reactos/drivers/filesystems/udfs/read.cpp

1156 lines
42 KiB
C++
Raw Normal View History

////////////////////////////////////////////////////////////////////
// Copyright (C) Alexander Telyatnikov, Ivan Keliukh, Yegor Anchishkin, SKIF Software, 1999-2013. Kiev, Ukraine
// All rights reserved
// This file was released under the GPLv2 on June 2015.
////////////////////////////////////////////////////////////////////
/*************************************************************************
*
* File: Read.cpp
*
* Module: UDF File System Driver (Kernel mode execution only)
*
* Description:
* Contains code to handle the "Read" dispatch entry point.
*
*************************************************************************/
#include "udffs.h"
// define the file specific bug-check id
#define UDF_BUG_CHECK_ID UDF_FILE_READ
#ifdef _M_IX86
#if DBG
#define OVERFLOW_READ_THRESHHOLD (0xE00)
#else
#define OVERFLOW_READ_THRESHHOLD (0xA00)
#endif // UDF_DBG
#else // defined(_M_IX86)
#define OVERFLOW_READ_THRESHHOLD (0x1000)
#endif // defined(_M_IX86)
//#define POST_LOCK_PAGES
/*************************************************************************
*
* Function: UDFRead()
*
* Description:
* The I/O Manager will invoke this routine to handle a read
* request
*
* Expected Interrupt Level (for execution) :
*
* IRQL_PASSIVE_LEVEL (invocation at higher IRQL will cause execution
* to be deferred to a worker thread context)
*
* Return Value: STATUS_SUCCESS/Error
*
*************************************************************************/
NTSTATUS
NTAPI
UDFRead(
PDEVICE_OBJECT DeviceObject, // the logical volume device object
PIRP Irp) // I/O Request Packet
{
NTSTATUS RC = STATUS_SUCCESS;
PtrUDFIrpContext PtrIrpContext = NULL;
BOOLEAN AreWeTopLevel = FALSE;
TmPrint(("UDFRead: \n"));
FsRtlEnterFileSystem();
ASSERT(DeviceObject);
ASSERT(Irp);
// set the top level context
AreWeTopLevel = UDFIsIrpTopLevel(Irp);
ASSERT(!UDFIsFSDevObj(DeviceObject));
_SEH2_TRY {
// get an IRP context structure and issue the request
PtrIrpContext = UDFAllocateIrpContext(Irp, DeviceObject);
if(PtrIrpContext) {
RC = UDFCommonRead(PtrIrpContext, Irp);
} else {
RC = STATUS_INSUFFICIENT_RESOURCES;
Irp->IoStatus.Status = RC;
Irp->IoStatus.Information = 0;
// complete the IRP
IoCompleteRequest(Irp, IO_DISK_INCREMENT);
}
} _SEH2_EXCEPT(UDFExceptionFilter(PtrIrpContext, _SEH2_GetExceptionInformation())) {
RC = UDFExceptionHandler(PtrIrpContext, Irp);
UDFLogEvent(UDF_ERROR_INTERNAL_ERROR, RC);
} _SEH2_END;
if (AreWeTopLevel) {
IoSetTopLevelIrp(NULL);
}
FsRtlExitFileSystem();
return(RC);
} // end UDFRead()
/*************************************************************************
*
* Function: UDFPostStackOverflowRead()
*
* Description:
* Post a read request that could not be processed by
* the fsp thread because of stack overflow potential.
*
* Arguments:
* Irp - Supplies the request to process.
* Fcb - Supplies the file.
*
* Return Value: STATUS_PENDING.
*
*************************************************************************/
NTSTATUS
UDFPostStackOverflowRead(
IN PtrUDFIrpContext PtrIrpContext,
IN PIRP Irp,
IN PtrUDFFCB Fcb
)
{
PKEVENT Event;
PERESOURCE Resource;
UDFPrint(("Getting too close to stack limit pass request to Fsp\n"));
// Allocate an event and get shared on the resource we will
// be later using the common read.
Event = (PKEVENT)MyAllocatePool__(NonPagedPool, sizeof(KEVENT));
if(!Event)
return STATUS_INSUFFICIENT_RESOURCES;
KeInitializeEvent( Event, NotificationEvent, FALSE );
if ((Irp->Flags & IRP_PAGING_IO) && (Fcb->NTRequiredFCB->CommonFCBHeader.PagingIoResource)) {
Resource = Fcb->NTRequiredFCB->CommonFCBHeader.PagingIoResource;
} else {
Resource = Fcb->NTRequiredFCB->CommonFCBHeader.Resource;
}
UDFAcquireResourceShared( Resource, TRUE );
_SEH2_TRY {
// If this read is the result of a verify, we have to
// tell the overflow read routne to temporarily
// hijack the Vcb->VerifyThread field so that reads
// can go through.
FsRtlPostStackOverflow(PtrIrpContext, Event, UDFStackOverflowRead);
// And wait for the worker thread to complete the item
DbgWaitForSingleObject(Event, NULL);
} _SEH2_FINALLY {
UDFReleaseResource( Resource );
MyFreePool__( Event );
} _SEH2_END;
return STATUS_PENDING;
} // end UDFPostStackOverflowRead()
/*************************************************************************
*
* Function: UDFStackOverflowRead()
*
* Description:
* Process a read request that could not be processed by
* the fsp thread because of stack overflow potential.
*
* Arguments:
* Context - Supplies the IrpContext being processed
* Event - Supplies the event to be signaled when we are done processing this
* request.
*
* Expected Interrupt Level (for execution) :
*
* IRQL_PASSIVE_LEVEL
*
* Return Value: None.
*
*************************************************************************/
VOID
NTAPI
UDFStackOverflowRead(
IN PVOID Context,
IN PKEVENT Event
)
{
PtrUDFIrpContext PtrIrpContext = (PtrUDFIrpContext)Context;
NTSTATUS RC;
UDFPrint(("UDFStackOverflowRead: \n"));
// Make it now look like we can wait for I/O to complete
PtrIrpContext->IrpContextFlags |= UDF_IRP_CONTEXT_CAN_BLOCK;
// Do the read operation protected by a try-except clause
_SEH2_TRY {
UDFCommonRead(PtrIrpContext, PtrIrpContext->Irp);
} _SEH2_EXCEPT(UDFExceptionFilter(PtrIrpContext, _SEH2_GetExceptionInformation())) {
RC = UDFExceptionHandler(PtrIrpContext, PtrIrpContext->Irp);
UDFLogEvent(UDF_ERROR_INTERNAL_ERROR, RC);
} _SEH2_END;
// Set the stack overflow item's event to tell the original
// thread that we're done.
KeSetEvent( Event, 0, FALSE );
} // end UDFStackOverflowRead()
/*************************************************************************
*
* Function: UDFCommonRead()
*
* Description:
* The actual work is performed here. This routine may be invoked in one
* of the two possible contexts:
* (a) in the context of a system worker thread
* (b) in the context of the original caller
*
* Expected Interrupt Level (for execution) :
*
* IRQL_PASSIVE_LEVEL
*
* Return Value: STATUS_SUCCESS/Error
*
*************************************************************************/
NTSTATUS
UDFCommonRead(
PtrUDFIrpContext PtrIrpContext,
PIRP Irp
)
{
NTSTATUS RC = STATUS_SUCCESS;
PIO_STACK_LOCATION IrpSp = NULL;
LARGE_INTEGER ByteOffset;
ULONG ReadLength = 0, TruncatedLength = 0;
2018-08-20 17:02:00 +00:00
SIZE_T NumberBytesRead = 0;
PFILE_OBJECT FileObject = NULL;
PtrUDFFCB Fcb = NULL;
PtrUDFCCB Ccb = NULL;
PVCB Vcb = NULL;
PtrUDFNTRequiredFCB NtReqFcb = NULL;
PERESOURCE PtrResourceAcquired = NULL;
PERESOURCE PtrResourceAcquired2 = NULL;
PVOID SystemBuffer = NULL;
PIRP TopIrp;
// uint32 KeyValue = 0;
ULONG Res1Acq = 0;
ULONG Res2Acq = 0;
BOOLEAN CacheLocked = FALSE;
BOOLEAN CanWait = FALSE;
BOOLEAN PagingIo = FALSE;
BOOLEAN NonBufferedIo = FALSE;
BOOLEAN SynchronousIo = FALSE;
TmPrint(("UDFCommonRead: irp %x\n", Irp));
_SEH2_TRY {
TopIrp = IoGetTopLevelIrp();
2018-08-20 17:02:00 +00:00
switch((ULONG_PTR)TopIrp) {
case FSRTL_FSP_TOP_LEVEL_IRP:
UDFPrint((" FSRTL_FSP_TOP_LEVEL_IRP\n"));
break;
case FSRTL_CACHE_TOP_LEVEL_IRP:
UDFPrint((" FSRTL_CACHE_TOP_LEVEL_IRP\n"));
break;
case FSRTL_MOD_WRITE_TOP_LEVEL_IRP:
UDFPrint((" FSRTL_MOD_WRITE_TOP_LEVEL_IRP\n"));
// BrutePoint()
break;
case FSRTL_FAST_IO_TOP_LEVEL_IRP:
UDFPrint((" FSRTL_FAST_IO_TOP_LEVEL_IRP\n"));
// BrutePoint()
break;
case NULL:
UDFPrint((" NULL TOP_LEVEL_IRP\n"));
break;
default:
if(TopIrp == Irp) {
UDFPrint((" TOP_LEVEL_IRP\n"));
} else {
UDFPrint((" RECURSIVE_IRP, TOP = %x\n", TopIrp));
}
break;
}
// First, get a pointer to the current I/O stack location
IrpSp = IoGetCurrentIrpStackLocation(Irp);
ASSERT(IrpSp);
MmPrint((" Enter Irp, MDL=%x\n", Irp->MdlAddress));
if(Irp->MdlAddress) {
UDFTouch(Irp->MdlAddress);
}
// If this happens to be a MDL read complete request, then
// there is not much processing that the FSD has to do.
if (IrpSp->MinorFunction & IRP_MN_COMPLETE) {
// Caller wants to tell the Cache Manager that a previously
// allocated MDL can be freed.
UDFMdlComplete(PtrIrpContext, Irp, IrpSp, TRUE);
// The IRP has been completed.
try_return(RC = STATUS_SUCCESS);
}
// If this is a request at IRQL DISPATCH_LEVEL, then post
// the request (your FSD may choose to process it synchronously
// if you implement the support correctly; obviously you will be
// quite constrained in what you can do at such IRQL).
if (IrpSp->MinorFunction & IRP_MN_DPC) {
try_return(RC = STATUS_PENDING);
}
FileObject = IrpSp->FileObject;
ASSERT(FileObject);
// Get the FCB and CCB pointers
Ccb = (PtrUDFCCB)(FileObject->FsContext2);
ASSERT(Ccb);
Fcb = Ccb->Fcb;
ASSERT(Fcb);
Vcb = Fcb->Vcb;
if(Fcb->FCBFlags & UDF_FCB_DELETED) {
ASSERT(FALSE);
try_return(RC = STATUS_ACCESS_DENIED);
}
// check for stack overflow
if (IoGetRemainingStackSize() < OVERFLOW_READ_THRESHHOLD) {
RC = UDFPostStackOverflowRead( PtrIrpContext, Irp, Fcb );
try_return(RC);
}
// Disk based file systems might decide to verify the logical volume
// (if required and only if removable media are supported) at this time
// As soon as Tray is locked, we needn't call UDFVerifyVcb()
ByteOffset = IrpSp->Parameters.Read.ByteOffset;
CanWait = (PtrIrpContext->IrpContextFlags & UDF_IRP_CONTEXT_CAN_BLOCK) ? TRUE : FALSE;
PagingIo = (Irp->Flags & IRP_PAGING_IO) ? TRUE : FALSE;
NonBufferedIo = (Irp->Flags & IRP_NOCACHE) ? TRUE : FALSE;
SynchronousIo = (FileObject->Flags & FO_SYNCHRONOUS_IO) ? TRUE : FALSE;
UDFPrint((" Flags: %s %s %s %s\n",
CanWait ? "W" : "w", PagingIo ? "Pg" : "pg",
NonBufferedIo ? "NBuf" : "buff", SynchronousIo ? "Snc" : "Asc"));
if(!NonBufferedIo &&
(Fcb->NodeIdentifier.NodeType != UDF_NODE_TYPE_VCB)) {
if(UDFIsAStream(Fcb->FileInfo)) {
UDFNotifyFullReportChange( Vcb, Fcb->FileInfo,
FILE_NOTIFY_CHANGE_LAST_ACCESS,
FILE_ACTION_MODIFIED_STREAM);
} else {
UDFNotifyFullReportChange( Vcb, Fcb->FileInfo,
FILE_NOTIFY_CHANGE_LAST_ACCESS,
FILE_ACTION_MODIFIED);
}
}
// Get some of the parameters supplied to us
ReadLength = IrpSp->Parameters.Read.Length;
if (ReadLength == 0) {
// a 0 byte read can be immediately succeeded
try_return(RC);
}
UDFPrint((" ByteOffset = %I64x, ReadLength = %x\n", ByteOffset.QuadPart, ReadLength));
// Is this a read of the volume itself ?
if (Fcb->NodeIdentifier.NodeType == UDF_NODE_TYPE_VCB) {
// Yup, we need to send this on to the disk driver after
// validation of the offset and length.
Vcb = (PVCB)Fcb;
Vcb->VCBFlags |= UDF_VCB_SKIP_EJECT_CHECK;
if(!CanWait)
try_return(RC = STATUS_PENDING);
if(PtrIrpContext->IrpContextFlags & UDF_IRP_CONTEXT_FLUSH2_REQUIRED) {
UDFPrint((" UDF_IRP_CONTEXT_FLUSH2_REQUIRED\n"));
PtrIrpContext->IrpContextFlags &= ~UDF_IRP_CONTEXT_FLUSH2_REQUIRED;
if(!(Vcb->VCBFlags & UDF_VCB_FLAGS_RAW_DISK)) {
UDFCloseAllSystemDelayedInDir(Vcb, Vcb->RootDirFCB->FileInfo);
}
#ifdef UDF_DELAYED_CLOSE
UDFCloseAllDelayed(Vcb);
#endif //UDF_DELAYED_CLOSE
}
if(PtrIrpContext->IrpContextFlags & UDF_IRP_CONTEXT_FLUSH_REQUIRED) {
UDFPrint((" UDF_IRP_CONTEXT_FLUSH_REQUIRED\n"));
PtrIrpContext->IrpContextFlags &= ~UDF_IRP_CONTEXT_FLUSH_REQUIRED;
// Acquire the volume resource exclusive
UDFAcquireResourceExclusive(&(Vcb->VCBResource), TRUE);
PtrResourceAcquired = &(Vcb->VCBResource);
UDFFlushLogicalVolume(NULL, NULL, Vcb, 0);
UDFReleaseResource(PtrResourceAcquired);
PtrResourceAcquired = NULL;
}
// Acquire the volume resource shared ...
UDFAcquireResourceShared(&(Vcb->VCBResource), TRUE);
PtrResourceAcquired = &(Vcb->VCBResource);
#if 0
if(PagingIo) {
CollectStatistics(Vcb, MetaDataReads);
CollectStatisticsEx(Vcb, MetaDataReadBytes, NumberBytesRead);
}
#endif
// Forward the request to the lower level driver
// Lock the callers buffer
if (!NT_SUCCESS(RC = UDFLockCallersBuffer(PtrIrpContext, Irp, TRUE, ReadLength))) {
try_return(RC);
}
SystemBuffer = UDFGetCallersBuffer(PtrIrpContext, Irp);
if(!SystemBuffer) {
try_return(RC = STATUS_INVALID_USER_BUFFER);
}
if(Vcb->VCBFlags & UDF_VCB_FLAGS_VOLUME_MOUNTED) {
RC = UDFReadData(Vcb, TRUE, ByteOffset.QuadPart,
ReadLength, FALSE, (PCHAR)SystemBuffer,
&NumberBytesRead);
} else {
RC = UDFTRead(Vcb, SystemBuffer, ReadLength,
(ULONG)(ByteOffset.QuadPart >> Vcb->BlockSizeBits),
&NumberBytesRead);
}
UDFUnlockCallersBuffer(PtrIrpContext, Irp, SystemBuffer);
try_return(RC);
}
Vcb->VCBFlags |= UDF_VCB_SKIP_EJECT_CHECK;
// If the read request is directed to a page file (if your FSD
// supports paging files), send the request directly to the disk
// driver. For requests directed to a page file, you have to trust
// that the offsets will be set correctly by the VMM. You should not
// attempt to acquire any FSD resources either.
if(Fcb->FCBFlags & UDF_FCB_PAGE_FILE) {
NonBufferedIo = TRUE;
}
if(ByteOffset.HighPart == -1) {
if(ByteOffset.LowPart == FILE_USE_FILE_POINTER_POSITION) {
ByteOffset = FileObject->CurrentByteOffset;
}
}
// If this read is directed to a directory, it is not allowed
// by the UDF FSD.
if(Fcb->FCBFlags & UDF_FCB_DIRECTORY) {
RC = STATUS_INVALID_DEVICE_REQUEST;
try_return(RC);
}
NtReqFcb = Fcb->NTRequiredFCB;
Res1Acq = UDFIsResourceAcquired(&(NtReqFcb->MainResource));
if(!Res1Acq) {
Res1Acq = PtrIrpContext->IrpContextFlags & UDF_IRP_CONTEXT_RES1_ACQ;
}
Res2Acq = UDFIsResourceAcquired(&(NtReqFcb->PagingIoResource));
if(!Res2Acq) {
Res2Acq = PtrIrpContext->IrpContextFlags & UDF_IRP_CONTEXT_RES2_ACQ;
}
#if 0
if(PagingIo) {
CollectStatistics(Vcb, UserFileReads);
CollectStatisticsEx(Vcb, UserFileReadBytes, NumberBytesRead);
}
#endif
// This is a good place for oplock related processing.
// If this is the normal file we have to check for
// write access according to the current state of the file locks.
if (!PagingIo &&
!FsRtlCheckLockForReadAccess( &(NtReqFcb->FileLock), Irp )) {
try_return( RC = STATUS_FILE_LOCK_CONFLICT );
}
// Validate start offset and length supplied.
// If start offset is > end-of-file, return an appropriate error. Note
// that since a FCB resource has already been acquired, and since all
// file size changes require acquisition of both FCB resources,
// the contents of the FCB and associated data structures
// can safely be examined.
// Also note that we are using the file size in the "Common FCB Header"
// to perform the check. However, your FSD might decide to keep a
// separate copy in the FCB (or some other representation of the
// file associated with the FCB).
TruncatedLength = ReadLength;
if (ByteOffset.QuadPart >= NtReqFcb->CommonFCBHeader.FileSize.QuadPart) {
// Starting offset is >= file size
try_return(RC = STATUS_END_OF_FILE);
}
// We can also go ahead and truncate the read length here
// such that it is contained within the file size
if( NtReqFcb->CommonFCBHeader.FileSize.QuadPart < (ByteOffset.QuadPart + ReadLength) ) {
TruncatedLength = (ULONG)(NtReqFcb->CommonFCBHeader.FileSize.QuadPart - ByteOffset.QuadPart);
// we can't get ZERO here
}
UDFPrint((" TruncatedLength = %x\n", TruncatedLength));
// There are certain complications that arise when the same file stream
// has been opened for cached and non-cached access. The FSD is then
// responsible for maintaining a consistent view of the data seen by
// the caller.
// Also, it is possible for file streams to be mapped in both as data files
// and as an executable. This could also lead to consistency problems since
// there now exist two separate sections (and pages) containing file
// information.
// The test below flushes the data cached in system memory if the current
// request madates non-cached access (file stream must be cached) and
// (a) the current request is not paging-io which indicates it is not
// a recursive I/O operation OR originating in the Cache Manager
// (b) OR the current request is paging-io BUT it did not originate via
// the Cache Manager (or is a recursive I/O operation) and we do
// have an image section that has been initialized.
#define UDF_REQ_NOT_VIA_CACHE_MGR(ptr) (!MmIsRecursiveIoFault() && ((ptr)->ImageSectionObject != NULL))
if(NonBufferedIo &&
(NtReqFcb->SectionObject.DataSectionObject != NULL)) {
if(!PagingIo) {
/* // We hold the main resource exclusive here because the flush
// may generate a recursive write in this thread. The PagingIo
// resource is held shared so the drop-and-release serialization
// below will work.
if(!UDFAcquireResourceExclusive(&(NtReqFcb->MainResource), CanWait)) {
try_return(RC = STATUS_PENDING);
}
PtrResourceAcquired = &(NtReqFcb->MainResource);
// We hold PagingIo shared around the flush to fix a
// cache coherency problem.
UDFAcquireResourceShared(&(NtReqFcb->PagingIoResource), TRUE );*/
MmPrint((" CcFlushCache()\n"));
CcFlushCache(&(NtReqFcb->SectionObject), &ByteOffset, TruncatedLength, &(Irp->IoStatus));
/* UDFReleaseResource(&(NtReqFcb->PagingIoResource));
UDFReleaseResource(PtrResourceAcquired);
PtrResourceAcquired = NULL;
// If the flush failed, return error to the caller
if(!NT_SUCCESS(RC = Irp->IoStatus.Status)) {
try_return(RC);
}
// Acquiring and immediately dropping the resource serializes
// us behind any other writes taking place (either from the
// lazy writer or modified page writer).*/
if(!Res2Acq) {
UDFAcquireResourceExclusive(&(NtReqFcb->PagingIoResource), TRUE );
UDFReleaseResource(&(NtReqFcb->PagingIoResource));
}
}
}
// Acquire the appropriate FCB resource shared
if (PagingIo) {
// Try to acquire the FCB PagingIoResource shared
if(!Res2Acq) {
if (!UDFAcquireResourceShared(&(NtReqFcb->PagingIoResource), CanWait)) {
try_return(RC = STATUS_PENDING);
}
// Remember the resource that was acquired
PtrResourceAcquired2 = &(NtReqFcb->PagingIoResource);
}
} else {
// Try to acquire the FCB MainResource shared
if(NonBufferedIo) {
if(!Res2Acq) {
if(!UDFAcquireSharedWaitForExclusive(&(NtReqFcb->PagingIoResource), CanWait)) {
try_return(RC = STATUS_PENDING);
}
PtrResourceAcquired2 = &(NtReqFcb->PagingIoResource);
}
} else {
if(!Res1Acq) {
UDF_CHECK_PAGING_IO_RESOURCE(NtReqFcb);
if(!UDFAcquireResourceShared(&(NtReqFcb->MainResource), CanWait)) {
try_return(RC = STATUS_PENDING);
}
// Remember the resource that was acquired
PtrResourceAcquired = &(NtReqFcb->MainResource);
}
}
}
// This is also a good place to set whether fast-io can be performed
// on this particular file or not. Your FSD must make it's own
// determination on whether or not to allow fast-io operations.
// Commonly, fast-io is not allowed if any byte range locks exist
// on the file or if oplocks prevent fast-io. Practically any reason
// choosen by your FSD could result in your setting FastIoIsNotPossible
// OR FastIoIsQuestionable instead of FastIoIsPossible.
NtReqFcb->CommonFCBHeader.IsFastIoPossible = UDFIsFastIoPossible(Fcb);
/* if(NtReqFcb->CommonFCBHeader.IsFastIoPossible == FastIoIsPossible)
NtReqFcb->CommonFCBHeader.IsFastIoPossible = FastIoIsQuestionable;*/
#ifdef UDF_DISABLE_SYSTEM_CACHE_MANAGER
NonBufferedIo = TRUE;
#endif
if(Fcb && Fcb->FileInfo && Fcb->FileInfo->Dloc) {
AdPrint(("UDFCommonRead: DataLoc %x, Mapping %x\n", &Fcb->FileInfo->Dloc->DataLoc, Fcb->FileInfo->Dloc->DataLoc.Mapping));
}
// Branch here for cached vs non-cached I/O
if (!NonBufferedIo) {
if(FileObject->Flags & FO_WRITE_THROUGH) {
CanWait = TRUE;
}
// The caller wishes to perform cached I/O. Initiate caching if
// this is the first cached I/O operation using this file object
if (!(FileObject->PrivateCacheMap)) {
// This is the first cached I/O operation. You must ensure
// that the FCB Common FCB Header contains valid sizes at this time
MmPrint((" CcInitializeCacheMap()\n"));
CcInitializeCacheMap(FileObject, (PCC_FILE_SIZES)(&(NtReqFcb->CommonFCBHeader.AllocationSize)),
FALSE, // We will not utilize pin access for this file
&(UDFGlobalData.CacheMgrCallBacks), // callbacks
NtReqFcb); // The context used in callbacks
MmPrint((" CcSetReadAheadGranularity()\n"));
CcSetReadAheadGranularity(FileObject, Vcb->SystemCacheGran);
}
// Check and see if this request requires a MDL returned to the caller
if (IrpSp->MinorFunction & IRP_MN_MDL) {
// Caller does want a MDL returned. Note that this mode
// implies that the caller is prepared to block
MmPrint((" CcMdlRead()\n"));
// CcMdlRead(FileObject, &ByteOffset, TruncatedLength, &(Irp->MdlAddress), &(Irp->IoStatus));
// NumberBytesRead = Irp->IoStatus.Information;
// RC = Irp->IoStatus.Status;
NumberBytesRead = 0;
RC = STATUS_INVALID_PARAMETER;
try_return(RC);
}
// This is a regular run-of-the-mill cached I/O request. Let the
// Cache Manager worry about it!
// First though, we need a buffer pointer (address) that is valid
SystemBuffer = UDFGetCallersBuffer(PtrIrpContext, Irp);
if(!SystemBuffer)
try_return(RC = STATUS_INVALID_USER_BUFFER);
ASSERT(SystemBuffer);
MmPrint((" CcCopyRead()\n"));
if (!CcCopyRead(FileObject, &(ByteOffset), TruncatedLength, CanWait, SystemBuffer, &(Irp->IoStatus))) {
// The caller was not prepared to block and data is not immediately
// available in the system cache
try_return(RC = STATUS_PENDING);
}
UDFUnlockCallersBuffer(PtrIrpContext, Irp, SystemBuffer);
// We have the data
RC = Irp->IoStatus.Status;
NumberBytesRead = Irp->IoStatus.Information;
try_return(RC);
} else {
MmPrint((" Read NonBufferedIo\n"));
#if 1
2018-08-20 17:02:00 +00:00
if((ULONG_PTR)TopIrp == FSRTL_MOD_WRITE_TOP_LEVEL_IRP) {
UDFPrint(("FSRTL_MOD_WRITE_TOP_LEVEL_IRP => CanWait\n"));
CanWait = TRUE;
} else
2018-08-20 17:02:00 +00:00
if((ULONG_PTR)TopIrp == FSRTL_CACHE_TOP_LEVEL_IRP) {
UDFPrint(("FSRTL_CACHE_TOP_LEVEL_IRP => CanWait\n"));
CanWait = TRUE;
}
if(NtReqFcb->AcqSectionCount || NtReqFcb->AcqFlushCount) {
MmPrint((" AcqCount (%d/%d)=> CanWait ?\n", NtReqFcb->AcqSectionCount, NtReqFcb->AcqFlushCount));
CanWait = TRUE;
} else
{}
/* if((TopIrp != Irp)) {
UDFPrint(("(TopIrp != Irp) => CanWait\n"));
CanWait = TRUE;
} else*/
#endif
if(KeGetCurrentIrql() > PASSIVE_LEVEL) {
MmPrint((" !PASSIVE_LEVEL\n"));
CanWait = FALSE;
PtrIrpContext->IrpContextFlags |= UDF_IRP_CONTEXT_FORCED_POST;
}
if(!CanWait && UDFIsFileCached__(Vcb, Fcb->FileInfo, ByteOffset.QuadPart, TruncatedLength, FALSE)) {
MmPrint((" Locked => CanWait\n"));
CacheLocked = TRUE;
CanWait = TRUE;
}
// Send the request to lower level drivers
if(!CanWait) {
try_return(RC = STATUS_PENDING);
}
// ASSERT(NT_SUCCESS(RC));
if(!Res2Acq) {
if(UDFAcquireResourceSharedWithCheck(&(NtReqFcb->PagingIoResource)))
PtrResourceAcquired2 = &(NtReqFcb->PagingIoResource);
}
RC = UDFLockCallersBuffer(PtrIrpContext, Irp, TRUE, TruncatedLength);
if(!NT_SUCCESS(RC)) {
try_return(RC);
}
SystemBuffer = UDFGetCallersBuffer(PtrIrpContext, Irp);
if(!SystemBuffer) {
try_return(RC = STATUS_INVALID_USER_BUFFER);
}
RC = UDFReadFile__(Vcb, Fcb->FileInfo, ByteOffset.QuadPart, TruncatedLength,
CacheLocked, (PCHAR)SystemBuffer, &NumberBytesRead);
/* // AFAIU, CacheManager wants this:
if(!NT_SUCCESS(RC)) {
NumberBytesRead = 0;
}*/
UDFUnlockCallersBuffer(PtrIrpContext, Irp, SystemBuffer);
#if 0
if(PagingIo) {
CollectStatistics(Vcb, UserDiskReads);
} else {
CollectStatistics2(Vcb, NonCachedDiskReads);
}
#endif
try_return(RC);
// For paging-io, the FSD has to trust the VMM to do the right thing
// Here is a common method used by Windows NT native file systems
// that are in the process of sending a request to the disk driver.
// First, mark the IRP as pending, then invoke the lower level driver
// after setting a completion routine.
// Meanwhile, this particular thread can immediately return a
// STATUS_PENDING return code.
// The completion routine is then responsible for completing the IRP
// and unlocking appropriate resources
// Also, at this point, the FSD might choose to utilize the
// information contained in the ValidDataLength field to simply
// return zeroes to the caller for reads extending beyond current
// valid data length.
}
try_exit: NOTHING;
} _SEH2_FINALLY {
if(CacheLocked) {
WCacheEODirect__(&(Vcb->FastCache), Vcb);
}
// Release any resources acquired here ...
if(PtrResourceAcquired2) {
UDFReleaseResource(PtrResourceAcquired2);
}
if(PtrResourceAcquired) {
if(NtReqFcb &&
(PtrResourceAcquired ==
&(NtReqFcb->MainResource))) {
UDF_CHECK_PAGING_IO_RESOURCE(NtReqFcb);
}
UDFReleaseResource(PtrResourceAcquired);
}
// Post IRP if required
if(RC == STATUS_PENDING) {
// Lock the callers buffer here. Then invoke a common routine to
// perform the post operation.
if (!(IrpSp->MinorFunction & IRP_MN_MDL)) {
RC = UDFLockCallersBuffer(PtrIrpContext, Irp, TRUE, ReadLength);
ASSERT(NT_SUCCESS(RC));
}
if(PagingIo) {
if(Res1Acq) {
PtrIrpContext->IrpContextFlags |= UDF_IRP_CONTEXT_RES1_ACQ;
}
if(Res2Acq) {
PtrIrpContext->IrpContextFlags |= UDF_IRP_CONTEXT_RES2_ACQ;
}
}
// Perform the post operation which will mark the IRP pending
// and will return STATUS_PENDING back to us
RC = UDFPostRequest(PtrIrpContext, Irp);
} else {
// For synchronous I/O, the FSD must maintain the current byte offset
// Do not do this however, if I/O is marked as paging-io
if (SynchronousIo && !PagingIo && NT_SUCCESS(RC)) {
FileObject->CurrentByteOffset.QuadPart = ByteOffset.QuadPart + NumberBytesRead;
}
// If the read completed successfully and this was not a paging-io
// operation, set a flag in the CCB that indicates that a read was
// performed and that the file time should be updated at cleanup
if (NT_SUCCESS(RC) && !PagingIo) {
FileObject->Flags |= FO_FILE_FAST_IO_READ;
Ccb->CCBFlags |= UDF_CCB_ACCESSED;
}
if(!_SEH2_AbnormalTermination()) {
Irp->IoStatus.Status = RC;
Irp->IoStatus.Information = NumberBytesRead;
UDFPrint((" NumberBytesRead = %x\n", NumberBytesRead));
// Free up the Irp Context
UDFReleaseIrpContext(PtrIrpContext);
// complete the IRP
MmPrint((" Complete Irp, MDL=%x\n", Irp->MdlAddress));
if(Irp->MdlAddress) {
UDFTouch(Irp->MdlAddress);
}
IoCompleteRequest(Irp, IO_DISK_INCREMENT);
}
} // can we complete the IRP ?
} _SEH2_END; // end of "__finally" processing
return(RC);
} // end UDFCommonRead()
#ifdef UDF_DBG
ULONG LockBufferCounter = 0;
ULONG BuildMdlCounter = 0;
#endif //UDF_DBG
/*************************************************************************
*
* Function: UDFGetCallersBuffer()
*
* Description:
* Obtain a pointer to the caller's buffer.
*
* Expected Interrupt Level (for execution) :
*
* IRQL_PASSIVE_LEVEL
*
* Return Value: STATUS_SUCCESS/Error
*
*************************************************************************/
PVOID
UDFGetCallersBuffer(
PtrUDFIrpContext PtrIrpContext,
PIRP Irp
)
{
VOID *ReturnedBuffer = NULL;
UDFPrint(("UDFGetCallersBuffer: \n"));
// If an MDL is supplied, use it.
if(Irp->MdlAddress) {
MmPrint((" UDFGetCallersBuffer: MmGetSystemAddressForMdl(Irp->MdlAddress) MDL=%x\n", Irp->MdlAddress));
// ReturnedBuffer = MmGetSystemAddressForMdlSafe(Irp->MdlAddress, NormalPagePriority);
ReturnedBuffer = MmGetSystemAddressForMdlSafer(Irp->MdlAddress);
} else
if (PtrIrpContext->IrpContextFlags & UDF_IRP_CONTEXT_BUFFER_LOCKED) {
// Free buffer
#ifndef POST_LOCK_PAGES
MmPrint((" UDFGetCallersBuffer: MmGetSystemAddressForMdl(PtrIrpContext->PtrMdl) MDL=%x\n", PtrIrpContext->PtrMdl));
ReturnedBuffer = MmGetSystemAddressForMdlSafe(PtrIrpContext->PtrMdl, NormalPagePriority);
#else //POST_LOCK_PAGES
if(PtrIrpContext->TransitionBuffer) {
MmPrint((" UDFGetCallersBuffer: TransitionBuffer\n"));
return PtrIrpContext->TransitionBuffer;
}
_SEH2_TRY {
MmPrint((" MmProbeAndLockPages()\n"));
MmProbeAndLockPages(PtrIrpContext->PtrMdl, Irp->RequestorMode,
((PtrIrpContext->MajorFunction == IRP_MJ_READ) ? IoWriteAccess:IoReadAccess));
#ifdef UDF_DBG
LockBufferCounter++;
#endif //UDF_DBG
} _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER) {
//RC = STATUS_INVALID_USER_BUFFER;
BrutePoint();
return NULL;
} _SEH2_END;
MmPrint((" MmGetSystemAddressForMdlSafer()\n"));
ReturnedBuffer = MmGetSystemAddressForMdlSafer(PtrIrpContext->PtrMdl);
#endif //POST_LOCK_PAGES
} else {
MmPrint((" UDFGetCallersBuffer: Irp->UserBuffer\n"));
ReturnedBuffer = Irp->UserBuffer;
}
return(ReturnedBuffer);
} // end UDFGetCallersBuffer()
/*************************************************************************
*
* Function: UDFLockCallersBuffer()
*
* Description:
* Obtain a MDL that describes the buffer. Lock pages for I/O
*
* Expected Interrupt Level (for execution) :
*
* IRQL_PASSIVE_LEVEL
*
* Return Value: STATUS_SUCCESS/Error
*
*************************************************************************/
NTSTATUS
UDFLockCallersBuffer(
PtrUDFIrpContext PtrIrpContext,
PIRP Irp,
BOOLEAN IsReadOperation,
uint32 Length
)
{
NTSTATUS RC = STATUS_SUCCESS;
PMDL PtrMdl = NULL;
UDFPrint(("UDFLockCallersBuffer: \n"));
ASSERT(Irp);
_SEH2_TRY {
// Is a MDL already present in the IRP
if (!(Irp->MdlAddress)) {
// Allocate a MDL
/*
if(!IsReadOperation) {
MmPrint((" Allocate TransitionBuffer\n"));
PtrIrpContext->TransitionBuffer = (PCHAR)DbgAllocatePool(NonPagedPool, Length);
if(!PtrIrpContext->TransitionBuffer) {
RC = STATUS_INSUFFICIENT_RESOURCES;
try_return(RC);
}
_SEH2_TRY {
RtlCopyMemory(PtrIrpContext->TransitionBuffer, Irp->UserBuffer, Length);
} _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER) {
RC = STATUS_INVALID_USER_BUFFER;
} _SEH2_END;
} else*/ {
MmPrint((" IoAllocateMdl()\n"));
// if (!(PtrMdl = IoAllocateMdl(Irp->UserBuffer, Length, FALSE, FALSE, NULL))) {
// This will place allocated Mdl to Irp
if (!(PtrMdl = IoAllocateMdl(Irp->UserBuffer, Length, FALSE, FALSE, Irp))) {
RC = STATUS_INSUFFICIENT_RESOURCES;
try_return(RC);
}
MmPrint((" Alloc MDL=%x\n", PtrMdl));
#ifdef UDF_DBG
BuildMdlCounter++;
#endif //UDF_DBG
}
// Probe and lock the pages described by the MDL
// We could encounter an exception doing so, swallow the exception
// NOTE: The exception could be due to an unexpected (from our
// perspective), invalidation of the virtual addresses that comprise
// the passed in buffer
#ifndef POST_LOCK_PAGES
_SEH2_TRY {
MmPrint((" MmProbeAndLockPages()\n"));
MmProbeAndLockPages(PtrMdl, Irp->RequestorMode, (IsReadOperation ? IoWriteAccess:IoReadAccess));
} _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER) {
MmPrint((" MmProbeAndLockPages() failed\n"));
Irp->MdlAddress = NULL;
RC = STATUS_INVALID_USER_BUFFER;
} _SEH2_END;
#endif //POST_LOCK_PAGES
if(NT_SUCCESS(RC)) {
PtrIrpContext->IrpContextFlags |= UDF_IRP_CONTEXT_BUFFER_LOCKED;
PtrIrpContext->PtrMdl = PtrMdl;
}
} else {
MmPrint((" UDFLockCallersBuffer: do nothing, MDL=%x\n", Irp->MdlAddress));
UDFTouch(Irp->MdlAddress);
}
try_exit: NOTHING;
} _SEH2_FINALLY {
if (!NT_SUCCESS(RC) && PtrMdl) {
MmPrint((" Free MDL=%x\n", PtrMdl));
IoFreeMdl(PtrMdl);
}
} _SEH2_END;
return(RC);
} // end UDFLockCallersBuffer()
/*************************************************************************
*
* Function: UDFUnlockCallersBuffer()
*
* Description:
* Obtain a MDL that describes the buffer. Lock pages for I/O
*
* Expected Interrupt Level (for execution) :
*
* IRQL_PASSIVE_LEVEL
*
* Return Value: STATUS_SUCCESS/Error
*
*************************************************************************/
NTSTATUS
UDFUnlockCallersBuffer(
PtrUDFIrpContext PtrIrpContext,
PIRP Irp,
PVOID SystemBuffer
)
{
NTSTATUS RC = STATUS_SUCCESS;
UDFPrint(("UDFUnlockCallersBuffer: \n"));
ASSERT(Irp);
_SEH2_TRY {
// Is a nonPaged buffer already present in the IRP
if (PtrIrpContext->IrpContextFlags & UDF_IRP_CONTEXT_BUFFER_LOCKED) {
UDFPrint((" UDF_IRP_CONTEXT_BUFFER_LOCKED MDL=%x, Irp MDL=%x\n", PtrIrpContext->PtrMdl, Irp->MdlAddress));
if(PtrIrpContext->TransitionBuffer) {
MmPrint((" UDFUnlockCallersBuffer: free TransitionBuffer\n"));
DbgFreePool(PtrIrpContext->TransitionBuffer);
PtrIrpContext->TransitionBuffer = NULL;
PtrIrpContext->IrpContextFlags &= ~UDF_IRP_CONTEXT_BUFFER_LOCKED;
try_return(RC);
}
// Free buffer
KeFlushIoBuffers( PtrIrpContext->PtrMdl, TRUE, FALSE );
// MmPrint((" IrpCtx->Mdl, MmUnmapLockedPages()\n"));
// MmUnmapLockedPages(SystemBuffer, PtrIrpContext->PtrMdl);
// This will be done in IoCompleteIrp !!!
//MmPrint((" MmUnlockPages()\n"));
//MmUnlockPages(PtrIrpContext->PtrMdl);
#ifdef UDF_DBG
LockBufferCounter--;
#endif //UDF_DBG
// This will be done in IoCompleteIrp !!!
//IoFreeMdl(PtrIrpContext->PtrMdl);
#ifdef UDF_DBG
BuildMdlCounter--;
#endif //UDF_DBG
UDFTouch(PtrIrpContext->PtrMdl);
PtrIrpContext->PtrMdl = NULL;
PtrIrpContext->IrpContextFlags &= ~UDF_IRP_CONTEXT_BUFFER_LOCKED;
} else
if(Irp->MdlAddress) {
// MmPrint((" Irp->Mdl, MmUnmapLockedPages()\n"));
// MmUnmapLockedPages(SystemBuffer, Irp->MdlAddress);
UDFPrint((" UDF_IRP_CONTEXT_BUFFER_LOCKED MDL=%x, Irp MDL=%x\n", PtrIrpContext->PtrMdl, Irp->MdlAddress));
UDFTouch(Irp->MdlAddress);
KeFlushIoBuffers( Irp->MdlAddress,
((IoGetCurrentIrpStackLocation(Irp))->MajorFunction) == IRP_MJ_READ,
FALSE );
} else
{ ; }
try_exit: NOTHING;
} _SEH2_FINALLY {
NOTHING;
} _SEH2_END;
return(RC);
} // end UDFUnlockCallersBuffer()
/*************************************************************************
*
* Function: UDFMdlComplete()
*
* Description:
* Tell Cache Manager to release MDL (and possibly flush).
*
* Expected Interrupt Level (for execution) :
*
* IRQL_PASSIVE_LEVEL
*
* Return Value: None.
*
*************************************************************************/
VOID UDFMdlComplete(
PtrUDFIrpContext PtrIrpContext,
PIRP Irp,
PIO_STACK_LOCATION IrpSp,
BOOLEAN ReadCompletion)
{
NTSTATUS RC = STATUS_SUCCESS;
PFILE_OBJECT FileObject = NULL;
UDFPrint(("UDFMdlComplete: \n"));
FileObject = IrpSp->FileObject;
ASSERT(FileObject);
UDFTouch(Irp->MdlAddress);
// Not much to do here.
if (ReadCompletion) {
MmPrint((" CcMdlReadComplete() MDL=%x\n", Irp->MdlAddress));
CcMdlReadComplete(FileObject, Irp->MdlAddress);
} else {
// The Cache Manager needs the byte offset in the I/O stack location.
MmPrint((" CcMdlWriteComplete() MDL=%x\n", Irp->MdlAddress));
CcMdlWriteComplete(FileObject, &(IrpSp->Parameters.Write.ByteOffset), Irp->MdlAddress);
}
// Clear the MDL address field in the IRP so the IoCompleteRequest()
// does not __try to play around with the MDL.
Irp->MdlAddress = NULL;
// Free up the Irp Context.
UDFReleaseIrpContext(PtrIrpContext);
// Complete the IRP.
Irp->IoStatus.Status = RC;
Irp->IoStatus.Information = 0;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
return;
}