())
return pair<iterator,bool>(_M_insert(__y, __val, /* __x*/ __y), true);
else
--__j;
}
if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__val))) {
return pair<iterator,bool>(_M_insert(__y, __val, __x), true);
}
return pair<iterator,bool>(__j, false);
}
// Modifications CRP 7/10/00 as noted to improve conformance and
// efficiency.
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
__iterator__
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(iterator __position,
const _Value& __val) {
if (__position._M_node == this->_M_header._M_data._M_left) { // begin()
// if the container is empty, fall back on insert_unique.
if (empty())
return insert_unique(__val).first;
if (_M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node))) {
return _M_insert(__position._M_node, __val, __position._M_node);
}
// first argument just needs to be non-null
else {
bool __comp_pos_v = _M_key_compare( _S_key(__position._M_node), _KeyOfValue()(__val) );
if (__comp_pos_v == false) // compare > and compare < both false so compare equal
return __position;
//Below __comp_pos_v == true
// Standard-conformance - does the insertion point fall immediately AFTER
// the hint?
iterator __after = __position;
++__after;
// Check for only one member -- in that case, __position points to itself,
// and attempting to increment will cause an infinite loop.
if (__after._M_node == &this->_M_header._M_data)
// Check guarantees exactly one member, so comparison was already
// performed and we know the result; skip repeating it in _M_insert
// by specifying a non-zero fourth argument.
return _M_insert(__position._M_node, __val, 0, __position._M_node);
// All other cases:
// Optimization to catch insert-equivalent -- save comparison results,
// and we get this for free.
if (_M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) )) {
if (_S_right(__position._M_node) == 0)
return _M_insert(__position._M_node, __val, 0, __position._M_node);
else
return _M_insert(__after._M_node, __val, __after._M_node);
}
else {
return insert_unique(__val).first;
}
}
}
else if (__position._M_node == &this->_M_header._M_data) { // end()
if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__val))) {
// pass along to _M_insert that it can skip comparing
// v, Key ; since compare Key, v was true, compare v, Key must be false.
return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null
}
else
return insert_unique(__val).first;
}
else {
iterator __before = __position;
--__before;
bool __comp_v_pos = _M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node));
if (__comp_v_pos
&& _M_key_compare( _S_key(__before._M_node), _KeyOfValue()(__val) )) {
if (_S_right(__before._M_node) == 0)
return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null
else
return _M_insert(__position._M_node, __val, __position._M_node);
// first argument just needs to be non-null
}
else {
// Does the insertion point fall immediately AFTER the hint?
iterator __after = __position;
++__after;
// Optimization to catch equivalent cases and avoid unnecessary comparisons
bool __comp_pos_v = !__comp_v_pos; // Stored this result earlier
// If the earlier comparison was true, this comparison doesn't need to be
// performed because it must be false. However, if the earlier comparison
// was false, we need to perform this one because in the equal case, both will
// be false.
if (!__comp_v_pos) {
__comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val));
}
if ( (!__comp_v_pos) // comp_v_pos true implies comp_v_pos false
&& __comp_pos_v
&& (__after._M_node == &this->_M_header._M_data ||
_M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) ))) {
if (_S_right(__position._M_node) == 0)
return _M_insert(__position._M_node, __val, 0, __position._M_node);
else
return _M_insert(__after._M_node, __val, __after._M_node);
} else {
// Test for equivalent case
if (__comp_v_pos == __comp_pos_v)
return __position;
else
return insert_unique(__val).first;
}
}
}
}
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
__iterator__
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(iterator __position,
const _Value& __val) {
if (__position._M_node == this->_M_header._M_data._M_left) { // begin()
// Check for zero members
if (size() <= 0)
return insert_equal(__val);
if (!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)))
return _M_insert(__position._M_node, __val, __position._M_node);
else {
// Check for only one member
if (__position._M_node->_M_left == __position._M_node)
// Unlike insert_unique, can't avoid doing a comparison here.
return _M_insert(__position._M_node, __val);
// All other cases:
// Standard-conformance - does the insertion point fall immediately AFTER
// the hint?
iterator __after = __position;
++__after;
// Already know that compare(pos, v) must be true!
// Therefore, we want to know if compare(after, v) is false.
// (i.e., we now pos < v, now we want to know if v <= after)
// If not, invalid hint.
if ( __after._M_node == &this->_M_header._M_data ||
!_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) {
if (_S_right(__position._M_node) == 0)
return _M_insert(__position._M_node, __val, 0, __position._M_node);
else
return _M_insert(__after._M_node, __val, __after._M_node);
}
else { // Invalid hint
return insert_equal(__val);
}
}
}
else if (__position._M_node == &this->_M_header._M_data) { // end()
if (!_M_key_compare(_KeyOfValue()(__val), _S_key(_M_rightmost())))
return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null
else {
return insert_equal(__val);
}
}
else {
iterator __before = __position;
--__before;
// store the result of the comparison between pos and v so
// that we don't have to do it again later. Note that this reverses the shortcut
// on the if, possibly harming efficiency in comparisons; I think the harm will
// be negligible, and to do what I want to do (save the result of a comparison so
// that it can be re-used) there is no alternative. Test here is for before <= v <= pos.
bool __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val));
if (!__comp_pos_v &&
!_M_key_compare(_KeyOfValue()(__val), _S_key(__before._M_node))) {
if (_S_right(__before._M_node) == 0)
return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null
else
return _M_insert(__position._M_node, __val, __position._M_node);
}
else {
// Does the insertion point fall immediately AFTER the hint?
// Test for pos < v <= after
iterator __after = __position;
++__after;
if (__comp_pos_v &&
( __after._M_node == &this->_M_header._M_data ||
!_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) ) {
if (_S_right(__position._M_node) == 0)
return _M_insert(__position._M_node, __val, 0, __position._M_node);
else
return _M_insert(__after._M_node, __val, __after._M_node);
}
else { // Invalid hint
return insert_equal(__val);
}
}
}
}
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
_Rb_tree_node_base*
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_copy(_Rb_tree_node_base* __x,
_Rb_tree_node_base* __p) {
// structural copy. __x and __p must be non-null.
_Base_ptr __top = _M_clone_node(__x);
_S_parent(__top) = __p;
_STLP_TRY {
if (_S_right(__x))
_S_right(__top) = _M_copy(_S_right(__x), __top);
__p = __top;
__x = _S_left(__x);
while (__x != 0) {
_Base_ptr __y = _M_clone_node(__x);
_S_left(__p) = __y;
_S_parent(__y) = __p;
if (_S_right(__x))
_S_right(__y) = _M_copy(_S_right(__x), __y);
__p = __y;
__x = _S_left(__x);
}
}
_STLP_UNWIND(_M_erase(__top))
return __top;
}
// this has to stay out-of-line : it's recursive
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
void
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::_M_erase(_Rb_tree_node_base *__x) {
// erase without rebalancing
while (__x != 0) {
_M_erase(_S_right(__x));
_Base_ptr __y = _S_left(__x);
_STLP_STD::_Destroy(&_S_value(__x));
this->_M_header.deallocate(__STATIC_CAST(_Link_type, __x),1);
__x = __y;
}
}
#if defined (_STLP_DEBUG)
inline int
__black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root) {
if (__node == 0)
return 0;
else {
int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0;
if (__node == __root)
return __bc;
else
return __bc + __black_count(__node->_M_parent, __root);
}
}
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
bool _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::__rb_verify() const {
if (_M_node_count == 0 || begin() == end())
return ((_M_node_count == 0) &&
(begin() == end()) &&
(this->_M_header._M_data._M_left == &this->_M_header._M_data) &&
(this->_M_header._M_data._M_right == &this->_M_header._M_data));
int __len = __black_count(_M_leftmost(), _M_root());
for (const_iterator __it = begin(); __it != end(); ++__it) {
_Base_ptr __x = __it._M_node;
_Base_ptr __L = _S_left(__x);
_Base_ptr __R = _S_right(__x);
if (__x->_M_color == _S_rb_tree_red)
if ((__L && __L->_M_color == _S_rb_tree_red) ||
(__R && __R->_M_color == _S_rb_tree_red))
return false;
if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
return false;
if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
return false;
if (!__L && !__R && __black_count(__x, _M_root()) != __len)
return false;
}
if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
return false;
if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
return false;
return true;
}
#endif /* _STLP_DEBUG */
_STLP_MOVE_TO_STD_NAMESPACE
_STLP_END_NAMESPACE
#undef _Rb_tree
#undef __iterator__
#undef iterator
#undef __size_type__
#endif /* _STLP_TREE_C */
// Local Variables:
// mode:C++
// End: