reactos/drivers/storage/class/classpnp/autorun.c

4437 lines
140 KiB
C
Raw Normal View History

/*++
Copyright (C) Microsoft Corporation, 1991 - 2010
Module Name:
autorun.c
Abstract:
Code for support of media change detection in the class driver
Environment:
kernel mode only
Notes:
Revision History:
--*/
#include "classp.h"
#include "debug.h"
#ifdef DEBUG_USE_WPP
#include "autorun.tmh"
#endif
#define GESN_TIMEOUT_VALUE (0x4)
#define GESN_BUFFER_SIZE (0x8)
#define GESN_DEVICE_BUSY_LOWER_THRESHOLD_100_MS (2)
#define MAXIMUM_IMMEDIATE_MCN_RETRIES (0x20)
#define MCN_REG_SUBKEY_NAME (L"MediaChangeNotification")
#define MCN_REG_AUTORUN_DISABLE_INSTANCE_NAME (L"AlwaysDisableMCN")
#define MCN_REG_AUTORUN_ENABLE_INSTANCE_NAME (L"AlwaysEnableMCN")
const GUID StoragePredictFailureEventGuid = WMI_STORAGE_PREDICT_FAILURE_EVENT_GUID;
//
// Only send polling irp when device is fully powered up, a
// power down irp is not in progress, and the screen is on.
//
// NOTE: This helps close a window in time where a polling irp could cause
// a drive to spin up right after it has powered down. The problem is
// that SCSIPORT, ATAPI and SBP2 will be in the process of powering
// down (which may take a few seconds), but won't know that. It would
// then get a polling irp which will be put into its queue since it
// the disk isn't powered down yet. Once the disk is powered down it
// will find the polling irp in the queue and then power up the
// device to do the poll. They do not want to check if the polling
// irp has the SRB_NO_KEEP_AWAKE flag here since it is in a critical
// path and would slow down all I/Os. A better way to fix this
// would be to serialize the polling and power down irps so that
// only one of them is sent to the device at a time.
//
static
BOOLEAN
ClasspCanSendPollingIrp(
_In_ PFUNCTIONAL_DEVICE_EXTENSION fdoExtension
)
{
return ((fdoExtension->DevicePowerState == PowerDeviceD0) &&
(fdoExtension->PowerDownInProgress == FALSE) &&
(ClasspScreenOff == FALSE));
}
BOOLEAN
ClasspIsMediaChangeDisabledDueToHardwareLimitation(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN PUNICODE_STRING RegistryPath
);
NTSTATUS
ClasspMediaChangeDeviceInstanceOverride(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
OUT PBOOLEAN Enabled
);
BOOLEAN
ClasspIsMediaChangeDisabledForClass(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN PUNICODE_STRING RegistryPath
);
VOID
ClasspSetMediaChangeStateEx(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN MEDIA_CHANGE_DETECTION_STATE NewState,
IN BOOLEAN Wait,
IN BOOLEAN KnownStateChange // can ignore oldstate == unknown
);
RTL_QUERY_REGISTRY_ROUTINE ClasspMediaChangeRegistryCallBack;
VOID
ClasspSendMediaStateIrp(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN PMEDIA_CHANGE_DETECTION_INFO Info,
IN ULONG CountDown
);
IO_WORKITEM_ROUTINE ClasspFailurePredict;
NTSTATUS
ClasspInitializePolling(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN BOOLEAN AllowDriveToSleep
);
IO_WORKITEM_ROUTINE ClasspDisableGesn;
IO_COMPLETION_ROUTINE ClasspMediaChangeDetectionCompletion;
KDEFERRED_ROUTINE ClasspTimerTick;
#if (NTDDI_VERSION >= NTDDI_WINBLUE)
EXT_CALLBACK ClasspTimerTickEx;
#endif
BOOLEAN ClasspScreenOff = FALSE;
//
// Tick timer related defines.
//
#define TICK_TIMER_PERIOD_IN_MSEC 1000
#define TICK_TIMER_DELAY_IN_MSEC 1000
#if ALLOC_PRAGMA
#pragma alloc_text(PAGE, ClassInitializeMediaChangeDetection)
#pragma alloc_text(PAGE, ClassEnableMediaChangeDetection)
#pragma alloc_text(PAGE, ClassDisableMediaChangeDetection)
#pragma alloc_text(PAGE, ClassCleanupMediaChangeDetection)
#pragma alloc_text(PAGE, ClasspMediaChangeRegistryCallBack)
#pragma alloc_text(PAGE, ClasspInitializePolling)
#pragma alloc_text(PAGE, ClasspDisableGesn)
#pragma alloc_text(PAGE, ClasspIsMediaChangeDisabledDueToHardwareLimitation)
#pragma alloc_text(PAGE, ClasspMediaChangeDeviceInstanceOverride)
#pragma alloc_text(PAGE, ClasspIsMediaChangeDisabledForClass)
#pragma alloc_text(PAGE, ClassSetFailurePredictionPoll)
#pragma alloc_text(PAGE, ClasspInitializeGesn)
#pragma alloc_text(PAGE, ClasspMcnControl)
#endif
// ISSUE -- make this public?
VOID
ClassSendEjectionNotification(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
{
//
// For post-NT5.1 work, need to move EjectSynchronizationEvent
// to be a MUTEX so we can attempt to grab it here and benefit
// from deadlock detection. This will allow checking if the media
// has been locked by programs before broadcasting these events.
// (what's the point of broadcasting if the media is not locked?)
//
// This would currently only be a slight optimization. For post-NT5.1,
// it would allow us to send a single PERSISTENT_PREVENT to MMC devices,
// thereby cleaning up a lot of the ejection code. Then, when the
// ejection request occured, we could see if any locks for the media
// existed. if locked, broadcast. if not, we send the eject irp.
//
//
// for now, just always broadcast. make this a public routine,
// so class drivers can add special hacks to broadcast this for their
// non-MMC-compliant devices also from sense codes.
//
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClassSendEjectionNotification: media EJECT_REQUEST"));
ClassSendNotification(FdoExtension,
&GUID_IO_MEDIA_EJECT_REQUEST,
0,
NULL);
return;
}
_IRQL_requires_max_(DISPATCH_LEVEL)
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassSendNotification(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
_In_ const GUID * Guid,
_In_ ULONG ExtraDataSize,
_In_reads_bytes_opt_(ExtraDataSize) PVOID ExtraData
)
{
PTARGET_DEVICE_CUSTOM_NOTIFICATION notification;
ULONG requiredSize;
NTSTATUS status;
status = RtlULongAdd((sizeof(TARGET_DEVICE_CUSTOM_NOTIFICATION) - sizeof(UCHAR)),
ExtraDataSize,
&requiredSize);
if (!(NT_SUCCESS(status)) || (requiredSize > 0x0000ffff)) {
// MAX_USHORT, max total size for these events!
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN,
"Error sending event: size too large! (%x)\n",
requiredSize));
return;
}
notification = ExAllocatePoolWithTag(NonPagedPoolNx,
requiredSize,
'oNcS');
//
// if none allocated, exit
//
if (notification == NULL) {
return;
}
//
// Prepare and send the request!
//
RtlZeroMemory(notification, requiredSize);
notification->Version = 1;
notification->Size = (USHORT)(requiredSize);
notification->FileObject = NULL;
notification->NameBufferOffset = -1;
notification->Event = *Guid;
if (ExtraData != NULL && ExtraDataSize != 0) {
RtlCopyMemory(notification->CustomDataBuffer, ExtraData, ExtraDataSize);
}
IoReportTargetDeviceChangeAsynchronous(FdoExtension->LowerPdo,
notification,
NULL, NULL);
FREE_POOL(notification);
return;
}
NTSTATUS
ClasspInterpretGesnData(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN PNOTIFICATION_EVENT_STATUS_HEADER Header,
OUT PBOOLEAN ResendImmediately
)
/*++
Routine Description:
This routine will interpret the data returned for a GESN command, and
(if appropriate) set the media change event, and broadcast the
appropriate events to user mode for applications who care.
Arguments:
FdoExtension - the device
DataBuffer - the resulting data from a GESN event.
requires at least EIGHT valid bytes (header == 4, data == 4)
ResendImmediately - whether or not to immediately resend the request.
this should be FALSE if there was no event, FALSE if the reported
event was of the DEVICE BUSY class, else true.
Return Value:
STATUS_SUCCESS if successful, an error code otherwise
Notes:
DataBuffer must be at least four bytes of valid data (header == 4 bytes),
and have at least eight bytes of allocated memory (all events == 4 bytes).
The call to StartNextPacket may occur before this routine is completed.
the operational change notifications are informational in nature, and
while useful, are not neccessary to ensure proper operation. For example,
if the device morphs to no longer supporting WRITE commands, all further
write commands will fail. There exists a small timing window wherein
IOCTL_IS_DISK_WRITABLE may be called and get an incorrect response. If
a device supports software write protect, it is expected that the
application can handle such a case.
NOTE: perhaps setting the updaterequired byte to one should be done here.
if so, it relies upon the setting of a 32-byte value to be an atomic
operation. unfortunately, there is no simple way to notify a class driver
which wants to know that the device behavior requires updating.
Not ready events may be sent every second. For example, if we were
to minimize the number of asynchronous notifications, an application may
register just after a large busy time was reported. This would then
prevent the application from knowing the device was busy until some
arbitrarily chosen timeout has occurred. Also, the GESN request would
have to still occur, since it checks for non-busy events (such as user
keybutton presses and media change events) as well. The specification
states that the lower-numered events get reported first, so busy events,
while repeating, will only be reported when all other events have been
cleared from the device.
--*/
{
PMEDIA_CHANGE_DETECTION_INFO info;
LONG dataLength;
LONG requiredLength;
NTSTATUS status = STATUS_SUCCESS;
info = FdoExtension->MediaChangeDetectionInfo;
//
// note: don't allocate anything in this routine so that we can
// always just 'return'.
//
*ResendImmediately = FALSE;
if (Header->NEA) {
return status;
}
if (Header->NotificationClass == NOTIFICATION_NO_CLASS_EVENTS) {
return status;
}
//
// HACKHACK - REF #0001
// This loop is only taken initially, due to the inability to reliably
// auto-detect drives that report events correctly at boot. When we
// detect this behavior during the normal course of running, we will
// disable the hack, allowing more efficient use of the system. This
// should occur "nearly" instantly, as the drive should have multiple
// events queue'd (ie. power, morphing, media).
//
if (info->Gesn.HackEventMask) {
//
// all events use the low four bytes of zero to indicate
// that there was no change in status.
//
UCHAR thisEvent = Header->ClassEventData[0] & 0xf;
UCHAR lowestSetBit;
UCHAR thisEventBit = (1 << Header->NotificationClass);
if (!TEST_FLAG(info->Gesn.EventMask, thisEventBit)) {
//
// The drive is reporting an event that wasn't requested
//
return STATUS_DEVICE_PROTOCOL_ERROR;
}
//
// some bit magic here... this results in the lowest set bit only
//
lowestSetBit = info->Gesn.EventMask;
lowestSetBit &= (info->Gesn.EventMask - 1);
lowestSetBit ^= (info->Gesn.EventMask);
if (thisEventBit != lowestSetBit) {
//
// HACKHACK - REF #0001
// the first time we ever see an event set that is not the lowest
// set bit in the request (iow, highest priority), we know that the
// hack is no longer required, as the device is ignoring "no change"
// events when a real event is waiting in the other requested queues.
//
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN::NONE: Compliant drive found, "
"removing GESN hack (%x, %x)\n",
thisEventBit, info->Gesn.EventMask));
info->Gesn.HackEventMask = FALSE;
} else if (thisEvent == 0) { // NOTIFICATION_*_EVENT_NO_CHANGE
//
// HACKHACK - REF #0001
// note: this hack prevents poorly implemented firmware from constantly
// returning "No Event". we do this by cycling through the
// supported list of events here.
//
SET_FLAG(info->Gesn.NoChangeEventMask, thisEventBit);
CLEAR_FLAG(info->Gesn.EventMask, thisEventBit);
//
// if we have cycled through all supported event types, then
// we need to reset the events we are asking about. else we
// want to resend this request immediately in case there was
// another event pending.
//
if (info->Gesn.EventMask == 0) {
info->Gesn.EventMask = info->Gesn.NoChangeEventMask;
info->Gesn.NoChangeEventMask = 0;
} else {
*ResendImmediately = TRUE;
}
return status;
}
} // end if (info->Gesn.HackEventMask)
dataLength =
(Header->EventDataLength[0] << 8) |
(Header->EventDataLength[1] & 0xff);
dataLength -= 2;
requiredLength = 4; // all events are four bytes
if (dataLength < requiredLength) {
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN,
"Classpnp => GESN returned only %x bytes data for fdo %p\n",
dataLength, FdoExtension->DeviceObject));
return STATUS_DEVICE_PROTOCOL_ERROR;
}
if (dataLength != requiredLength) {
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN,
"Classpnp => GESN returned too many (%x) bytes data for fdo %p\n",
dataLength, FdoExtension->DeviceObject));
// dataLength = 4;
}
NT_ASSERT(dataLength == 4);
if ((Header->ClassEventData[0] & 0xf) == 0)
{
// a zero event is a "no change event, so do not retry
return status;
}
// because a event other than "no change" occurred,
// we should immediately resend this request.
*ResendImmediately = TRUE;
/*
ClassSendNotification(FdoExtension,
&GUID_IO_GENERIC_GESN_EVENT,
sizeof(NOTIFICATION_EVENT_STATUS_HEADER) + dataLength,
Header)
*/
switch (Header->NotificationClass) {
case NOTIFICATION_OPERATIONAL_CHANGE_CLASS_EVENTS: { // 0x01
PNOTIFICATION_OPERATIONAL_STATUS opChangeInfo =
(PNOTIFICATION_OPERATIONAL_STATUS)(Header->ClassEventData);
ULONG event;
if (opChangeInfo->OperationalEvent == NOTIFICATION_OPERATIONAL_EVENT_CHANGE_REQUESTED) {
break;
}
event = (opChangeInfo->Operation[0] << 8) |
(opChangeInfo->Operation[1] ) ;
// Workaround some hardware that is buggy but prevalent in the market
// This hardware has the property that it will report OpChange events repeatedly,
// causing us to retry immediately so quickly that we will eventually disable
// GESN to prevent an infinite loop.
// (only one valid OpChange event type now, only two ever defined)
if (info->MediaChangeRetryCount >= 4) {
//
// HACKHACK - REF #0002
// Some drives incorrectly report OpChange/Change (001b/0001h) events
// continuously when the tray has been ejected. This causes this routine
// to set ResendImmediately to "TRUE", and that results in our cycling
// 32 times immediately resending. At that point, we give up detecting
// the infinite retry loop, and disable GESN on these drives. This
// prevents Media Eject Request (from eject button) from being reported.
// Thus, instead we should attempt to workaround this issue by detecting
// this behavior.
//
static UCHAR const OpChangeMask = 0x02;
// At least one device reports "temporarily busy" (which is useless) on eject
// At least one device reports "OpChange" repeatedly when re-inserting media
// All seem to work well using this workaround
TracePrint((TRACE_LEVEL_ERROR, TRACE_FLAG_MCN,
"Classpnp => GESN OpChange events are broken. Working around this "
"problem in software (for fdo %p)\n",
FdoExtension->DeviceObject));
// OpChange is not the only bit set -- Media class is required....
NT_ASSERT(CountOfSetBitsUChar(info->Gesn.EventMask) != 1);
//
// Force the use of the hackhack (ref #0001) to workaround the
// issue noted this hackhack (ref #0002).
//
SET_FLAG(info->Gesn.NoChangeEventMask, OpChangeMask);
CLEAR_FLAG(info->Gesn.EventMask, OpChangeMask);
info->Gesn.HackEventMask = TRUE;
//
// don't request the opChange event again. use the method
// defined by hackhack (ref #0001) as the workaround.
//
if (info->Gesn.EventMask == 0) {
info->Gesn.EventMask = info->Gesn.NoChangeEventMask;
info->Gesn.NoChangeEventMask = 0;
*ResendImmediately = FALSE;
} else {
*ResendImmediately = TRUE;
}
break;
}
if ((event == NOTIFICATION_OPERATIONAL_OPCODE_FEATURE_ADDED) |
(event == NOTIFICATION_OPERATIONAL_OPCODE_FEATURE_CHANGE)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN says features added/changedfor fdo %p\n",
FdoExtension->DeviceObject));
// don't notify that new media arrived, just set the
// DO_VERIFY to force a FS reload.
if (TEST_FLAG(FdoExtension->DeviceObject->Characteristics,
FILE_REMOVABLE_MEDIA) &&
(ClassGetVpb(FdoExtension->DeviceObject) != NULL) &&
(ClassGetVpb(FdoExtension->DeviceObject)->Flags & VPB_MOUNTED)
) {
SET_FLAG(FdoExtension->DeviceObject->Flags, DO_VERIFY_VOLUME);
}
//
// If there is a class specific error handler, call it with
// a "fake" media change error in case it needs to update
// internal structures as though a media change occurred.
//
if (FdoExtension->CommonExtension.DevInfo->ClassError != NULL) {
SCSI_REQUEST_BLOCK srb = {0};
UCHAR srbExBuffer[CLASS_SRBEX_SCSI_CDB16_BUFFER_SIZE] = {0};
PSTORAGE_REQUEST_BLOCK srbEx = (PSTORAGE_REQUEST_BLOCK)srbExBuffer;
PSCSI_REQUEST_BLOCK srbPtr;
SENSE_DATA sense = {0};
NTSTATUS tempStatus;
BOOLEAN retry;
tempStatus = STATUS_MEDIA_CHANGED;
retry = FALSE;
sense.ErrorCode = SCSI_SENSE_ERRORCODE_FIXED_CURRENT;
sense.AdditionalSenseLength = sizeof(SENSE_DATA) -
RTL_SIZEOF_THROUGH_FIELD(SENSE_DATA, AdditionalSenseLength);
sense.SenseKey = SCSI_SENSE_UNIT_ATTENTION;
sense.AdditionalSenseCode = SCSI_ADSENSE_MEDIUM_CHANGED;
//
// Send the right type of SRB to the class driver
//
if ((FdoExtension->CommonExtension.DriverExtension->SrbSupport &
CLASS_SRB_STORAGE_REQUEST_BLOCK) != 0) {
#ifdef _MSC_VER
#pragma prefast(suppress:26015, "InitializeStorageRequestBlock ensures buffer access is bounded")
#endif
status = InitializeStorageRequestBlock(srbEx,
STORAGE_ADDRESS_TYPE_BTL8,
CLASS_SRBEX_SCSI_CDB16_BUFFER_SIZE,
1,
SrbExDataTypeScsiCdb16);
if (NT_SUCCESS(status)) {
SrbSetCdbLength(srbEx, 6);
srbEx->SrbStatus = SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_ERROR;
SrbSetSenseInfoBuffer(srbEx, &sense);
SrbSetSenseInfoBufferLength(srbEx, sizeof(sense));
srbPtr = (PSCSI_REQUEST_BLOCK)srbEx;
} else {
// should not happen. Revert to legacy SRB.
NT_ASSERT(FALSE);
srb.CdbLength = 6;
srb.Length = sizeof(SCSI_REQUEST_BLOCK);
srb.SrbStatus = SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_ERROR;
srb.SenseInfoBuffer = &sense;
srb.SenseInfoBufferLength = sizeof(SENSE_DATA);
srbPtr = &srb;
}
} else {
srb.CdbLength = 6;
srb.Length = sizeof(SCSI_REQUEST_BLOCK);
srb.SrbStatus = SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_ERROR;
srb.SenseInfoBuffer = &sense;
srb.SenseInfoBufferLength = sizeof(SENSE_DATA);
srbPtr = &srb;
}
FdoExtension->CommonExtension.DevInfo->ClassError(FdoExtension->DeviceObject,
srbPtr,
&tempStatus,
&retry);
} // end class error handler
}
break;
}
case NOTIFICATION_EXTERNAL_REQUEST_CLASS_EVENTS: { // 0x3
PNOTIFICATION_EXTERNAL_STATUS externalInfo =
(PNOTIFICATION_EXTERNAL_STATUS)(Header->ClassEventData);
DEVICE_EVENT_EXTERNAL_REQUEST externalData = {0};
//
// unfortunately, due to time constraints, we will only notify
// about keys being pressed, and not released. this makes keys
// single-function, but simplifies the code significantly.
//
if (externalInfo->ExternalEvent != NOTIFICATION_EXTERNAL_EVENT_BUTTON_DOWN) {
break;
}
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN::EXTERNAL: Event: %x Status %x Req %x\n",
externalInfo->ExternalEvent, externalInfo->ExternalStatus,
(externalInfo->Request[0] << 8) | externalInfo->Request[1]
));
externalData.Version = 1;
externalData.DeviceClass = 0;
externalData.ButtonStatus = externalInfo->ExternalEvent;
externalData.Request =
(externalInfo->Request[0] << 8) |
(externalInfo->Request[1] & 0xff);
KeQuerySystemTime(&(externalData.SystemTime));
externalData.SystemTime.QuadPart *= (LONGLONG)KeQueryTimeIncrement();
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspInterpretGesnData: media DEVICE_EXTERNAL_REQUEST"));
ClassSendNotification(FdoExtension,
&GUID_IO_DEVICE_EXTERNAL_REQUEST,
sizeof(DEVICE_EVENT_EXTERNAL_REQUEST),
&externalData);
return status;
}
case NOTIFICATION_MEDIA_STATUS_CLASS_EVENTS: { // 0x4
PNOTIFICATION_MEDIA_STATUS mediaInfo =
(PNOTIFICATION_MEDIA_STATUS)(Header->ClassEventData);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN::MEDIA: Event: %x Status %x\n",
mediaInfo->MediaEvent, mediaInfo->MediaStatus));
if ((mediaInfo->MediaEvent == NOTIFICATION_MEDIA_EVENT_NEW_MEDIA) ||
(mediaInfo->MediaEvent == NOTIFICATION_MEDIA_EVENT_MEDIA_CHANGE)) {
if (TEST_FLAG(FdoExtension->DeviceObject->Characteristics,
FILE_REMOVABLE_MEDIA) &&
(ClassGetVpb(FdoExtension->DeviceObject) != NULL) &&
(ClassGetVpb(FdoExtension->DeviceObject)->Flags & VPB_MOUNTED)
) {
SET_FLAG(FdoExtension->DeviceObject->Flags, DO_VERIFY_VOLUME);
}
InterlockedIncrement((volatile LONG *)&FdoExtension->MediaChangeCount);
ClasspSetMediaChangeStateEx(FdoExtension,
MediaPresent,
FALSE,
TRUE);
} else if (mediaInfo->MediaEvent == NOTIFICATION_MEDIA_EVENT_MEDIA_REMOVAL) {
ClasspSetMediaChangeStateEx(FdoExtension,
MediaNotPresent,
FALSE,
TRUE);
} else if (mediaInfo->MediaEvent == NOTIFICATION_MEDIA_EVENT_EJECT_REQUEST) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN Ejection request received!\n"));
ClassSendEjectionNotification(FdoExtension);
}
break;
}
case NOTIFICATION_DEVICE_BUSY_CLASS_EVENTS: { // lowest priority events...
PNOTIFICATION_BUSY_STATUS busyInfo =
(PNOTIFICATION_BUSY_STATUS)(Header->ClassEventData);
DEVICE_EVENT_BECOMING_READY busyData = {0};
//
// NOTE: we never actually need to immediately retry for these
// events: if one exists, the device is busy, and if not,
// we still don't want to retry.
//
*ResendImmediately = FALSE;
//
// else we want to report the approximated time till it's ready.
//
busyData.Version = 1;
busyData.Reason = busyInfo->DeviceBusyStatus;
busyData.Estimated100msToReady = (busyInfo->Time[0] << 8) |
(busyInfo->Time[1] & 0xff);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN::BUSY: Event: %x Status %x Time %x\n",
busyInfo->DeviceBusyEvent, busyInfo->DeviceBusyStatus,
busyData.Estimated100msToReady
));
//
// Ignore the notification if the time is small
//
if (busyData.Estimated100msToReady < GESN_DEVICE_BUSY_LOWER_THRESHOLD_100_MS) {
break;
}
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspInterpretGesnData: media BECOMING_READY"));
ClassSendNotification(FdoExtension,
&GUID_IO_DEVICE_BECOMING_READY,
sizeof(DEVICE_EVENT_BECOMING_READY),
&busyData);
break;
}
default: {
break;
}
} // end switch on notification class
return status;
}
/*++////////////////////////////////////////////////////////////////////////////
ClasspInternalSetMediaChangeState()
Routine Description:
This routine will (if appropriate) set the media change event for the
device. The event will be set if the media state is changed and
media change events are enabled. Otherwise the media state will be
tracked but the event will not be set.
This routine will lock out the other media change routines if possible
but if not a media change notification may be lost after the enable has
been completed.
Arguments:
FdoExtension - the device
MediaPresent - indicates whether the device has media inserted into it
(TRUE) or not (FALSE).
Return Value:
none
--*/
VOID
ClasspInternalSetMediaChangeState(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN MEDIA_CHANGE_DETECTION_STATE NewState,
IN BOOLEAN KnownStateChange // can ignore oldstate == unknown
)
{
#if DBG
PCSZ states[] = {"Unknown", "Present", "Not Present", "Unavailable"};
#endif
MEDIA_CHANGE_DETECTION_STATE oldMediaState;
PMEDIA_CHANGE_DETECTION_INFO info = FdoExtension->MediaChangeDetectionInfo;
CLASS_MEDIA_CHANGE_CONTEXT mcnContext;
PIO_WORKITEM workItem;
if (!((NewState >= MediaUnknown) && (NewState <= MediaUnavailable))) {
return;
}
if(info == NULL) {
return;
}
oldMediaState = InterlockedExchange(
(PLONG)(&info->MediaChangeDetectionState),
(LONG)NewState);
if((oldMediaState == MediaUnknown) && (!KnownStateChange)) {
//
// The media was in an indeterminate state before - don't notify for
// this change.
//
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassSetMediaChangeState: State was unknown - this may "
"not be a change\n"));
return;
} else if(oldMediaState == NewState) {
//
// Media is in the same state it was before.
//
return;
}
//
// Inform PartMgr that the media changed. It will need to propagate
// DO_VERIFY_VOLUME to each partition. Ensure that only one work item
// updates the disk's properties at any given time.
//
if (InterlockedCompareExchange((volatile LONG *)&FdoExtension->PrivateFdoData->UpdateDiskPropertiesWorkItemActive, 1, 0) == 0) {
workItem = IoAllocateWorkItem(FdoExtension->DeviceObject);
if (workItem) {
IoQueueWorkItem(workItem, ClasspUpdateDiskProperties, DelayedWorkQueue, workItem);
} else {
InterlockedExchange((volatile LONG *)&FdoExtension->PrivateFdoData->UpdateDiskPropertiesWorkItemActive, 0);
}
}
if(info->MediaChangeDetectionDisableCount != 0) {
#if DBG
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassSetMediaChangeState: MCN not enabled, state "
"changed from %s to %s\n",
states[oldMediaState], states[NewState]));
#endif
return;
}
#if DBG
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassSetMediaChangeState: State change from %s to %s\n",
states[oldMediaState], states[NewState]));
#endif
//
// make the data useful -- it used to always be zero.
//
mcnContext.MediaChangeCount = FdoExtension->MediaChangeCount;
mcnContext.NewState = NewState;
if (NewState == MediaPresent) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspInternalSetMediaChangeState: media ARRIVAL"));
ClassSendNotification(FdoExtension,
&GUID_IO_MEDIA_ARRIVAL,
sizeof(CLASS_MEDIA_CHANGE_CONTEXT),
&mcnContext);
}
else if ((NewState == MediaNotPresent) || (NewState == MediaUnavailable)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspInternalSetMediaChangeState: media REMOVAL"));
ClassSendNotification(FdoExtension,
&GUID_IO_MEDIA_REMOVAL,
sizeof(CLASS_MEDIA_CHANGE_CONTEXT),
&mcnContext);
} else {
//
// Don't notify of changed going to unknown.
//
return;
}
return;
} // end ClasspInternalSetMediaChangeState()
/*++////////////////////////////////////////////////////////////////////////////
ClassSetMediaChangeState()
Routine Description:
This routine will (if appropriate) set the media change event for the
device. The event will be set if the media state is changed and
media change events are enabled. Otherwise the media state will be
tracked but the event will not be set.
This routine will lock out the other media change routines if possible
but if not a media change notification may be lost after the enable has
been completed.
Arguments:
FdoExtension - the device
MediaPresent - indicates whether the device has media inserted into it
(TRUE) or not (FALSE).
Wait - indicates whether the function should wait until it can acquire
the synchronization lock or not.
Return Value:
none
--*/
VOID
#ifdef _MSC_VER
#pragma prefast(suppress:26165, "The mutex won't be acquired in the case of a timeout.")
#endif
ClasspSetMediaChangeStateEx(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN MEDIA_CHANGE_DETECTION_STATE NewState,
IN BOOLEAN Wait,
IN BOOLEAN KnownStateChange // can ignore oldstate == unknown
)
{
PMEDIA_CHANGE_DETECTION_INFO info = FdoExtension->MediaChangeDetectionInfo;
LARGE_INTEGER zero;
NTSTATUS status;
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "> ClasspSetMediaChangeStateEx"));
//
// Reset SMART status on media removal as the old status may not be
// valid when there is no media in the device or when new media is
// inserted.
//
if (NewState == MediaNotPresent) {
FdoExtension->FailurePredicted = FALSE;
FdoExtension->FailureReason = 0;
}
zero.QuadPart = 0;
if(info == NULL) {
return;
}
status = KeWaitForMutexObject(&info->MediaChangeMutex,
Executive,
KernelMode,
FALSE,
((Wait == TRUE) ? NULL : &zero));
if(status == STATUS_TIMEOUT) {
//
// Someone else is in the process of setting the media state
//
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN, "ClasspSetMediaChangeStateEx - timed out waiting for mutex"));
return;
}
//
// Change the media present state and signal an event, if applicable
//
ClasspInternalSetMediaChangeState(FdoExtension, NewState, KnownStateChange);
KeReleaseMutex(&info->MediaChangeMutex, FALSE);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "< ClasspSetMediaChangeStateEx"));
return;
} // end ClassSetMediaChangeStateEx()
_IRQL_requires_max_(PASSIVE_LEVEL)
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassSetMediaChangeState(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
_In_ MEDIA_CHANGE_DETECTION_STATE NewState,
_In_ BOOLEAN Wait
)
{
ClasspSetMediaChangeStateEx(FdoExtension, NewState, Wait, FALSE);
return;
}
/*++////////////////////////////////////////////////////////////////////////////
ClasspMediaChangeDetectionCompletion()
Routine Description:
This routine handles the completion of the test unit ready irps used to
determine if the media has changed. If the media has changed, this code
signals the named event to wake up other system services that react to
media change (aka AutoPlay).
Arguments:
DeviceObject - the object for the completion
Irp - the IRP being completed
Context - the SRB from the IRP
Return Value:
NTSTATUS
--*/
NTSTATUS
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClasspMediaChangeDetectionCompletion(
PDEVICE_OBJECT DeviceObject,
PIRP Irp,
PVOID Context
)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExtension;
PCLASS_PRIVATE_FDO_DATA fdoData;
PMEDIA_CHANGE_DETECTION_INFO info;
NTSTATUS status;
BOOLEAN retryImmediately = FALSE;
PSTORAGE_REQUEST_BLOCK_HEADER Srb = (PSTORAGE_REQUEST_BLOCK_HEADER) Context;
_Analysis_assume_(Srb != NULL);
//
// Since the class driver created this request, it's completion routine
// will not get a valid device object handed in. Use the one in the
// irp stack instead
//
DeviceObject = IoGetCurrentIrpStackLocation(Irp)->DeviceObject;
fdoExtension = DeviceObject->DeviceExtension;
fdoData = fdoExtension->PrivateFdoData;
info = fdoExtension->MediaChangeDetectionInfo;
NT_ASSERT(info->MediaChangeIrp != NULL);
NT_ASSERT(!TEST_FLAG(Srb->SrbStatus, SRB_STATUS_QUEUE_FROZEN));
TracePrint((TRACE_LEVEL_VERBOSE, TRACE_FLAG_MCN, "> ClasspMediaChangeDetectionCompletion: Device %p completed MCN irp %p.", DeviceObject, Irp));
/*
* HACK for IoMega 2GB Jaz drive:
* This drive spins down on its own to preserve the media.
* When spun down, TUR fails with 2/4/0 (SCSI_SENSE_NOT_READY/SCSI_ADSENSE_LUN_NOT_READY/?).
* InterpretSenseInfo routine would then call ClassSendStartUnit to spin the media up, which defeats the
* purpose of the spindown.
* So in this case, make this into a successful TUR.
* This allows the drive to stay spun down until it is actually accessed again.
* (If the media were actually removed, TUR would fail with 2/3a/0 ).
* This hack only applies to drives with the CAUSE_NOT_REPORTABLE_HACK bit set; this
* is set by disk.sys when HackCauseNotReportableHack is set for the drive in its BadControllers list.
*/
if ((SRB_STATUS(Srb->SrbStatus) != SRB_STATUS_SUCCESS) &&
TEST_FLAG(fdoExtension->ScanForSpecialFlags, CLASS_SPECIAL_CAUSE_NOT_REPORTABLE_HACK)) {
PVOID senseData = SrbGetSenseInfoBuffer(Srb);
if (senseData) {
BOOLEAN validSense = TRUE;
UCHAR senseInfoBufferLength = SrbGetSenseInfoBufferLength(Srb);
UCHAR senseKey = 0;
UCHAR additionalSenseCode = 0;
validSense = ScsiGetSenseKeyAndCodes(senseData,
senseInfoBufferLength,
SCSI_SENSE_OPTIONS_FIXED_FORMAT_IF_UNKNOWN_FORMAT_INDICATED,
&senseKey,
&additionalSenseCode,
NULL);
if (validSense &&
senseKey == SCSI_SENSE_NOT_READY &&
additionalSenseCode == SCSI_ADSENSE_LUN_NOT_READY) {
Srb->SrbStatus = SRB_STATUS_SUCCESS;
}
}
}
//
// use InterpretSenseInfo routine to check for media state, and also
// to call ClassError() with correct parameters.
//
status = STATUS_SUCCESS;
if (SRB_STATUS(Srb->SrbStatus) != SRB_STATUS_SUCCESS) {
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN, "ClasspMediaChangeDetectionCompletion - failed - srb status=%s, sense=%s/%s/%s.",
DBGGETSRBSTATUSSTR(Srb), DBGGETSENSECODESTR(Srb), DBGGETADSENSECODESTR(Srb), DBGGETADSENSEQUALIFIERSTR(Srb)));
InterpretSenseInfoWithoutHistory(DeviceObject,
Irp,
(PSCSI_REQUEST_BLOCK)Srb,
IRP_MJ_SCSI,
0,
0,
&status,
NULL);
}
else {
fdoData->LoggedTURFailureSinceLastIO = FALSE;
if (!info->Gesn.Supported) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspMediaChangeDetectionCompletion - succeeded and GESN NOT supported, setting MediaPresent."));
//
// success != media for GESN case
//
ClassSetMediaChangeState(fdoExtension, MediaPresent, FALSE);
}
else {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspMediaChangeDetectionCompletion - succeeded (GESN supported)."));
}
}
if (info->Gesn.Supported) {
if (status == STATUS_DATA_OVERRUN) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspMediaChangeDetectionCompletion - Overrun"));
status = STATUS_SUCCESS;
}
if (!NT_SUCCESS(status)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspMediaChangeDetectionCompletion: GESN failed with status %x", status));
} else {
//
// for GESN, need to interpret the results of the data.
// this may also require an immediate retry
//
if (Irp->IoStatus.Information == 8 ) {
ClasspInterpretGesnData(fdoExtension,
(PVOID)info->Gesn.Buffer,
&retryImmediately);
}
} // end of NT_SUCCESS(status)
} // end of Info->Gesn.Supported
//
// free port-allocated sense buffer, if any.
//
if (PORT_ALLOCATED_SENSE_EX(fdoExtension, Srb)) {
FREE_PORT_ALLOCATED_SENSE_BUFFER_EX(fdoExtension, Srb);
}
//
// Remember the IRP and SRB for use the next time.
//
NT_ASSERT(IoGetNextIrpStackLocation(Irp));
IoGetNextIrpStackLocation(Irp)->Parameters.Scsi.Srb = (PSCSI_REQUEST_BLOCK)Srb;
//
// Reset the MCN timer.
//
ClassResetMediaChangeTimer(fdoExtension);
//
// run a sanity check to make sure we're not recursing continuously
//
if (retryImmediately) {
info->MediaChangeRetryCount++;
if (info->MediaChangeRetryCount > MAXIMUM_IMMEDIATE_MCN_RETRIES) {
//
// Disable GESN on this device.
// Create a work item to set the value in the registry
//
PIO_WORKITEM workItem;
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspMediaChangeDetectionCompletion: Disabling GESN for device %p", DeviceObject));
workItem = IoAllocateWorkItem(DeviceObject);
if (workItem) {
IoQueueWorkItem(workItem, ClasspDisableGesn, DelayedWorkQueue, workItem);
}
info->Gesn.Supported = 0;
info->Gesn.EventMask = 0;
info->Gesn.BufferSize = 0;
info->MediaChangeRetryCount = 0;
retryImmediately = FALSE;
}
} else {
info->MediaChangeRetryCount = 0;
}
//
// release the remove lock....
//
{
UCHAR uniqueValue = 0;
ClassAcquireRemoveLock(DeviceObject, (PVOID)(&uniqueValue));
ClassReleaseRemoveLock(DeviceObject, Irp);
//
// set the irp as not in use
//
{
#if DBG
volatile LONG irpWasInUse;
irpWasInUse = InterlockedCompareExchange(&info->MediaChangeIrpInUse, 0, 1);
#if _MSC_FULL_VER != 13009111 // This compiler always takes the wrong path here.
NT_ASSERT(irpWasInUse);
#endif
#else
InterlockedCompareExchange(&info->MediaChangeIrpInUse, 0, 1);
#endif
}
//
// now send it again before we release our last remove lock
//
if (retryImmediately) {
ClasspSendMediaStateIrp(fdoExtension, info, 0);
}
else {
TracePrint((TRACE_LEVEL_VERBOSE, TRACE_FLAG_MCN, "ClasspMediaChangeDetectionCompletion - not retrying immediately"));
}
//
// release the temporary remove lock
//
ClassReleaseRemoveLock(DeviceObject, (PVOID)(&uniqueValue));
}
TracePrint((TRACE_LEVEL_VERBOSE, TRACE_FLAG_MCN, "< ClasspMediaChangeDetectionCompletion"));
return STATUS_MORE_PROCESSING_REQUIRED;
}
/*++////////////////////////////////////////////////////////////////////////////
ClasspSendTestUnitIrp() - ISSUE-2000/02/20-henrygab - not documented
Routine Description:
This routine
Arguments:
DeviceObject -
Irp -
Return Value:
--*/
PIRP
ClasspPrepareMcnIrp(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN PMEDIA_CHANGE_DETECTION_INFO Info,
IN BOOLEAN UseGesn
)
{
PSCSI_REQUEST_BLOCK srb;
PSTORAGE_REQUEST_BLOCK srbEx;
PIO_STACK_LOCATION irpStack;
PIO_STACK_LOCATION nextIrpStack;
NTSTATUS status;
PCDB cdb;
PIRP irp;
PVOID buffer;
UCHAR bufferLength;
ULONG srbFlags;
ULONG timeOutValue;
UCHAR cdbLength;
PVOID dataBuffer;
ULONG dataTransferLength;
//
// Setup the IRP to perform a test unit ready.
//
irp = Info->MediaChangeIrp;
if (irp == NULL) {
NT_ASSERT(irp);
return NULL;
}
//
// don't keep sending this if the device is being removed.
//
status = ClassAcquireRemoveLock(FdoExtension->DeviceObject, irp);
if (status == REMOVE_COMPLETE) {
NT_ASSERT(status != REMOVE_COMPLETE);
return NULL;
}
else if (status == REMOVE_PENDING) {
ClassReleaseRemoveLock(FdoExtension->DeviceObject, irp);
return NULL;
}
else {
NT_ASSERT(status == NO_REMOVE);
}
IoReuseIrp(irp, STATUS_NOT_SUPPORTED);
/*
* For the driver that creates an IRP, there is no 'current' stack location.
* Step down one IRP stack location so that the extra top one
* becomes our 'current' one.
*/
IoSetNextIrpStackLocation(irp);
/*
* Cache our device object in the extra top IRP stack location
* so we have it in our completion routine.
*/
irpStack = IoGetCurrentIrpStackLocation(irp);
irpStack->DeviceObject = FdoExtension->DeviceObject;
//
// If the irp is sent down when the volume needs to be
// verified, CdRomUpdateGeometryCompletion won't complete
// it since it's not associated with a thread. Marking
// it to override the verify causes it always be sent
// to the port driver
//
irpStack->Flags |= SL_OVERRIDE_VERIFY_VOLUME;
nextIrpStack = IoGetNextIrpStackLocation(irp);
nextIrpStack->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL;
nextIrpStack->Parameters.Scsi.Srb = &(Info->MediaChangeSrb.Srb);
//
// Prepare the SRB for execution.
//
buffer = Info->SenseBuffer;
bufferLength = Info->SenseBufferLength;
NT_ASSERT(bufferLength > 0);
RtlZeroMemory(buffer, bufferLength);
srbFlags = FdoExtension->SrbFlags;
SET_FLAG(srbFlags, Info->SrbFlags);
timeOutValue = FdoExtension->TimeOutValue * 2;
if (timeOutValue == 0) {
if (FdoExtension->TimeOutValue == 0) {
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN,
"ClassSendTestUnitIrp: FdoExtension->TimeOutValue "
"is set to zero?! -- resetting to 10\n"));
timeOutValue = 10 * 2; // reasonable default
} else {
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN,
"ClassSendTestUnitIrp: Someone set "
"srb->TimeOutValue to zero?! -- resetting to %x\n",
FdoExtension->TimeOutValue * 2));
timeOutValue = FdoExtension->TimeOutValue * 2;
}
}
if (!UseGesn) {
nextIrpStack->Parameters.DeviceIoControl.IoControlCode = IOCTL_SCSI_EXECUTE_NONE;
irp->MdlAddress = NULL;
SET_FLAG(srbFlags, SRB_FLAGS_NO_DATA_TRANSFER);
//
// Set SRB_FLAGS_NO_KEEP_AWAKE for non-cdrom devices if these requests should
// not prevent devices from going to sleep.
//
if ((FdoExtension->DeviceObject->DeviceType != FILE_DEVICE_CD_ROM) &&
(ClasspScreenOff == TRUE)) {
SET_FLAG(srbFlags, SRB_FLAGS_NO_KEEP_AWAKE);
}
cdbLength = 6;
dataBuffer = NULL;
dataTransferLength = 0;
} else {
NT_ASSERT(Info->Gesn.Buffer);
nextIrpStack->Parameters.DeviceIoControl.IoControlCode = IOCTL_SCSI_EXECUTE_IN;
irp->MdlAddress = Info->Gesn.Mdl;
SET_FLAG(srbFlags, SRB_FLAGS_DATA_IN);
cdbLength = 10;
dataBuffer = Info->Gesn.Buffer;
dataTransferLength = Info->Gesn.BufferSize;
timeOutValue = GESN_TIMEOUT_VALUE; // much shorter timeout for GESN
}
//
// SRB used here is the MediaChangeSrb in _MEDIA_CHANGE_DETECTION_INFO.
//
srb = nextIrpStack->Parameters.Scsi.Srb;
if (FdoExtension->AdapterDescriptor->SrbType == SRB_TYPE_STORAGE_REQUEST_BLOCK) {
srbEx = (PSTORAGE_REQUEST_BLOCK)nextIrpStack->Parameters.Scsi.Srb;
status = InitializeStorageRequestBlock(srbEx,
STORAGE_ADDRESS_TYPE_BTL8,
CLASS_SRBEX_SCSI_CDB16_BUFFER_SIZE,
1,
SrbExDataTypeScsiCdb16);
if (!NT_SUCCESS(status)) {
// should not happen
NT_ASSERT(FALSE);
return NULL;
}
srbEx->RequestTag = SP_UNTAGGED;
srbEx->RequestAttribute = SRB_SIMPLE_TAG_REQUEST;
srbEx->SrbFunction = SRB_FUNCTION_EXECUTE_SCSI;
srbEx->SrbStatus = 0;
srbEx->OriginalRequest = irp;
srbEx->SrbFlags = srbFlags;
srbEx->TimeOutValue = timeOutValue;
srbEx->DataBuffer = dataBuffer;
srbEx->DataTransferLength = dataTransferLength;
SrbSetScsiStatus(srbEx, 0);
SrbSetSenseInfoBuffer(srbEx, buffer);
SrbSetSenseInfoBufferLength(srbEx, bufferLength);
SrbSetCdbLength(srbEx, cdbLength);
cdb = SrbGetCdb(srbEx);
} else {
RtlZeroMemory(srb, sizeof(SCSI_REQUEST_BLOCK));
srb->QueueTag = SP_UNTAGGED;
srb->QueueAction = SRB_SIMPLE_TAG_REQUEST;
srb->Length = sizeof(SCSI_REQUEST_BLOCK);
srb->Function = SRB_FUNCTION_EXECUTE_SCSI;
srb->SenseInfoBuffer = buffer;
srb->SenseInfoBufferLength = bufferLength;
srb->SrbStatus = 0;
srb->ScsiStatus = 0;
srb->OriginalRequest = irp;
srb->SrbFlags = srbFlags;
srb->TimeOutValue = timeOutValue;
srb->CdbLength = cdbLength;
srb->DataBuffer = dataBuffer;
srb->DataTransferLength = dataTransferLength;
cdb = (PCDB) &srb->Cdb[0];
}
if (cdb) {
if (!UseGesn) {
cdb->CDB6GENERIC.OperationCode = SCSIOP_TEST_UNIT_READY;
} else {
cdb->GET_EVENT_STATUS_NOTIFICATION.OperationCode =
SCSIOP_GET_EVENT_STATUS;
cdb->GET_EVENT_STATUS_NOTIFICATION.Immediate = 1;
cdb->GET_EVENT_STATUS_NOTIFICATION.EventListLength[0] =
(UCHAR)((Info->Gesn.BufferSize) >> 8);
cdb->GET_EVENT_STATUS_NOTIFICATION.EventListLength[1] =
(UCHAR)((Info->Gesn.BufferSize) & 0xff);
cdb->GET_EVENT_STATUS_NOTIFICATION.NotificationClassRequest =
Info->Gesn.EventMask;
}
}
IoSetCompletionRoutine(irp,
ClasspMediaChangeDetectionCompletion,
srb,
TRUE,
TRUE,
TRUE);
return irp;
}
/*++////////////////////////////////////////////////////////////////////////////
ClasspSendMediaStateIrp() - ISSUE-2000/02/20-henrygab - not documented
Routine Description:
This routine
Arguments:
DeviceObject -
Irp -
Return Value:
--*/
VOID
ClasspSendMediaStateIrp(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN PMEDIA_CHANGE_DETECTION_INFO Info,
IN ULONG CountDown
)
{
BOOLEAN requestPending = FALSE;
LONG irpInUse;
TracePrint((TRACE_LEVEL_VERBOSE, TRACE_FLAG_MCN, "> ClasspSendMediaStateIrp"));
if (((FdoExtension->CommonExtension.CurrentState != IRP_MN_START_DEVICE) ||
(FdoExtension->DevicePowerState != PowerDeviceD0)
) &&
(!Info->MediaChangeIrpLost)) {
//
// the device may be stopped, powered down, or otherwise queueing io,
// so should not timeout the autorun irp (yet) -- set to zero ticks.
// scattered code relies upon this to not prematurely "lose" an
// autoplay irp that was queued.
//
Info->MediaChangeIrpTimeInUse = 0;
}
//
// if the irp is not in use, mark it as such.
//
irpInUse = InterlockedCompareExchange(&Info->MediaChangeIrpInUse, 1, 0);
if (irpInUse) {
LONG timeInUse;
timeInUse = InterlockedIncrement(&Info->MediaChangeIrpTimeInUse);
TracePrint((TRACE_LEVEL_VERBOSE, TRACE_FLAG_MCN, "ClasspSendMediaStateIrp: irp in use for "
"%x seconds when synchronizing for MCD\n", timeInUse));
if (Info->MediaChangeIrpLost == FALSE) {
if (timeInUse > MEDIA_CHANGE_TIMEOUT_TIME) {
//
// currently set to five minutes. hard to imagine a drive
// taking that long to spin up.
//
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN,
"CdRom%d: Media Change Notification has lost "
"it's irp and doesn't know where to find it. "
"Leave it alone and it'll come home dragging "
"it's stack behind it.\n",
FdoExtension->DeviceNumber));
Info->MediaChangeIrpLost = TRUE;
}
}
TracePrint((TRACE_LEVEL_VERBOSE, TRACE_FLAG_MCN, "< ClasspSendMediaStateIrp - irpInUse"));
return;
}
TRY {
if (Info->MediaChangeDetectionDisableCount != 0) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClassCheckMediaState: device %p has "
" detection disabled \n", FdoExtension->DeviceObject));
LEAVE;
}
if (FdoExtension->DevicePowerState != PowerDeviceD0) {
//
// It's possible that the device went to D3 while the screen was
// off so we need to make sure that we send the IRP regardless
// of the device's power state in order to wake the device back
// up when the screen comes back on.
// When the screen is off we set the SRB_FLAG_NO_KEEP_AWAKE flag
// so that the lower driver does not power-up the device for this
// request. When the screen comes back on, however, we want to
// resume checking for media presence so we no longer set the flag.
// When the device is in D3 we also stop the polling timer as well.
//
//
// NOTE: we don't increment the time in use until our power state
// changes above. this way, we won't "lose" the autoplay irp.
// it's up to the lower driver to determine if powering up is a
// good idea.
//
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassCheckMediaState: device %p needs to powerup "
"to handle this io (may take a few extra seconds).\n",
FdoExtension->DeviceObject));
}
Info->MediaChangeIrpTimeInUse = 0;
Info->MediaChangeIrpLost = FALSE;
if (CountDown == 0) {
PIRP irp;
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassCheckMediaState: timer expired\n"));
if (Info->MediaChangeDetectionDisableCount != 0) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassCheckMediaState: detection disabled\n"));
LEAVE;
}
//
// Prepare the IRP for the test unit ready
//
irp = ClasspPrepareMcnIrp(FdoExtension,
Info,
Info->Gesn.Supported);
//
// Issue the request.
//
TracePrint((TRACE_LEVEL_VERBOSE, TRACE_FLAG_MCN,
"ClasspSendMediaStateIrp: Device %p getting TUR "
" irp %p\n", FdoExtension->DeviceObject, irp));
if (irp == NULL) {
LEAVE;
}
//
// note: if we send it to the class dispatch routines, there is
// a timing window here (since they grab the remove lock)
// where we'd be removed. ELIMINATE the window by grabbing
// the lock ourselves above and sending it to the lower
// device object directly or to the device's StartIo
// routine (which doesn't acquire the lock).
//
requestPending = TRUE;
TracePrint((TRACE_LEVEL_VERBOSE, TRACE_FLAG_MCN, " ClasspSendMediaStateIrp - calling IoCallDriver."));
IoCallDriver(FdoExtension->CommonExtension.LowerDeviceObject, irp);
}
} FINALLY {
if(requestPending == FALSE) {
#if DBG
irpInUse = InterlockedCompareExchange(&Info->MediaChangeIrpInUse, 0, 1);
#if _MSC_FULL_VER != 13009111 // This compiler always takes the wrong path here.
NT_ASSERT(irpInUse);
#endif
#else
InterlockedCompareExchange(&Info->MediaChangeIrpInUse, 0, 1);
#endif
}
}
TracePrint((TRACE_LEVEL_VERBOSE, TRACE_FLAG_MCN, "< ClasspSendMediaStateIrp"));
return;
} // end ClasspSendMediaStateIrp()
/*++////////////////////////////////////////////////////////////////////////////
ClassCheckMediaState()
Routine Description:
This routine is called by the class driver to test for a media change
condition and/or poll for disk failure prediction. It should be called
from the class driver's IO timer routine once per second.
Arguments:
FdoExtension - the device extension
Return Value:
none
--*/
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassCheckMediaState(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
{
PMEDIA_CHANGE_DETECTION_INFO info = FdoExtension->MediaChangeDetectionInfo;
LONG countDown;
if(info == NULL) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassCheckMediaState: detection not enabled\n"));
return;
}
//
// Media change support is active and the IRP is waiting. Decrement the
// timer. There is no MP protection on the timer counter. This code
// is the only code that will manipulate the timer counter and only one
// instance of it should be running at any given time.
//
countDown = InterlockedDecrement(&(info->MediaChangeCountDown));
//
// Try to acquire the media change event. If we can't do it immediately
// then bail out and assume the caller will try again later.
//
ClasspSendMediaStateIrp(FdoExtension,
info,
countDown);
return;
} // end ClassCheckMediaState()
/*++////////////////////////////////////////////////////////////////////////////
ClassResetMediaChangeTimer()
Routine Description:
Resets the media change count down timer to the default number of seconds.
Arguments:
FdoExtension - the device to reset the timer for
Return Value:
None
--*/
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassResetMediaChangeTimer(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
{
PMEDIA_CHANGE_DETECTION_INFO info = FdoExtension->MediaChangeDetectionInfo;
if(info != NULL) {
InterlockedExchange(&(info->MediaChangeCountDown),
MEDIA_CHANGE_DEFAULT_TIME);
}
return;
} // end ClassResetMediaChangeTimer()
/*++////////////////////////////////////////////////////////////////////////////
ClasspInitializePolling() - ISSUE-2000/02/20-henrygab - not documented
Routine Description:
This routine
Arguments:
DeviceObject -
Irp -
Return Value:
--*/
NTSTATUS
ClasspInitializePolling(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN BOOLEAN AllowDriveToSleep
)
{
PDEVICE_OBJECT fdo = FdoExtension->DeviceObject;
PMEDIA_CHANGE_DETECTION_INFO info;
PIRP irp;
PAGED_CODE();
if (FdoExtension->MediaChangeDetectionInfo != NULL) {
return STATUS_SUCCESS;
}
info = ExAllocatePoolWithTag(NonPagedPoolNx,
sizeof(MEDIA_CHANGE_DETECTION_INFO),
CLASS_TAG_MEDIA_CHANGE_DETECTION);
if (info != NULL) {
RtlZeroMemory(info, sizeof(MEDIA_CHANGE_DETECTION_INFO));
FdoExtension->KernelModeMcnContext.FileObject = (PVOID)-1;
FdoExtension->KernelModeMcnContext.DeviceObject = (PVOID)-1;
FdoExtension->KernelModeMcnContext.LockCount = 0;
FdoExtension->KernelModeMcnContext.McnDisableCount = 0;
/*
* Allocate an IRP to carry the Test-Unit-Ready.
* Allocate an extra IRP stack location
* so we can cache our device object in the top location.
*/
irp = IoAllocateIrp((CCHAR)(fdo->StackSize+1), FALSE);
if (irp != NULL) {
PVOID buffer;
BOOLEAN GesnSupported = FALSE;
buffer = ExAllocatePoolWithTag(
NonPagedPoolNxCacheAligned,
SENSE_BUFFER_SIZE_EX,
CLASS_TAG_MEDIA_CHANGE_DETECTION);
if (buffer != NULL) {
info->MediaChangeIrp = irp;
info->SenseBuffer = buffer;
info->SenseBufferLength = SENSE_BUFFER_SIZE_EX;
//
// Set default values for the media change notification
// configuration.
//
info->MediaChangeCountDown = MEDIA_CHANGE_DEFAULT_TIME;
info->MediaChangeDetectionDisableCount = 0;
//
// Assume that there is initially no media in the device
// only notify upper layers if there is something there
//
info->MediaChangeDetectionState = MediaUnknown;
info->MediaChangeIrpTimeInUse = 0;
info->MediaChangeIrpLost = FALSE;
//
// setup all extra flags we'll be setting for this irp
//
info->SrbFlags = 0;
if (AllowDriveToSleep) {
SET_FLAG(info->SrbFlags, SRB_FLAGS_NO_KEEP_AWAKE);
}
SET_FLAG(info->SrbFlags, SRB_CLASS_FLAGS_LOW_PRIORITY);
SET_FLAG(info->SrbFlags, SRB_FLAGS_NO_QUEUE_FREEZE);
SET_FLAG(info->SrbFlags, SRB_FLAGS_DISABLE_SYNCH_TRANSFER);
KeInitializeMutex(&info->MediaChangeMutex, 0x100);
//
// It is ok to support media change events on this
// device.
//
FdoExtension->MediaChangeDetectionInfo = info;
//
// NOTE: the DeviceType is FILE_DEVICE_CD_ROM even
// when the device supports DVD (no need to
// check for FILE_DEVICE_DVD, as it's not a
// valid check).
//
if (FdoExtension->DeviceObject->DeviceType == FILE_DEVICE_CD_ROM) {
NTSTATUS status;
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClasspInitializePolling: Testing for GESN\n"));
status = ClasspInitializeGesn(FdoExtension, info);
if (NT_SUCCESS(status)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClasspInitializePolling: GESN available "
"for %p\n", FdoExtension->DeviceObject));
NT_ASSERT(info->Gesn.Supported );
NT_ASSERT(info->Gesn.Buffer != NULL);
NT_ASSERT(info->Gesn.BufferSize != 0);
NT_ASSERT(info->Gesn.EventMask != 0);
GesnSupported = TRUE;
} else {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClasspInitializePolling: GESN *NOT* available "
"for %p\n", FdoExtension->DeviceObject));
}
}
if (GesnSupported == FALSE) {
NT_ASSERT(info->Gesn.Supported == 0);
NT_ASSERT(info->Gesn.Buffer == NULL);
NT_ASSERT(info->Gesn.BufferSize == 0);
NT_ASSERT(info->Gesn.EventMask == 0);
info->Gesn.Supported = 0; // just in case....
}
//
// Register for screen state notification. Will use this to
// determine user presence.
//
if (ScreenStateNotificationHandle == NULL) {
PoRegisterPowerSettingCallback(fdo,
&GUID_CONSOLE_DISPLAY_STATE,
&ClasspPowerSettingCallback,
NULL,
&ScreenStateNotificationHandle);
}
return STATUS_SUCCESS;
}
IoFreeIrp(irp);
}
FREE_POOL(info);
}
//
// nothing to free here
//
return STATUS_INSUFFICIENT_RESOURCES;
} // end ClasspInitializePolling()
NTSTATUS
ClasspInitializeGesn(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN PMEDIA_CHANGE_DETECTION_INFO Info
)
{
PNOTIFICATION_EVENT_STATUS_HEADER header;
CLASS_DETECTION_STATE detectionState = ClassDetectionUnknown;
PSTORAGE_DEVICE_DESCRIPTOR deviceDescriptor;
NTSTATUS status = STATUS_NOT_SUPPORTED;
PIRP irp;
KEVENT event;
BOOLEAN retryImmediately;
ULONG i;
ULONG atapiResets;
ULONG srbFlags;
PAGED_CODE();
NT_ASSERT(Info == FdoExtension->MediaChangeDetectionInfo);
//
// read if we already know the abilities of the device
//
ClassGetDeviceParameter(FdoExtension,
CLASSP_REG_SUBKEY_NAME,
CLASSP_REG_MMC_DETECTION_VALUE_NAME,
(PULONG)&detectionState);
if (detectionState == ClassDetectionUnsupported) {
goto ExitWithError;
}
//
// check if the device has a hack flag saying never to try this.
//
if (TEST_FLAG(FdoExtension->PrivateFdoData->HackFlags,
FDO_HACK_GESN_IS_BAD)) {
ClassSetDeviceParameter(FdoExtension,
CLASSP_REG_SUBKEY_NAME,
CLASSP_REG_MMC_DETECTION_VALUE_NAME,
ClassDetectionUnsupported);
goto ExitWithError;
}
//
// else go through the process since we allocate buffers and
// get all sorts of device settings.
//
if (Info->Gesn.Buffer == NULL) {
Info->Gesn.Buffer = ExAllocatePoolWithTag(NonPagedPoolNxCacheAligned,
GESN_BUFFER_SIZE,
'??cS');
}
if (Info->Gesn.Buffer == NULL) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto ExitWithError;
}
if (Info->Gesn.Mdl != NULL) {
IoFreeMdl(Info->Gesn.Mdl);
}
Info->Gesn.Mdl = IoAllocateMdl(Info->Gesn.Buffer,
GESN_BUFFER_SIZE,
FALSE, FALSE, NULL);
if (Info->Gesn.Mdl == NULL) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto ExitWithError;
}
MmBuildMdlForNonPagedPool(Info->Gesn.Mdl);
Info->Gesn.BufferSize = GESN_BUFFER_SIZE;
Info->Gesn.EventMask = 0;
//
// all items are prepared to use GESN (except the event mask, so don't
// optimize this part out!).
//
// now see if it really works. we have to loop through this because
// many SAMSUNG (and one COMPAQ) drives timeout when requesting
// NOT_READY events, even when the IMMEDIATE bit is set. :(
//
// using a drive list is cumbersome, so this might fix the problem.
//
deviceDescriptor = FdoExtension->DeviceDescriptor;
atapiResets = 0;
retryImmediately = TRUE;
for (i = 0; i < 16 && retryImmediately == TRUE; i++) {
irp = ClasspPrepareMcnIrp(FdoExtension, Info, TRUE);
if (irp == NULL) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto ExitWithError;
}
if (Info->MediaChangeSrb.Srb.Function == SRB_FUNCTION_STORAGE_REQUEST_BLOCK) {
srbFlags = Info->MediaChangeSrb.SrbEx.SrbFlags;
} else {
srbFlags = Info->MediaChangeSrb.Srb.SrbFlags;
}
NT_ASSERT(TEST_FLAG(srbFlags, SRB_FLAGS_NO_QUEUE_FREEZE));
//
// replace the completion routine with a different one this time...
//
KeInitializeEvent(&event, SynchronizationEvent, FALSE);
IoSetCompletionRoutine(irp,
ClassSignalCompletion,
&event,
TRUE, TRUE, TRUE);
status = IoCallDriver(FdoExtension->CommonExtension.LowerDeviceObject, irp);
if (status == STATUS_PENDING) {
status = KeWaitForSingleObject(&event,
Executive,
KernelMode,
FALSE,
NULL);
NT_ASSERT(NT_SUCCESS(status));
}
ClassReleaseRemoveLock(FdoExtension->DeviceObject, irp);
if (SRB_STATUS(Info->MediaChangeSrb.Srb.SrbStatus) != SRB_STATUS_SUCCESS) {
InterpretSenseInfoWithoutHistory(FdoExtension->DeviceObject,
irp,
&(Info->MediaChangeSrb.Srb),
IRP_MJ_SCSI,
0,
0,
&status,
NULL);
}
if ((deviceDescriptor->BusType == BusTypeAtapi) &&
(Info->MediaChangeSrb.Srb.SrbStatus == SRB_STATUS_BUS_RESET)
) {
//
// ATAPI unfortunately returns SRB_STATUS_BUS_RESET instead
// of SRB_STATUS_TIMEOUT, so we cannot differentiate between
// the two. if we get this status four time consecutively,
// stop trying this command. it is too late to change ATAPI
// at this point, so special-case this here. (07/10/2001)
// NOTE: any value more than 4 may cause the device to be
// marked missing.
//
atapiResets++;
if (atapiResets >= 4) {
status = STATUS_IO_DEVICE_ERROR;
goto ExitWithError;
}
}
if (status == STATUS_DATA_OVERRUN) {
status = STATUS_SUCCESS;
}
if ((status == STATUS_INVALID_DEVICE_REQUEST) ||
(status == STATUS_TIMEOUT) ||
(status == STATUS_IO_DEVICE_ERROR) ||
(status == STATUS_IO_TIMEOUT)
) {
//
// with these error codes, we don't ever want to try this command
// again on this device, since it reacts poorly.
//
ClassSetDeviceParameter(FdoExtension,
CLASSP_REG_SUBKEY_NAME,
CLASSP_REG_MMC_DETECTION_VALUE_NAME,
ClassDetectionUnsupported);
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN,
"Classpnp => GESN test failed %x for fdo %p\n",
status, FdoExtension->DeviceObject));
goto ExitWithError;
}
if (!NT_SUCCESS(status)) {
//
// this may be other errors that should not disable GESN
// for all future start_device calls.
//
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN,
"Classpnp => GESN test failed %x for fdo %p\n",
status, FdoExtension->DeviceObject));
goto ExitWithError;
}
if (i == 0) {
//
// the first time, the request was just retrieving a mask of
// available bits. use this to mask future requests.
//
header = (PNOTIFICATION_EVENT_STATUS_HEADER)(Info->Gesn.Buffer);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => Fdo %p supports event mask %x\n",
FdoExtension->DeviceObject, header->SupportedEventClasses));
if (TEST_FLAG(header->SupportedEventClasses,
NOTIFICATION_MEDIA_STATUS_CLASS_MASK)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN supports MCN\n"));
}
if (TEST_FLAG(header->SupportedEventClasses,
NOTIFICATION_DEVICE_BUSY_CLASS_MASK)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN supports DeviceBusy\n"));
}
if (TEST_FLAG(header->SupportedEventClasses,
NOTIFICATION_OPERATIONAL_CHANGE_CLASS_MASK)) {
if (TEST_FLAG(FdoExtension->PrivateFdoData->HackFlags,
FDO_HACK_GESN_IGNORE_OPCHANGE)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN supports OpChange, but "
"must ignore these events for compatibility\n"));
CLEAR_FLAG(header->SupportedEventClasses,
NOTIFICATION_OPERATIONAL_CHANGE_CLASS_MASK);
} else {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN supports OpChange\n"));
}
}
Info->Gesn.EventMask = header->SupportedEventClasses;
//
// realistically, we are only considering the following events:
// EXTERNAL REQUEST - this is being tested for play/stop/etc.
// MEDIA STATUS - autorun and ejection requests.
// DEVICE BUSY - to allow us to predict when media will be ready.
// therefore, we should not bother querying for the other,
// unknown events. clear all but the above flags.
//
Info->Gesn.EventMask &=
NOTIFICATION_OPERATIONAL_CHANGE_CLASS_MASK |
NOTIFICATION_EXTERNAL_REQUEST_CLASS_MASK |
NOTIFICATION_MEDIA_STATUS_CLASS_MASK |
NOTIFICATION_DEVICE_BUSY_CLASS_MASK ;
//
// HACKHACK - REF #0001
// Some devices will *never* report an event if we've also requested
// that it report lower-priority events. this is due to a
// misunderstanding in the specification wherein a "No Change" is
// interpreted to be a real event. what should occur is that the
// device should ignore "No Change" events when multiple event types
// are requested unless there are no other events waiting. this
// greatly reduces the number of requests that the host must send
// to determine if an event has occurred. Since we must work on all
// drives, default to enabling the hack until we find evidence of
// proper firmware.
//
if (Info->Gesn.EventMask == 0) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN supported, but not mask we care "
"about (%x) for FDO %p\n",
header->SupportedEventClasses,
FdoExtension->DeviceObject));
goto ExitWithError;
} else if (CountOfSetBitsUChar(Info->Gesn.EventMask) == 1) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN hack not required for FDO %p\n",
FdoExtension->DeviceObject));
} else {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN hack enabled for FDO %p\n",
FdoExtension->DeviceObject));
Info->Gesn.HackEventMask = 1;
}
} else {
//
// not the first time looping through, so interpret the results.
//
status = ClasspInterpretGesnData(FdoExtension,
(PVOID)Info->Gesn.Buffer,
&retryImmediately);
if (!NT_SUCCESS(status)) {
//
// This drive does not support GESN correctly
//
ClassSetDeviceParameter(FdoExtension,
CLASSP_REG_SUBKEY_NAME,
CLASSP_REG_MMC_DETECTION_VALUE_NAME,
ClassDetectionUnsupported);
goto ExitWithError;
}
}
} // end loop of GESN requests....
//
// we can only use this if it can be relied upon for media changes,
// since we are (by definition) no longer going to be polling via
// a TEST_UNIT_READY irp, and drives will not report UNIT ATTENTION
// for this command (although a filter driver, such as one for burning
// cd's, might still fake those errors).
//
// since we also rely upon NOT_READY events to change the cursor
// into a "wait" cursor; GESN is still more reliable than other
// methods, and includes eject button requests, so we'll use it
// without DEVICE_BUSY in Windows Vista.
//
if (TEST_FLAG(Info->Gesn.EventMask, NOTIFICATION_MEDIA_STATUS_CLASS_MASK)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => Enabling GESN support for fdo %p\n",
FdoExtension->DeviceObject));
Info->Gesn.Supported = TRUE;
ClassSetDeviceParameter(FdoExtension,
CLASSP_REG_SUBKEY_NAME,
CLASSP_REG_MMC_DETECTION_VALUE_NAME,
ClassDetectionSupported);
return STATUS_SUCCESS;
}
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"Classpnp => GESN available but not enabled for fdo %p\n",
FdoExtension->DeviceObject));
goto ExitWithError;
// fall through...
ExitWithError:
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN,
"Classpnp => GESN support detection failed for fdo %p with status %08x\n",
FdoExtension->DeviceObject, status));
if (Info->Gesn.Mdl) {
IoFreeMdl(Info->Gesn.Mdl);
Info->Gesn.Mdl = NULL;
}
FREE_POOL(Info->Gesn.Buffer);
Info->Gesn.Supported = 0;
Info->Gesn.EventMask = 0;
Info->Gesn.BufferSize = 0;
return STATUS_NOT_SUPPORTED;
}
//
// Work item to set the hack flag in the registry to disable GESN
// on devices that sends too many events
//
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClasspDisableGesn(
IN PDEVICE_OBJECT Fdo,
IN PVOID Context
)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExtension = Fdo->DeviceExtension;
PIO_WORKITEM WorkItem = (PIO_WORKITEM)Context;
PAGED_CODE();
//
// Set the hack flag in the registry
//
ClassSetDeviceParameter(fdoExtension,
CLASSP_REG_SUBKEY_NAME,
CLASSP_REG_MMC_DETECTION_VALUE_NAME,
ClassDetectionUnsupported);
_Analysis_assume_(WorkItem != NULL);
IoFreeWorkItem(WorkItem);
}
/*++////////////////////////////////////////////////////////////////////////////
ClassInitializeTestUnitPolling()
Routine Description:
This routine will initialize MCN regardless of the settings stored
in the registry. This should be used with caution, as some devices
react badly to constant io. (i.e. never spin down, continuously cycling
media in changers, ejection of media, etc.) It is highly suggested to
use ClassInitializeMediaChangeDetection() instead.
Arguments:
FdoExtension is the device to poll
AllowDriveToSleep says whether to attempt to allow the drive to sleep
or not. This only affects system-known spin down states, so if a
drive spins itself down, this has no effect until the system spins
it down.
Return Value:
--*/
_IRQL_requires_max_(PASSIVE_LEVEL)
NTSTATUS
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassInitializeTestUnitPolling(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
_In_ BOOLEAN AllowDriveToSleep
)
{
return ClasspInitializePolling(FdoExtension, AllowDriveToSleep);
} // end ClassInitializeTestUnitPolling()
/*++////////////////////////////////////////////////////////////////////////////
ClassInitializeMediaChangeDetection()
Routine Description:
This routine checks to see if it is safe to initialize MCN (the back end
to autorun) for a given device. It will then check the device-type wide
key "Autorun" in the service key (for legacy reasons), and then look in
the device-specific key to potentially override that setting.
If MCN is to be enabled, all neccessary structures and memory are
allocated and initialized.
This routine MUST be called only from the ClassInit() callback.
Arguments:
FdoExtension - the device to initialize MCN for, if appropriate
EventPrefix - unused, legacy argument. Set to zero.
Return Value:
--*/
_IRQL_requires_max_(PASSIVE_LEVEL)
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassInitializeMediaChangeDetection(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
_In_ PUCHAR EventPrefix
)
{
PDEVICE_OBJECT fdo = FdoExtension->DeviceObject;
NTSTATUS status;
PCLASS_DRIVER_EXTENSION driverExtension = ClassGetDriverExtension(
fdo->DriverObject);
BOOLEAN disabledForBadHardware;
BOOLEAN disabled;
BOOLEAN instanceOverride;
UNREFERENCED_PARAMETER(EventPrefix);
PAGED_CODE();
//
// NOTE: This assumes that ClassInitializeMediaChangeDetection is always
// called in the context of the ClassInitDevice callback. If called
// after then this check will have already been made and the
// once a second timer will not have been enabled.
//
disabledForBadHardware = ClasspIsMediaChangeDisabledDueToHardwareLimitation(
FdoExtension,
&(driverExtension->RegistryPath)
);
if (disabledForBadHardware) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassInitializeMCN: Disabled due to hardware"
"limitations for this device"));
return;
}
//
// autorun should now be enabled by default for all media types.
//
disabled = ClasspIsMediaChangeDisabledForClass(
FdoExtension,
&(driverExtension->RegistryPath)
);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassInitializeMCN: Class MCN is %s\n",
(disabled ? "disabled" : "enabled")));
status = ClasspMediaChangeDeviceInstanceOverride(
FdoExtension,
&instanceOverride); // default value
if (!NT_SUCCESS(status)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassInitializeMCN: Instance using default\n"));
} else {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassInitializeMCN: Instance override: %s MCN\n",
(instanceOverride ? "Enabling" : "Disabling")));
disabled = !instanceOverride;
}
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassInitializeMCN: Instance MCN is %s\n",
(disabled ? "disabled" : "enabled")));
if (disabled) {
return;
}
//
// Do not allow drive to sleep for all types of devices initially.
// For non-cdrom devices, allow devices to go to sleep if it's
// unlikely a media change will occur (e.g. user not present).
//
ClasspInitializePolling(FdoExtension, FALSE);
return;
} // end ClassInitializeMediaChangeDetection()
/*++////////////////////////////////////////////////////////////////////////////
ClasspMediaChangeDeviceInstanceOverride()
Routine Description:
The user can override the global setting to enable or disable Autorun on a
specific cdrom device via the control panel. This routine checks and/or
sets this value.
Arguments:
FdoExtension - the device to set/get the value for
Value - the value to use in a set
SetValue - whether to set the value
Return Value:
TRUE - Autorun is disabled
FALSE - Autorun is not disabled (Default)
--*/
NTSTATUS
ClasspMediaChangeDeviceInstanceOverride(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
OUT PBOOLEAN Enabled
)
{
HANDLE deviceParameterHandle = NULL; // cdrom instance key
HANDLE driverParameterHandle = NULL; // cdrom specific key
RTL_QUERY_REGISTRY_TABLE queryTable[3];
OBJECT_ATTRIBUTES objectAttributes;
UNICODE_STRING subkeyName;
NTSTATUS status = STATUS_UNSUCCESSFUL;
ULONG alwaysEnable = FALSE;
ULONG alwaysDisable = FALSE;
ULONG i;
PAGED_CODE();
TRY {
status = IoOpenDeviceRegistryKey( FdoExtension->LowerPdo,
PLUGPLAY_REGKEY_DEVICE,
KEY_ALL_ACCESS,
&deviceParameterHandle
);
if (!NT_SUCCESS(status)) {
//
// this can occur when a new device is added to the system
// this is due to cdrom.sys being an 'essential' driver
//
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassMediaChangeDeviceInstanceDisabled: "
"Could not open device registry key [%lx]\n", status));
LEAVE;
}
RtlInitUnicodeString(&subkeyName, MCN_REG_SUBKEY_NAME);
InitializeObjectAttributes(&objectAttributes,
&subkeyName,
OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
deviceParameterHandle,
(PSECURITY_DESCRIPTOR) NULL);
status = ZwCreateKey(&driverParameterHandle,
KEY_READ,
&objectAttributes,
0,
(PUNICODE_STRING) NULL,
REG_OPTION_NON_VOLATILE,
NULL);
if (!NT_SUCCESS(status)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassMediaChangeDeviceInstanceDisabled: "
"subkey could not be created. %lx\n", status));
LEAVE;
}
//
// Default to not changing autorun behavior, based upon setting
// registryValue to zero.
//
for (i=0;i<2;i++) {
RtlZeroMemory(&queryTable[0], sizeof(queryTable));
queryTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT | RTL_QUERY_REGISTRY_TYPECHECK;
queryTable[0].DefaultType = (REG_DWORD << RTL_QUERY_REGISTRY_TYPECHECK_SHIFT) | REG_NONE;
queryTable[0].DefaultLength = 0;
if (i==0) {
queryTable[0].Name = MCN_REG_AUTORUN_DISABLE_INSTANCE_NAME;
queryTable[0].EntryContext = &alwaysDisable;
queryTable[0].DefaultData = &alwaysDisable;
} else {
queryTable[0].Name = MCN_REG_AUTORUN_ENABLE_INSTANCE_NAME;
queryTable[0].EntryContext = &alwaysEnable;
queryTable[0].DefaultData = &alwaysEnable;
}
//
// don't care if it succeeds, since we set defaults above
//
RtlQueryRegistryValues(RTL_REGISTRY_HANDLE,
(PWSTR)driverParameterHandle,
queryTable,
NULL,
NULL);
}
} FINALLY {
if (driverParameterHandle) ZwClose(driverParameterHandle);
if (deviceParameterHandle) ZwClose(deviceParameterHandle);
}
if (alwaysEnable && alwaysDisable) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassMediaChangeDeviceInstanceDisabled: %s selected\n",
"Both Enable and Disable set -- DISABLE"));
NT_ASSERT(NT_SUCCESS(status));
status = STATUS_SUCCESS;
*Enabled = FALSE;
} else if (alwaysDisable) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassMediaChangeDeviceInstanceDisabled: %s selected\n",
"DISABLE"));
NT_ASSERT(NT_SUCCESS(status));
status = STATUS_SUCCESS;
*Enabled = FALSE;
} else if (alwaysEnable) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassMediaChangeDeviceInstanceDisabled: %s selected\n",
"ENABLE"));
NT_ASSERT(NT_SUCCESS(status));
status = STATUS_SUCCESS;
*Enabled = TRUE;
} else {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassMediaChangeDeviceInstanceDisabled: %s selected\n",
"DEFAULT"));
status = STATUS_UNSUCCESSFUL;
}
return status;
} // end ClasspMediaChangeDeviceInstanceOverride()
/*++////////////////////////////////////////////////////////////////////////////
ClasspIsMediaChangeDisabledDueToHardwareLimitation()
Routine Description:
The key AutoRunAlwaysDisable contains a MULTI_SZ of hardware IDs for
which to never enable MediaChangeNotification.
The user can override the global setting to enable or disable Autorun on a
specific cdrom device via the control panel.
Arguments:
FdoExtension -
RegistryPath - pointer to the unicode string inside
...\CurrentControlSet\Services\Cdrom
Return Value:
TRUE - no autorun.
FALSE - Autorun may be enabled
--*/
BOOLEAN
ClasspIsMediaChangeDisabledDueToHardwareLimitation(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN PUNICODE_STRING RegistryPath
)
{
PSTORAGE_DEVICE_DESCRIPTOR deviceDescriptor = FdoExtension->DeviceDescriptor;
OBJECT_ATTRIBUTES objectAttributes = {0};
HANDLE serviceKey = NULL;
RTL_QUERY_REGISTRY_TABLE parameters[2] = {0};
UNICODE_STRING deviceUnicodeString;
ANSI_STRING deviceString;
ULONG mediaChangeNotificationDisabled = FALSE;
NTSTATUS status;
PAGED_CODE();
//
// open the service key.
//
InitializeObjectAttributes(&objectAttributes,
RegistryPath,
OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
NULL,
NULL);
status = ZwOpenKey(&serviceKey,
KEY_READ,
&objectAttributes);
NT_ASSERT(NT_SUCCESS(status));
if(!NT_SUCCESS(status)) {
//
// always take the safe path. if we can't open the service key,
// disable autorun
//
return TRUE;
}
TRY {
//
// Determine if drive is in a list of those requiring
// autorun to be disabled. this is stored in a REG_MULTI_SZ
// named AutoRunAlwaysDisable. this is required as some autochangers
// must load the disc to reply to ChkVerify request, causing them
// to cycle discs continuously.
//
PWSTR nullMultiSz;
PUCHAR vendorId;
PUCHAR productId;
PUCHAR revisionId;
ULONG length;
ULONG offset;
deviceString.Buffer = NULL;
deviceUnicodeString.Buffer = NULL;
//
// there may be nothing to check against
//
if ((deviceDescriptor->VendorIdOffset == 0) &&
(deviceDescriptor->ProductIdOffset == 0)) {
LEAVE;
}
length = 0;
if (deviceDescriptor->VendorIdOffset == 0) {
vendorId = NULL;
} else {
vendorId = (PUCHAR) deviceDescriptor + deviceDescriptor->VendorIdOffset;
length = (ULONG)strlen((PCSZ)vendorId);
}
if ( deviceDescriptor->ProductIdOffset == 0 ) {
productId = NULL;
} else {
productId = (PUCHAR)deviceDescriptor + deviceDescriptor->ProductIdOffset;
length += (ULONG)strlen((PCSZ)productId);
}
if ( deviceDescriptor->ProductRevisionOffset == 0 ) {
revisionId = NULL;
} else {
revisionId = (PUCHAR) deviceDescriptor + deviceDescriptor->ProductRevisionOffset;
length += (ULONG)strlen((PCSZ)revisionId);
}
//
// allocate a buffer for the string
//
deviceString.Length = (USHORT)( length );
deviceString.MaximumLength = deviceString.Length + 1;
deviceString.Buffer = (PCHAR)ExAllocatePoolWithTag( NonPagedPoolNx,
deviceString.MaximumLength,
CLASS_TAG_AUTORUN_DISABLE
);
if (deviceString.Buffer == NULL) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassMediaChangeDisabledForHardware: Unable to alloc "
"string buffer\n" ));
LEAVE;
}
//
// copy strings to the buffer
//
offset = 0;
if (vendorId != NULL) {
RtlCopyMemory(deviceString.Buffer + offset,
vendorId,
strlen((PCSZ)vendorId));
offset += (ULONG)strlen((PCSZ)vendorId);
}
if ( productId != NULL ) {
RtlCopyMemory(deviceString.Buffer + offset,
productId,
strlen((PCSZ)productId));
offset += (ULONG)strlen((PCSZ)productId);
}
if ( revisionId != NULL ) {
RtlCopyMemory(deviceString.Buffer + offset,
revisionId,
strlen((PCSZ)revisionId));
offset += (ULONG)strlen((PCSZ)revisionId);
}
NT_ASSERT(offset == deviceString.Length);
#ifdef _MSC_VER
#pragma warning(suppress:6386) // Not an issue as deviceString.Buffer is of size deviceString.MaximumLength, which is equal to (deviceString.Length + 1)
#endif
deviceString.Buffer[deviceString.Length] = '\0'; // Null-terminated
//
// convert to unicode as registry deals with unicode strings
//
status = RtlAnsiStringToUnicodeString( &deviceUnicodeString,
&deviceString,
TRUE
);
if (!NT_SUCCESS(status)) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassMediaChangeDisabledForHardware: cannot convert "
"to unicode %lx\n", status));
LEAVE;
}
//
// query the value, setting valueFound to true if found
//
nullMultiSz = L"\0";
parameters[0].QueryRoutine = ClasspMediaChangeRegistryCallBack;
parameters[0].Flags = RTL_QUERY_REGISTRY_REQUIRED;
parameters[0].Name = L"AutoRunAlwaysDisable";
parameters[0].EntryContext = &mediaChangeNotificationDisabled;
parameters[0].DefaultType = REG_MULTI_SZ;
parameters[0].DefaultData = nullMultiSz;
parameters[0].DefaultLength = 0;
status = RtlQueryRegistryValues(RTL_REGISTRY_HANDLE,
serviceKey,
parameters,
&deviceUnicodeString,
NULL);
if ( !NT_SUCCESS(status) ) {
LEAVE;
}
} FINALLY {
FREE_POOL( deviceString.Buffer );
if (deviceUnicodeString.Buffer != NULL) {
RtlFreeUnicodeString( &deviceUnicodeString );
}
ZwClose(serviceKey);
}
if (mediaChangeNotificationDisabled) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClassMediaChangeDisabledForHardware: "
"Device is on disable list\n"));
return TRUE;
}
return FALSE;
} // end ClasspIsMediaChangeDisabledDueToHardwareLimitation()
/*++////////////////////////////////////////////////////////////////////////////
ClasspIsMediaChangeDisabledForClass()
Routine Description:
The user must specify that AutoPlay is to run on the platform
by setting the registry value HKEY_LOCAL_MACHINE\System\CurrentControlSet\
Services\<SERVICE>\Autorun:REG_DWORD:1.
The user can override the global setting to enable or disable Autorun on a
specific cdrom device via the control panel.
Arguments:
FdoExtension -
RegistryPath - pointer to the unicode string inside
...\CurrentControlSet\Services\Cdrom
Return Value:
TRUE - Autorun is disabled for this class
FALSE - Autorun is enabled for this class
--*/
BOOLEAN
ClasspIsMediaChangeDisabledForClass(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN PUNICODE_STRING RegistryPath
)
{
OBJECT_ATTRIBUTES objectAttributes = {0};
HANDLE serviceKey = NULL;
HANDLE parametersKey = NULL;
RTL_QUERY_REGISTRY_TABLE parameters[3] = {0};
UNICODE_STRING paramStr;
//
// Default to ENABLING MediaChangeNotification (!)
//
ULONG mcnRegistryValue = 1;
NTSTATUS status;
PAGED_CODE();
//
// open the service key.
//
InitializeObjectAttributes(&objectAttributes,
RegistryPath,
OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
NULL,
NULL);
status = ZwOpenKey(&serviceKey,
KEY_READ,
&objectAttributes);
NT_ASSERT(NT_SUCCESS(status));
if(!NT_SUCCESS(status)) {
//
// return the default value, which is the
// inverse of the registry setting default
// since this routine asks if it's disabled
//
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClassCheckServiceMCN: Defaulting to %s\n",
(mcnRegistryValue ? "Enabled" : "Disabled")));
return (BOOLEAN)(!mcnRegistryValue);
}
//
// Open the parameters key (if any) beneath the services key.
//
RtlInitUnicodeString(&paramStr, L"Parameters");
InitializeObjectAttributes(&objectAttributes,
&paramStr,
OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
serviceKey,
NULL);
status = ZwOpenKey(&parametersKey,
KEY_READ,
&objectAttributes);
if (!NT_SUCCESS(status)) {
parametersKey = NULL;
}
//
// Check for the Autorun value.
//
parameters[0].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[0].Name = L"Autorun";
parameters[0].EntryContext = &mcnRegistryValue;
parameters[0].DefaultType = (REG_DWORD << RTL_QUERY_REGISTRY_TYPECHECK_SHIFT) | REG_DWORD;
parameters[0].DefaultData = &mcnRegistryValue;
parameters[0].DefaultLength = sizeof(ULONG);
// ignore failures
RtlQueryRegistryValues(RTL_REGISTRY_HANDLE | RTL_REGISTRY_OPTIONAL,
serviceKey,
parameters,
NULL,
NULL);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClassCheckServiceMCN: "
"<Service>/Autorun flag = %d\n", mcnRegistryValue));
if(parametersKey != NULL) {
// ignore failures
RtlQueryRegistryValues(RTL_REGISTRY_HANDLE | RTL_REGISTRY_OPTIONAL,
parametersKey,
parameters,
NULL,
NULL);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClassCheckServiceMCN: "
"<Service>/Parameters/Autorun flag = %d\n",
mcnRegistryValue));
ZwClose(parametersKey);
}
ZwClose(serviceKey);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClassCheckServiceMCN: "
"Autoplay for device %p is %s\n",
FdoExtension->DeviceObject,
(mcnRegistryValue ? "on" : "off")
));
//
// return if it is _disabled_, which is the
// inverse of the registry setting
//
return (BOOLEAN)(!mcnRegistryValue);
} // end ClasspIsMediaChangeDisabledForClass()
/*++////////////////////////////////////////////////////////////////////////////
ClassEnableMediaChangeDetection() ISSUE-2000/02/20-henrygab - why public?
ClassEnableMediaChangeDetection() ISSUE-2000/02/20-henrygab - not documented
Routine Description:
This routine
Arguments:
DeviceObject -
Irp -
Return Value:
--*/
_IRQL_requires_max_(PASSIVE_LEVEL)
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassEnableMediaChangeDetection(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
{
PMEDIA_CHANGE_DETECTION_INFO info = FdoExtension->MediaChangeDetectionInfo;
LONG oldCount;
PAGED_CODE();
if(info == NULL) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN,
"ClassEnableMediaChangeDetection: not initialized\n"));
return;
}
(VOID)KeWaitForMutexObject(&info->MediaChangeMutex,
UserRequest,
KernelMode,
FALSE,
NULL);
oldCount = --info->MediaChangeDetectionDisableCount;
NT_ASSERT(oldCount >= 0);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClassEnableMediaChangeDetection: Disable count "
"reduced to %d - ",
info->MediaChangeDetectionDisableCount));
if(oldCount == 0) {
//
// We don't know what state the media is in anymore.
//
ClasspInternalSetMediaChangeState(FdoExtension,
MediaUnknown,
FALSE
);
//
// Reset the MCN timer.
//
ClassResetMediaChangeTimer(FdoExtension);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "MCD is enabled\n"));
} else {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "MCD still disabled\n"));
}
//
// Let something else run.
//
KeReleaseMutex(&info->MediaChangeMutex, FALSE);
return;
} // end ClassEnableMediaChangeDetection()
/*++////////////////////////////////////////////////////////////////////////////
ClassDisableMediaChangeDetection() ISSUE-2000/02/20-henrygab - why public?
ClassDisableMediaChangeDetection() ISSUE-2000/02/20-henrygab - not documented
Routine Description:
This routine
Arguments:
DeviceObject -
Irp -
Return Value:
--*/
ULONG BreakOnMcnDisable = FALSE;
_IRQL_requires_max_(PASSIVE_LEVEL)
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassDisableMediaChangeDetection(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
{
PMEDIA_CHANGE_DETECTION_INFO info = FdoExtension->MediaChangeDetectionInfo;
PAGED_CODE();
if(info == NULL) {
return;
}
(VOID)KeWaitForMutexObject(&info->MediaChangeMutex,
UserRequest,
KernelMode,
FALSE,
NULL);
info->MediaChangeDetectionDisableCount++;
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClassDisableMediaChangeDetection: "
"disable count is %d\n",
info->MediaChangeDetectionDisableCount));
KeReleaseMutex(&info->MediaChangeMutex, FALSE);
return;
} // end ClassDisableMediaChangeDetection()
/*++////////////////////////////////////////////////////////////////////////////
ClassCleanupMediaChangeDetection() ISSUE-2000/02/20-henrygab - why public?!
Routine Description:
This routine will cleanup any resources allocated for MCN. It is called
by classpnp during remove device, and therefore is not typically required
by external drivers.
Arguments:
Return Value:
--*/
_IRQL_requires_max_(PASSIVE_LEVEL)
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassCleanupMediaChangeDetection(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
{
PMEDIA_CHANGE_DETECTION_INFO info = FdoExtension->MediaChangeDetectionInfo;
PAGED_CODE()
if(info == NULL) {
return;
}
FdoExtension->MediaChangeDetectionInfo = NULL;
if (info->Gesn.Mdl) {
IoFreeMdl(info->Gesn.Mdl);
}
FREE_POOL(info->Gesn.Buffer);
IoFreeIrp(info->MediaChangeIrp);
FREE_POOL(info->SenseBuffer);
FREE_POOL(info);
return;
} // end ClassCleanupMediaChangeDetection()
/*++////////////////////////////////////////////////////////////////////////////
ClasspMcnControl() - ISSUE-2000/02/20-henrygab - not documented
Routine Description:
This routine
Arguments:
DeviceObject -
Irp -
Return Value:
--*/
NTSTATUS
ClasspMcnControl(
IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN PIRP Irp,
IN PSCSI_REQUEST_BLOCK Srb
)
{
PCOMMON_DEVICE_EXTENSION commonExtension =
(PCOMMON_DEVICE_EXTENSION) FdoExtension;
PIO_STACK_LOCATION irpStack = IoGetCurrentIrpStackLocation(Irp);
PPREVENT_MEDIA_REMOVAL request = Irp->AssociatedIrp.SystemBuffer;
PFILE_OBJECT fileObject = irpStack->FileObject;
PFILE_OBJECT_EXTENSION fsContext = NULL;
NTSTATUS status = STATUS_SUCCESS;
PAGED_CODE();
//
// Check to make sure we have a file object extension to keep track of this
// request. If not we'll fail it before synchronizing.
//
TRY {
if(fileObject != NULL) {
fsContext = ClassGetFsContext(commonExtension, fileObject);
}else if(Irp->RequestorMode == KernelMode) { // && fileObject == NULL
fsContext = &FdoExtension->KernelModeMcnContext;
}
if (fsContext == NULL) {
//
// This handle isn't setup correctly. We can't let the
// operation go.
//
status = STATUS_INVALID_PARAMETER;
LEAVE;
}
if(request->PreventMediaRemoval) {
//
// This is a lock command. Reissue the command in case bus or
// device was reset and the lock was cleared.
//
ClassDisableMediaChangeDetection(FdoExtension);
InterlockedIncrement((volatile LONG *)&(fsContext->McnDisableCount));
} else {
if(fsContext->McnDisableCount == 0) {
status = STATUS_INVALID_DEVICE_STATE;
LEAVE;
}
InterlockedDecrement((volatile LONG *)&(fsContext->McnDisableCount));
ClassEnableMediaChangeDetection(FdoExtension);
}
} FINALLY {
Irp->IoStatus.Status = status;
FREE_POOL(Srb);
ClassReleaseRemoveLock(FdoExtension->DeviceObject, Irp);
ClassCompleteRequest(FdoExtension->DeviceObject,
Irp,
IO_NO_INCREMENT);
}
return status;
} // end ClasspMcnControl(
/*++////////////////////////////////////////////////////////////////////////////
ClasspMediaChangeRegistryCallBack()
Routine Description:
This callback for a registry SZ or MULTI_SZ is called once for each
SZ in the value. It will attempt to match the data with the
UNICODE_STRING passed in as Context, and modify EntryContext if a
match is found. Written for ClasspCheckRegistryForMediaChangeCompletion
Arguments:
ValueName - name of the key that was opened
ValueType - type of data stored in the value (REG_SZ for this routine)
ValueData - data in the registry, in this case a wide string
ValueLength - length of the data including the terminating null
Context - unicode string to compare against ValueData
EntryContext - should be initialized to 0, will be set to 1 if match found
Return Value:
STATUS_SUCCESS
EntryContext will be 1 if found
--*/
_Function_class_(RTL_QUERY_REGISTRY_ROUTINE)
_IRQL_requires_max_(PASSIVE_LEVEL)
_IRQL_requires_same_
NTSTATUS
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClasspMediaChangeRegistryCallBack(
_In_z_ PWSTR ValueName,
_In_ ULONG ValueType,
_In_reads_bytes_opt_(ValueLength) PVOID ValueData,
_In_ ULONG ValueLength,
_In_opt_ PVOID Context,
_In_opt_ PVOID EntryContext
)
{
PULONG valueFound;
PUNICODE_STRING deviceString;
PWSTR keyValue;
PAGED_CODE();
UNREFERENCED_PARAMETER(ValueName);
if (ValueData == NULL ||
Context == NULL ||
EntryContext == NULL) {
return STATUS_INVALID_PARAMETER;
}
//
// if we have already set the value to true, exit
//
valueFound = EntryContext;
if ((*valueFound) != 0) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspMcnRegCB: already set to true\n"));
return STATUS_SUCCESS;
}
if (ValueLength == sizeof(WCHAR)) {
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN, "ClasspMcnRegCB: NULL string should "
"never be passed to registry call-back!\n"));
return STATUS_SUCCESS;
}
//
// if the data is not a terminated string, exit
//
if (ValueType != REG_SZ) {
return STATUS_SUCCESS;
}
deviceString = Context;
keyValue = ValueData;
ValueLength -= sizeof(WCHAR); // ignore the null character
//
// do not compare more memory than is in deviceString
//
if (ValueLength > deviceString->Length) {
ValueLength = deviceString->Length;
}
//
// if the strings match, disable autorun
//
if (RtlCompareMemory(deviceString->Buffer, keyValue, ValueLength) == ValueLength) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspRegMcnCB: Match found\n"));
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspRegMcnCB: DeviceString at %p\n",
deviceString->Buffer));
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspRegMcnCB: KeyValue at %p\n",
keyValue));
(*valueFound) = TRUE;
}
return STATUS_SUCCESS;
} // end ClasspMediaChangeRegistryCallBack()
#if (NTDDI_VERSION >= NTDDI_WINBLUE)
VOID
ClasspTimerTickEx(
_In_ PEX_TIMER Timer,
_In_opt_ PVOID Context
)
{
KDPC dummyDpc = { 0 };
UNREFERENCED_PARAMETER(Timer);
//
// This is just a wrapper around ClasspTimerTick that allows us to make
// the TickTimer a no-wake EX_TIMER.
// We pass in a dummy DPC b/c ClasspTimerTick expects a non-NULL parameter
// for the DPC. However, ClasspTimerTick does not actually reference it.
//
ClasspTimerTick(&dummyDpc, Context, NULL, NULL);
}
#endif
/*++////////////////////////////////////////////////////////////////////////////
ClasspTimerTick() - ISSUE-2000/02/20-henrygab - not documented
Routine Description:
This routine
Arguments:
DeviceObject -
Irp -
Return Value:
--*/
_Function_class_(KDEFERRED_ROUTINE)
_IRQL_requires_max_(DISPATCH_LEVEL)
_IRQL_requires_min_(DISPATCH_LEVEL)
_IRQL_requires_(DISPATCH_LEVEL)
_IRQL_requires_same_
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClasspTimerTick(
_In_ PKDPC Dpc,
_In_opt_ PVOID DeferredContext,
_In_opt_ PVOID SystemArgument1,
_In_opt_ PVOID SystemArgument2
)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExtension = DeferredContext;
PCOMMON_DEVICE_EXTENSION commonExtension;
PDEVICE_OBJECT DeviceObject;
ULONG isRemoved;
UNREFERENCED_PARAMETER(Dpc);
UNREFERENCED_PARAMETER(SystemArgument1);
UNREFERENCED_PARAMETER(SystemArgument2);
NT_ASSERT(fdoExtension != NULL);
_Analysis_assume_(fdoExtension != NULL);
commonExtension = &fdoExtension->CommonExtension;
DeviceObject = fdoExtension->DeviceObject;
NT_ASSERT(commonExtension->IsFdo);
//
// Do any media change work
//
#ifdef _MSC_VER
#pragma warning(suppress:4054) // okay to type cast function pointer to PIRP for this use case
#endif
isRemoved = ClassAcquireRemoveLock(DeviceObject, (PIRP)ClasspTimerTick);
//
// We stop the timer before deleting the device. It's safe to keep going
// if the flag value is REMOVE_PENDING because the removal thread will be
// blocked trying to stop the timer.
//
NT_ASSERT(isRemoved != REMOVE_COMPLETE);
//
// This routine is reasonably safe even if the device object has a pending
// remove
if (!isRemoved) {
PFAILURE_PREDICTION_INFO info = fdoExtension->FailurePredictionInfo;
//
// Do any media change detection work
//
if ((fdoExtension->MediaChangeDetectionInfo != NULL) &&
(fdoExtension->FunctionSupportInfo->AsynchronousNotificationSupported == FALSE)) {
ClassCheckMediaState(fdoExtension);
}
//
// Do any failure prediction work
//
if ((info != NULL) && (info->Method != FailurePredictionNone)) {
ULONG countDown;
if (ClasspCanSendPollingIrp(fdoExtension)) {
//
// Synchronization is not required here since the Interlocked
// locked instruction guarantees atomicity. Other code that
// resets CountDown uses InterlockedExchange which is also
// atomic.
//
countDown = InterlockedDecrement((volatile LONG *)&info->CountDown);
if (countDown == 0) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspTimerTick: Send FP irp for %p\n",
DeviceObject));
if(info->WorkQueueItem == NULL) {
info->WorkQueueItem =
IoAllocateWorkItem(fdoExtension->DeviceObject);
if(info->WorkQueueItem == NULL) {
//
// Set the countdown to one minute in the future.
// we'll try again then in the hopes there's more
// free memory.
//
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN, "ClassTimerTick: Couldn't allocate "
"item - try again in one minute\n"));
InterlockedExchange((volatile LONG *)&info->CountDown, 60);
} else {
//
// Grab the remove lock so that removal will block
// until the work item is done.
//
ClassAcquireRemoveLock(fdoExtension->DeviceObject,
info->WorkQueueItem);
IoQueueWorkItem(info->WorkQueueItem,
ClasspFailurePredict,
DelayedWorkQueue,
info);
}
} else {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspTimerTick: Failure "
"Prediction work item is "
"already active for device %p\n",
DeviceObject));
}
} // end (countdown == 0)
} else {
//
// If device is sleeping then just rearm polling timer
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClassTimerTick, SHHHH!!! device is %p is sleeping\n",
DeviceObject));
}
} // end failure prediction polling
//
// Give driver a chance to do its own specific work
//
if (commonExtension->DriverExtension->InitData.ClassTick != NULL) {
commonExtension->DriverExtension->InitData.ClassTick(DeviceObject);
} // end device specific tick handler
} // end check for removed
#ifdef _MSC_VER
#pragma warning(suppress:4054) // okay to type cast function pointer to PIRP for this use case
#endif
ClassReleaseRemoveLock(DeviceObject, (PIRP)ClasspTimerTick);
} // end ClasspTimerTick()
#if (NTDDI_VERSION >= NTDDI_WINBLUE)
BOOLEAN
ClasspUpdateTimerNoWakeTolerance(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
/*
Routine Description:
Updates the no-wake timer's tolerance based on system state.
If the timer is not allocated, initialized, or enabled then this function
does nothing.
If the timer is enabled but the no-wake tolerance has *not* changed from
its previous value then this function does nothing.
If the timer is enabled and the no-wake tolerance has changed from its
previous value then this function *will* set/reset the tick timer.
Arguments:
FdoExtension for the device that has the timer whose tolerance needs updating.
Returns:
TRUE if the timer was set/reset.
FALSE if the timer was not set/reset.
*/
{
PCLASS_PRIVATE_FDO_DATA fdoData = NULL;
if (FdoExtension->CommonExtension.IsFdo) {
fdoData = FdoExtension->PrivateFdoData;
}
if (fdoData != NULL &&
fdoData->TickTimer != NULL &&
fdoData->TimerInitialized &&
fdoData->TickTimerEnabled) {
LONGLONG noWakeTolerance = TICK_TIMER_DELAY_IN_MSEC * (10 * 1000);
//
// Set the no-wake tolerance to "unlimited" if the conditions below
// are met. An "unlimited" no-wake tolerance means that the timer
// will *never* wake the processor if the processor is in a
// low-power state.
// 1. The screen is off.
// 2. The class driver is *not* a consumer of the tick timer (ClassTick is NULL).
// 3. This is a disk device.
// Otherwise the tolerance is set to the normal, default tolerable delay.
//
if (ClasspScreenOff &&
FdoExtension->CommonExtension.DriverExtension->InitData.ClassTick == NULL &&
FdoExtension->DeviceObject->DeviceType == FILE_DEVICE_DISK) {
noWakeTolerance = EX_TIMER_UNLIMITED_TOLERANCE;
}
//
// The new tolerance is different from the current tolerance so we need
// to set/reset the timer with the new tolerance value.
//
if (fdoData->CurrentNoWakeTolerance != noWakeTolerance) {
EXT_SET_PARAMETERS parameters;
LONGLONG period = TICK_TIMER_PERIOD_IN_MSEC * (10 * 1000); // Convert to units of 100ns.
LONGLONG dueTime = period * (-1); // Negative sign indicates dueTime is relative.
ExInitializeSetTimerParameters(&parameters);
parameters.NoWakeTolerance = noWakeTolerance;
fdoData->CurrentNoWakeTolerance = noWakeTolerance;
ExSetTimer(fdoData->TickTimer,
dueTime,
period,
&parameters);
return TRUE;
}
}
return FALSE;
}
#endif
NTSTATUS
ClasspInitializeTimer(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
/*
Routine Description:
This routine will attempt to initialize the tick timer.
The caller should call ClasspEnableTmer() to actually start the timer.
If the caller just needs to check if the timer is initialized, the caller
should simply check FdoExtension->PrivateFdoData->TimerInitialized rather
than call this function.
The caller should subsequently call ClasspDeleteTimer() when they are done
with the timer.
Arguments:
FdoExtension
Return Value:
STATUS_SUCCESS if the timer is initialized (the timer may already have been
initialized by a previous call).
A non-success status if the timer is not initialized.
*/
{
PCLASS_PRIVATE_FDO_DATA fdoData = NULL;
if (FdoExtension->CommonExtension.IsFdo) {
fdoData = FdoExtension->PrivateFdoData;
}
if (fdoData == NULL) {
return STATUS_UNSUCCESSFUL;
}
if (fdoData->TimerInitialized == FALSE) {
#if (NTDDI_VERSION >= NTDDI_WINBLUE)
NT_ASSERT(fdoData->TickTimer == NULL);
//
// The tick timer is a no-wake timer, which means it will not wake
// the processor while the processor is in a low power state until
// the timer's no-wake tolerance is reached.
//
fdoData->TickTimer = ExAllocateTimer(ClasspTimerTickEx, FdoExtension, EX_TIMER_NO_WAKE);
if (fdoData->TickTimer == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
#else
KeInitializeDpc(&fdoData->TickTimerDpc, ClasspTimerTick, FdoExtension);
KeInitializeTimer(&fdoData->TickTimer);
#endif
fdoData->TimerInitialized = TRUE;
}
return STATUS_SUCCESS;
}
VOID
ClasspDeleteTimer(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
/*
Routine Description:
This routine will attempt to de-initialize and free the tick timer.
This routine should only be called after a successful call to
ClasspInitializeTimer().
Arguments:
FdoExtension
Return Value:
None.
*/
{
PCLASS_PRIVATE_FDO_DATA fdoData = NULL;
if (FdoExtension->CommonExtension.IsFdo) {
fdoData = FdoExtension->PrivateFdoData;
if (fdoData != NULL) {
#if (NTDDI_VERSION >= NTDDI_WINBLUE)
if (fdoData->TickTimer != NULL) {
EXT_DELETE_PARAMETERS parameters;
ExInitializeDeleteTimerParameters(&parameters);
ExDeleteTimer(fdoData->TickTimer, TRUE, FALSE, &parameters);
fdoData->TickTimer = NULL;
}
#endif
fdoData->TimerInitialized = FALSE;
fdoData->TickTimerEnabled = FALSE;
}
}
}
/*++////////////////////////////////////////////////////////////////////////////
ClasspEnableTimer() - ISSUE-2000/02/20-henrygab - not documented
Routine Description:
This routine will enable the tick timer. ClasspInitializeTimer() should
first be called to initialize the timer. Use ClasspDisableTimer() to
disable the timer and then call this function to re-enable it.
Arguments:
FdoExtension
Return Value:
None.
--*/
VOID
ClasspEnableTimer(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
{
PCLASS_PRIVATE_FDO_DATA fdoData = NULL;
if (FdoExtension->CommonExtension.IsFdo) {
fdoData = FdoExtension->PrivateFdoData;
}
if (fdoData != NULL) {
//
// The timer should have already been initialized, but if that's not
// the case it's not the end of the world. We can attempt to
// initialize it now.
//
NT_ASSERT(fdoData->TimerInitialized);
if (fdoData->TimerInitialized == FALSE) {
NTSTATUS status;
status = ClasspInitializeTimer(FdoExtension);
if (NT_SUCCESS(status) == FALSE) {
return;
}
}
#if (NTDDI_VERSION >= NTDDI_WINBLUE)
if (fdoData->TickTimer != NULL) {
EXT_SET_PARAMETERS parameters;
LONGLONG period = TICK_TIMER_PERIOD_IN_MSEC * (10 * 1000); // Convert to units of 100ns.
LONGLONG dueTime = period * (-1); // Negative sign indicates dueTime is relative.
ExInitializeSetTimerParameters(&parameters);
//
// Set the no-wake tolerance to "unlimited" if the conditions below
// are met. An "unlimited" no-wake tolerance means that the timer
// will *never* wake the processor if the processor is in a
// low-power state.
// 1. The screen is off.
// 2. The class driver is *not* a consumer of the tick timer (ClassTick is NULL).
// 3. This is a disk device.
// Otherwise the tolerance is set to the normal tolerable delay.
//
if (ClasspScreenOff &&
FdoExtension->CommonExtension.DriverExtension->InitData.ClassTick == NULL &&
FdoExtension->DeviceObject->DeviceType == FILE_DEVICE_DISK) {
parameters.NoWakeTolerance = EX_TIMER_UNLIMITED_TOLERANCE;
} else {
parameters.NoWakeTolerance = TICK_TIMER_DELAY_IN_MSEC * (10 * 1000);
}
fdoData->CurrentNoWakeTolerance = parameters.NoWakeTolerance;
ExSetTimer(fdoData->TickTimer,
dueTime,
period,
&parameters);
fdoData->TickTimerEnabled = TRUE;
} else {
NT_ASSERT(fdoData->TickTimer != NULL);
}
#else
//
// Start the periodic tick timer using a coalescable timer with some delay
//
{
LARGE_INTEGER timeout;
timeout.QuadPart = TICK_TIMER_PERIOD_IN_MSEC * (10 * 1000) * (-1);
KeSetCoalescableTimer(&fdoData->TickTimer,
timeout, TICK_TIMER_PERIOD_IN_MSEC, TICK_TIMER_DELAY_IN_MSEC,
&fdoData->TickTimerDpc);
fdoData->TickTimerEnabled = TRUE;
}
#endif
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspEnableTimer: Periodic tick timer enabled "
"for device %p\n", FdoExtension->DeviceObject));
}
} // end ClasspEnableTimer()
/*++////////////////////////////////////////////////////////////////////////////
ClasspDisableTimer() - ISSUE-2000/02/20-henrygab - not documented
Routine Description:
This routine
Arguments:
FdoExtension
Return Value:
--*/
VOID
ClasspDisableTimer(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
{
PCLASS_PRIVATE_FDO_DATA fdoData = NULL;
if (FdoExtension->CommonExtension.IsFdo) {
fdoData = FdoExtension->PrivateFdoData;
}
if (fdoData && fdoData->TimerInitialized == TRUE) {
//
// we are only going to stop the actual timer in remove device routine
// or when done transitioning to D3 (timer will be started again when
// done transitioning to D0).
//
// it is the responsibility of the code within the timer routine to
// check if the device is removed and not processing io for the final
// call.
// this keeps the code clean and prevents lots of bugs.
//
#if (NTDDI_VERSION >= NTDDI_WINBLUE)
NT_ASSERT(fdoData->TickTimer != NULL);
ExCancelTimer(fdoData->TickTimer, NULL);
#else
KeCancelTimer(&fdoData->TickTimer);
#endif
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_MCN, "ClasspDisableTimer: Periodic tick timer disabled "
"for device %p\n", FdoExtension->DeviceObject));
fdoData->TickTimerEnabled = FALSE;
} else {
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_MCN, "ClasspDisableTimer: Timer never initialized\n"));
}
return;
} // end ClasspDisableTimer()
/*++////////////////////////////////////////////////////////////////////////////
ClasspFailurePredict() - ISSUE-2000/02/20-henrygab - not documented
Routine Description:
This routine
Arguments:
DeviceObject - Device object
Context - Context (PFAILURE_PREDICTION_INFO)
Return Value:
Note: this function can be called (via the workitem callback) after the paging device is shut down,
so it must be PAGE LOCKED.
--*/
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClasspFailurePredict(
IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExtension = DeviceObject->DeviceExtension;
PIO_WORKITEM workItem;
STORAGE_PREDICT_FAILURE checkFailure = {0};
SCSI_ADDRESS scsiAddress = {0};
PFAILURE_PREDICTION_INFO Info = (PFAILURE_PREDICTION_INFO)Context;
NTSTATUS status;
if (Info == NULL) {
NT_ASSERT(Info != NULL);
return;
}
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_WMI, "ClasspFailurePredict: Polling for failure\n"));
//
// Mark the work item as inactive and reset the countdown timer. we
// can't risk freeing the work item until we've released the remove-lock
// though - if we do it might get reused as a tag before we can release
// the lock.
//
InterlockedExchange((volatile LONG *)&Info->CountDown, Info->Period);
workItem = InterlockedExchangePointer((volatile PVOID *)&(Info->WorkQueueItem), NULL);
if (ClasspCanSendPollingIrp(fdoExtension)) {
KEVENT event;
PDEVICE_OBJECT topOfStack;
PIRP irp = NULL;
IO_STATUS_BLOCK ioStatus;
NTSTATUS activateStatus = STATUS_UNSUCCESSFUL;
//
// Take an active reference on the device to ensure it is powered up
// while we do the failure prediction query.
//
if (fdoExtension->FunctionSupportInfo->IdlePower.IdlePowerEnabled) {
activateStatus = ClasspPowerActivateDevice(DeviceObject);
}
KeInitializeEvent(&event, SynchronizationEvent, FALSE);
topOfStack = IoGetAttachedDeviceReference(DeviceObject);
//
// Send down irp to see if drive is predicting failure
//
irp = IoBuildDeviceIoControlRequest(
IOCTL_STORAGE_PREDICT_FAILURE,
topOfStack,
NULL,
0,
&checkFailure,
sizeof(STORAGE_PREDICT_FAILURE),
FALSE,
&event,
&ioStatus);
if (irp != NULL) {
status = IoCallDriver(topOfStack, irp);
if (status == STATUS_PENDING) {
(VOID)KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);
status = ioStatus.Status;
}
} else {
status = STATUS_INSUFFICIENT_RESOURCES;
}
if (NT_SUCCESS(status) && (checkFailure.PredictFailure)) {
checkFailure.PredictFailure = 512;
//
// Send down irp to get scsi address
//
KeInitializeEvent(&event, SynchronizationEvent, FALSE);
RtlZeroMemory(&scsiAddress, sizeof(SCSI_ADDRESS));
irp = IoBuildDeviceIoControlRequest(
IOCTL_SCSI_GET_ADDRESS,
topOfStack,
NULL,
0,
&scsiAddress,
sizeof(SCSI_ADDRESS),
FALSE,
&event,
&ioStatus);
if (irp != NULL) {
status = IoCallDriver(topOfStack, irp);
if (status == STATUS_PENDING) {
(VOID)KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);
}
}
ClassNotifyFailurePredicted(fdoExtension,
(PUCHAR)&checkFailure,
sizeof(checkFailure),
(BOOLEAN)(fdoExtension->FailurePredicted == FALSE),
2,
scsiAddress.PathId,
scsiAddress.TargetId,
scsiAddress.Lun);
fdoExtension->FailurePredicted = TRUE;
}
ObDereferenceObject(topOfStack);
//
// Update the failure prediction query time and release the active
// reference.
//
KeQuerySystemTime(&(Info->LastFailurePredictionQueryTime));
if (NT_SUCCESS(activateStatus)) {
ClasspPowerIdleDevice(DeviceObject);
}
}
ClassReleaseRemoveLock(DeviceObject, (PIRP) workItem);
IoFreeWorkItem(workItem);
return;
} // end ClasspFailurePredict()
/*++////////////////////////////////////////////////////////////////////////////
ClassNotifyFailurePredicted() ISSUE-alanwar-2000/02/20 - not documented
Routine Description:
Arguments:
Return Value:
--*/
_IRQL_requires_max_(DISPATCH_LEVEL)
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassNotifyFailurePredicted(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
_In_reads_bytes_(BufferSize) PUCHAR Buffer,
_In_ ULONG BufferSize,
_In_ BOOLEAN LogError,
_In_ ULONG UniqueErrorValue,
_In_ UCHAR PathId,
_In_ UCHAR TargetId,
_In_ UCHAR Lun
)
{
PIO_ERROR_LOG_PACKET logEntry;
EVENT_DESCRIPTOR eventDescriptor;
PCLASS_DRIVER_EXTENSION driverExtension;
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_WMI, "ClasspFailurePredictPollCompletion: Failure predicted for device %p\n", FdoExtension->DeviceObject));
//
// Fire off a WMI event
//
ClassWmiFireEvent(FdoExtension->DeviceObject,
(LPGUID)&StoragePredictFailureEventGuid,
0,
BufferSize,
Buffer);
//
// Log an error into the eventlog
//
if (LogError)
{
logEntry = IoAllocateErrorLogEntry(
FdoExtension->DeviceObject,
sizeof(IO_ERROR_LOG_PACKET) + (3 * sizeof(ULONG)));
if (logEntry != NULL)
{
logEntry->FinalStatus = STATUS_SUCCESS;
logEntry->ErrorCode = IO_WRN_FAILURE_PREDICTED;
logEntry->SequenceNumber = 0;
logEntry->MajorFunctionCode = IRP_MJ_DEVICE_CONTROL;
logEntry->IoControlCode = IOCTL_STORAGE_PREDICT_FAILURE;
logEntry->RetryCount = 0;
logEntry->UniqueErrorValue = UniqueErrorValue;
logEntry->DumpDataSize = 3;
logEntry->DumpData[0] = PathId;
logEntry->DumpData[1] = TargetId;
logEntry->DumpData[2] = Lun;
//
// Write the error log packet.
//
IoWriteErrorLogEntry(logEntry);
}
}
//
// Send ETW event if LogError is TRUE. ClassInterpretSenseInfo sets this
// to FALSE. So if failure is predicted for the first time and UniqueErrorValue
// is 4 (used by ClassInterpretSenseInfo) then send ETW event.
//
if ((LogError == TRUE) ||
((FdoExtension->FailurePredicted == FALSE) && (UniqueErrorValue == 4))) {
#ifdef _MSC_VER
#pragma warning(suppress:4054) // okay to type cast function pointer as data pointer for this use case
#endif
driverExtension = IoGetDriverObjectExtension(FdoExtension->DeviceObject->DriverObject, CLASS_DRIVER_EXTENSION_KEY);
if ((driverExtension != NULL) && (driverExtension->EtwHandle != 0)) {
EventDescCreate(&eventDescriptor,
1, // Id
0, // Version
0, // Channel
0, // Level
0, // Task
0, // OpCode
0); // Keyword
EtwWrite(driverExtension->EtwHandle,
&eventDescriptor,
NULL,
0,
NULL);
}
}
} // end ClassNotifyFailurePredicted()
/*++////////////////////////////////////////////////////////////////////////////
ClassSetFailurePredictionPoll()
Routine Description:
This routine enables polling for failure prediction, setting the timer
to fire every N seconds as specified by the PollingPeriod.
Arguments:
FdoExtension - the device to setup failure prediction for.
FailurePredictionMethod - specific failure prediction method to use
if set to FailurePredictionNone, will disable failure detection
PollingPeriod - if 0 then no change to current polling timer
Return Value:
NT Status
--*/
_IRQL_requires_max_(PASSIVE_LEVEL)
NTSTATUS
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassSetFailurePredictionPoll(
_Inout_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
_In_ FAILURE_PREDICTION_METHOD FailurePredictionMethod,
_In_ ULONG PollingPeriod
)
{
PFAILURE_PREDICTION_INFO info;
NTSTATUS status;
PAGED_CODE();
if (FdoExtension->FailurePredictionInfo == NULL) {
if (FailurePredictionMethod != FailurePredictionNone) {
info = ExAllocatePoolWithTag(NonPagedPoolNx,
sizeof(FAILURE_PREDICTION_INFO),
CLASS_TAG_FAILURE_PREDICT);
if (info == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
KeInitializeEvent(&info->Event, SynchronizationEvent, TRUE);
info->WorkQueueItem = NULL;
info->Period = DEFAULT_FAILURE_PREDICTION_PERIOD;
KeQuerySystemTime(&(info->LastFailurePredictionQueryTime));
} else {
//
// FaultPrediction has not been previously initialized, nor
// is it being initialized now. No need to do anything.
//
return STATUS_SUCCESS;
}
FdoExtension->FailurePredictionInfo = info;
} else {
info = FdoExtension->FailurePredictionInfo;
}
/*
* Make sure the user-mode thread is not suspended while we hold the synchronization event.
*/
KeEnterCriticalRegion();
(VOID)KeWaitForSingleObject(&info->Event,
UserRequest,
KernelMode,
FALSE,
NULL);
//
// Reset polling period and counter. Setup failure detection type
//
if (PollingPeriod != 0) {
InterlockedExchange((volatile LONG *)&info->Period, PollingPeriod);
}
InterlockedExchange((volatile LONG *)&info->CountDown, info->Period);
info->Method = FailurePredictionMethod;
if (FailurePredictionMethod != FailurePredictionNone) {
ClasspEnableTimer(FdoExtension);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_WMI, "ClassEnableFailurePredictPoll: Enabled for "
"device %p\n", FdoExtension->DeviceObject));
} else {
ClasspDisableTimer(FdoExtension);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_WMI, "ClassEnableFailurePredictPoll: Disabled for "
"device %p\n", FdoExtension->DeviceObject));
}
status = STATUS_SUCCESS;
KeSetEvent(&info->Event, IO_NO_INCREMENT, FALSE);
KeLeaveCriticalRegion();
return status;
} // end ClassSetFailurePredictionPoll()
BOOLEAN
ClasspFailurePredictionPeriodMissed(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension
)
/*
Routine Description:
This routine can be used to determine if a failure prediction polling
period has been missed. That is, the time since the last failure
prediction IOCTL has been sent is greater than the failure prediction
polling period. This can happen if failure prediction polling was
disabled, such as when the device is in D3 or when the screen is off.
Parameters:
FdoExtension - FDO extension. The caller should make sure the FDO
extension is valid. The FailurePredictionInfo structure should also
be valid and the failure prediction method should not be "none".
Returns:
TRUE if there was one or more failure prediction polling periods that was
missed.
FALSE otherwise.
*/
{
LARGE_INTEGER currentTime;
LARGE_INTEGER timeDifference;
BOOLEAN missedPeriod = FALSE;
NT_ASSERT(FdoExtension);
NT_ASSERT(FdoExtension->FailurePredictionInfo);
NT_ASSERT(FdoExtension->FailurePredictionInfo->Method != FailurePredictionNone);
//
// Find the difference between the last failure prediction
// query and the current time and convert it to seconds.
//
KeQuerySystemTime(&currentTime);
timeDifference.QuadPart = currentTime.QuadPart - FdoExtension->FailurePredictionInfo->LastFailurePredictionQueryTime.QuadPart;
timeDifference.QuadPart /= (10LL * 1000LL * 1000LL);
if (timeDifference.QuadPart >= FdoExtension->FailurePredictionInfo->Period) {
missedPeriod = TRUE;
}
return missedPeriod;
}