reactos/dll/opengl/mesa/dlist.c

3097 lines
76 KiB
C
Raw Normal View History

/* $Id: dlist.c,v 1.37 1997/12/06 18:06:50 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 2.6
* Copyright (C) 1995-1997 Brian Paul
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* $Log: dlist.c,v $
* Revision 1.37 1997/12/06 18:06:50 brianp
* moved several static display list vars into GLcontext
*
* Revision 1.36 1997/11/25 03:20:09 brianp
* simple clean-ups for multi-threading (John Stone)
*
* Revision 1.35 1997/10/29 01:29:09 brianp
* added GL_EXT_point_parameters extension from Daniel Barrero
*
* Revision 1.34 1997/10/02 00:48:29 brianp
* removed the EXEC() macro stuff, it caused bugs in gl_save_Color*()
*
* Revision 1.33 1997/09/27 00:13:44 brianp
* added GL_EXT_paletted_texture extension
*
* Revision 1.32 1997/09/23 00:57:52 brianp
* removed list>MAX_DISPLAYLISTS test
*
* Revision 1.31 1997/09/22 02:33:58 brianp
* display lists now implemented with hash table
*
* Revision 1.30 1997/07/24 01:25:01 brianp
* changed precompiled header symbol from PCH to PC_HEADER
*
* Revision 1.29 1997/07/09 01:26:12 brianp
* fixed glDrawPixels() GL_COMPILE_AND_EXECUTE infinite loop (Renaud Cazoulat)
*
* Revision 1.28 1997/06/24 01:13:26 brianp
* initialize image RefCount to 1 for gl_save_TexSubImage[123]D()
*
* Revision 1.27 1997/06/20 01:57:57 brianp
* added gl_save_Color4ubv()
*
* Revision 1.26 1997/06/06 02:59:19 brianp
* renamed destroy_list() to gl_destroy_list()
*
* Revision 1.25 1997/05/28 03:24:22 brianp
* added precompiled header (PCH) support
*
* Revision 1.24 1997/05/27 03:13:41 brianp
* removed some debugging code
*
* Revision 1.23 1997/04/30 21:36:22 brianp
* added casts to gl_TexImage[123]D() calls
*
* Revision 1.22 1997/04/28 23:40:47 brianp
* added #include "rect.h"
*
* Revision 1.21 1997/04/24 01:50:53 brianp
* optimized glColor3f, glColor3fv, glColor4fv
*
* Revision 1.20 1997/04/24 00:30:17 brianp
* optimized glTexCoord2() code
*
* Revision 1.19 1997/04/21 01:21:33 brianp
* added gl_save_Rectf()
*
* Revision 1.18 1997/04/20 16:18:15 brianp
* added glOrtho and glFrustum API pointers
*
* Revision 1.17 1997/04/16 23:55:33 brianp
* added optimized glTexCoord2f code
*
* Revision 1.16 1997/04/14 22:18:23 brianp
* added optimized glVertex3fv code
*
* Revision 1.15 1997/04/14 02:00:39 brianp
* #include "texstate.h" instead of "texture.h"
*
* Revision 1.14 1997/04/07 02:58:49 brianp
* added gl_save_Vertex[23]f() and related code
*
* Revision 1.13 1997/04/01 04:26:02 brianp
* added code for glLoadIdentity(), changed #include's
*
* Revision 1.12 1997/02/27 19:58:08 brianp
* call gl_problem() instead of gl_warning()
*
* Revision 1.11 1997/02/09 18:50:18 brianp
* added GL_EXT_texture3D support
*
* Revision 1.10 1997/01/29 18:51:30 brianp
* small MEMCPY call change for Acorn compiler, per Graham Jones
*
* Revision 1.9 1997/01/09 21:25:28 brianp
* set reference count to one for texture images in display lists
*
* Revision 1.8 1996/12/11 20:19:11 brianp
* abort display list execution if invalid opcode found
*
* Revision 1.7 1996/12/09 21:39:23 brianp
* compare list to MAX_DISPLAYLISTS in gl_IsList()
*
* Revision 1.6 1996/12/04 22:14:27 brianp
* improved the mesa_print_display_list() debug function
*
* Revision 1.5 1996/11/07 04:12:45 brianp
* texture images are now gl_image structs, not gl_texture_image structs
*
* Revision 1.4 1996/10/16 00:59:12 brianp
* fixed bug in gl_save_Lightfv()
* execution of OPCODE_EDGE_FLAG used enum value instead of boolean
*
* Revision 1.3 1996/09/27 01:26:08 brianp
* removed unused variables
*
* Revision 1.2 1996/09/19 00:54:43 brianp
* fixed bug in gl_save_Rotatef() when in GL_COMPILE_AND_EXECUTE mode
*
* Revision 1.1 1996/09/13 01:38:16 brianp
* Initial revision
*
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "accum.h"
#include "alpha.h"
#include "attrib.h"
#include "bitmap.h"
#include "blend.h"
#include "clip.h"
#include "colortab.h"
#include "context.h"
#include "copypix.h"
#include "depth.h"
#include "drawpix.h"
#include "enable.h"
#include "eval.h"
#include "feedback.h"
#include "fog.h"
#include "hash.h"
#include "image.h"
#include "light.h"
#include "lines.h"
#include "dlist.h"
#include "logic.h"
#include "macros.h"
#include "masking.h"
#include "matrix.h"
#include "misc.h"
#include "pixel.h"
#include "points.h"
#include "polygon.h"
#include "rastpos.h"
#include "rect.h"
#include "scissor.h"
#include "stencil.h"
#include "texobj.h"
#include "teximage.h"
#include "texstate.h"
#include "types.h"
#include "vb.h"
#include "vbfill.h"
#endif
/*
Functions which aren't compiled but executed immediately:
glIsList
glGenLists
glDeleteLists
glEndList
glFeedbackBuffer
glSelectBuffer
glRenderMode
glReadPixels
glPixelStore
glFlush
glFinish
glIsEnabled
glGet*
Functions which cause errors if called while compiling a display list:
glNewList
*/
/*
* Display list instructions are stored as sequences of "nodes". Nodes
* are allocated in blocks. Each block has BLOCK_SIZE nodes. Blocks
* are linked together with a pointer.
*/
/* How many nodes to allocate at a time: */
#define BLOCK_SIZE 500
/*
* Display list opcodes.
*
* The fact that these identifiers are assigned consecutive
* integer values starting at 0 is very important, see InstSize array usage)
*/
typedef enum {
OPCODE_ACCUM,
OPCODE_ALPHA_FUNC,
OPCODE_BEGIN,
OPCODE_BIND_TEXTURE,
OPCODE_BITMAP,
OPCODE_BLEND_FUNC,
OPCODE_CALL_LIST,
OPCODE_CALL_LIST_OFFSET,
OPCODE_CLEAR,
OPCODE_CLEAR_ACCUM,
OPCODE_CLEAR_COLOR,
OPCODE_CLEAR_DEPTH,
OPCODE_CLEAR_INDEX,
OPCODE_CLEAR_STENCIL,
OPCODE_CLIP_PLANE,
OPCODE_COLOR_3F,
OPCODE_COLOR_4F,
OPCODE_COLOR_4UB,
OPCODE_COLOR_MASK,
OPCODE_COLOR_MATERIAL,
OPCODE_COLOR_TABLE,
OPCODE_COLOR_SUB_TABLE,
OPCODE_COPY_PIXELS,
OPCODE_COPY_TEX_IMAGE1D,
OPCODE_COPY_TEX_IMAGE2D,
OPCODE_COPY_TEX_IMAGE3D,
OPCODE_COPY_TEX_SUB_IMAGE1D,
OPCODE_COPY_TEX_SUB_IMAGE2D,
OPCODE_CULL_FACE,
OPCODE_DEPTH_FUNC,
OPCODE_DEPTH_MASK,
OPCODE_DEPTH_RANGE,
OPCODE_DISABLE,
OPCODE_DRAW_BUFFER,
OPCODE_DRAW_PIXELS,
OPCODE_EDGE_FLAG,
OPCODE_ENABLE,
OPCODE_END,
OPCODE_EVALCOORD1,
OPCODE_EVALCOORD2,
OPCODE_EVALMESH1,
OPCODE_EVALMESH2,
OPCODE_EVALPOINT1,
OPCODE_EVALPOINT2,
OPCODE_FOG,
OPCODE_FRONT_FACE,
OPCODE_FRUSTUM,
OPCODE_HINT,
OPCODE_INDEX,
OPCODE_INDEX_MASK,
OPCODE_INIT_NAMES,
OPCODE_LIGHT,
OPCODE_LIGHT_MODEL,
OPCODE_LINE_STIPPLE,
OPCODE_LINE_WIDTH,
OPCODE_LIST_BASE,
OPCODE_LOAD_IDENTITY,
OPCODE_LOAD_MATRIX,
OPCODE_LOAD_NAME,
OPCODE_LOGIC_OP,
OPCODE_MAP1,
OPCODE_MAP2,
OPCODE_MAPGRID1,
OPCODE_MAPGRID2,
OPCODE_MATERIAL,
OPCODE_MATRIX_MODE,
OPCODE_MULT_MATRIX,
OPCODE_NORMAL,
OPCODE_ORTHO,
OPCODE_PASSTHROUGH,
OPCODE_PIXEL_MAP,
OPCODE_PIXEL_TRANSFER,
OPCODE_PIXEL_ZOOM,
OPCODE_POINT_SIZE,
OPCODE_POLYGON_MODE,
OPCODE_POLYGON_STIPPLE,
OPCODE_POLYGON_OFFSET,
OPCODE_POP_ATTRIB,
OPCODE_POP_MATRIX,
OPCODE_POP_NAME,
OPCODE_PRIORITIZE_TEXTURE,
OPCODE_PUSH_ATTRIB,
OPCODE_PUSH_MATRIX,
OPCODE_PUSH_NAME,
OPCODE_RASTER_POS,
OPCODE_RECTF,
OPCODE_READ_BUFFER,
OPCODE_SCALE,
OPCODE_SCISSOR,
OPCODE_SHADE_MODEL,
OPCODE_STENCIL_FUNC,
OPCODE_STENCIL_MASK,
OPCODE_STENCIL_OP,
OPCODE_TEXCOORD2,
OPCODE_TEXCOORD4,
OPCODE_TEXENV,
OPCODE_TEXGEN,
OPCODE_TEXPARAMETER,
OPCODE_TEX_IMAGE1D,
OPCODE_TEX_IMAGE2D,
OPCODE_TEX_SUB_IMAGE1D,
OPCODE_TEX_SUB_IMAGE2D,
OPCODE_TRANSLATE,
OPCODE_VERTEX2,
OPCODE_VERTEX3,
OPCODE_VERTEX4,
OPCODE_VIEWPORT,
/* The following two are meta instructions */
OPCODE_CONTINUE,
OPCODE_END_OF_LIST
} OpCode;
/*
* Each instruction in the display list is stored as a sequence of
* contiguous nodes in memory.
* Each node is the union of a variety of datatypes.
*/
union node {
OpCode opcode;
GLboolean b;
GLbitfield bf;
GLubyte ub;
GLshort s;
GLushort us;
GLint i;
GLuint ui;
GLenum e;
GLfloat f;
GLvoid *data;
void *next; /* If prev node's opcode==OPCODE_CONTINUE */
};
/* Number of nodes of storage needed for each instruction: */
static GLuint InstSize[ OPCODE_END_OF_LIST+1 ];
/**********************************************************************/
/***** Private *****/
/**********************************************************************/
/*
* Allocate space for a display list instruction.
* Input: opcode - type of instruction
* argcount - number of arguments following the instruction
* Return: pointer to first node in the instruction
*/
static Node *alloc_instruction( GLcontext *ctx, OpCode opcode, GLint argcount )
{
Node *n, *newblock;
GLuint count = InstSize[opcode];
assert( count == argcount+1 );
if (ctx->CurrentPos + count + 2 > BLOCK_SIZE) {
/* This block is full. Allocate a new block and chain to it */
n = ctx->CurrentBlock + ctx->CurrentPos;
n[0].opcode = OPCODE_CONTINUE;
newblock = (Node *) malloc( sizeof(Node) * BLOCK_SIZE );
if (!newblock) {
gl_error( ctx, GL_OUT_OF_MEMORY, "Building display list" );
return NULL;
}
n[1].next = (Node *) newblock;
ctx->CurrentBlock = newblock;
ctx->CurrentPos = 0;
}
n = ctx->CurrentBlock + ctx->CurrentPos;
ctx->CurrentPos += count;
n[0].opcode = opcode;
return n;
}
/*
* Make an empty display list. This is used by glGenLists() to
* reserver display list IDs.
*/
static Node *make_empty_list( void )
{
Node *n = (Node *) malloc( sizeof(Node) );
n[0].opcode = OPCODE_END_OF_LIST;
return n;
}
/*
* Destroy all nodes in a display list.
* Input: list - display list number
*/
void gl_destroy_list( GLcontext *ctx, GLuint list )
{
Node *n, *block;
GLboolean done;
block = (Node *) HashLookup(ctx->Shared->DisplayList, list);
n = block;
done = block ? GL_FALSE : GL_TRUE;
while (!done) {
switch (n[0].opcode) {
/* special cases first */
case OPCODE_MAP1:
gl_free_control_points( ctx, n[1].e, (GLfloat *) n[6].data );
n += InstSize[n[0].opcode];
break;
case OPCODE_MAP2:
gl_free_control_points( ctx, n[1].e, (GLfloat *) n[10].data );
n += InstSize[n[0].opcode];
break;
case OPCODE_DRAW_PIXELS:
free( n[5].data );
n += InstSize[n[0].opcode];
break;
case OPCODE_BITMAP:
gl_free_image( (struct gl_image *) n[7].data );
n += InstSize[n[0].opcode];
break;
case OPCODE_COLOR_TABLE:
gl_free_image( (struct gl_image *) n[3].data );
n += InstSize[n[0].opcode];
break;
case OPCODE_COLOR_SUB_TABLE:
gl_free_image( (struct gl_image *) n[3].data );
n += InstSize[n[0].opcode];
break;
case OPCODE_POLYGON_STIPPLE:
free( n[1].data );
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_IMAGE1D:
gl_free_image( (struct gl_image *) n[8].data );
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_IMAGE2D:
gl_free_image( (struct gl_image *) n[9].data );
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_SUB_IMAGE1D:
{
struct gl_image *image;
image = (struct gl_image *) n[7].data;
gl_free_image( image );
}
break;
case OPCODE_TEX_SUB_IMAGE2D:
{
struct gl_image *image;
image = (struct gl_image *) n[9].data;
gl_free_image( image );
}
break;
case OPCODE_CONTINUE:
n = (Node *) n[1].next;
free( block );
block = n;
break;
case OPCODE_END_OF_LIST:
free( block );
done = GL_TRUE;
break;
default:
/* Most frequent case */
n += InstSize[n[0].opcode];
break;
}
}
HashRemove(ctx->Shared->DisplayList, list);
}
/*
* Translate the nth element of list from type to GLuint.
*/
static GLuint translate_id( GLsizei n, GLenum type, const GLvoid *list )
{
GLbyte *bptr;
GLubyte *ubptr;
GLshort *sptr;
GLushort *usptr;
GLint *iptr;
GLuint *uiptr;
GLfloat *fptr;
switch (type) {
case GL_BYTE:
bptr = (GLbyte *) list;
return (GLuint) *(bptr+n);
case GL_UNSIGNED_BYTE:
ubptr = (GLubyte *) list;
return (GLuint) *(ubptr+n);
case GL_SHORT:
sptr = (GLshort *) list;
return (GLuint) *(sptr+n);
case GL_UNSIGNED_SHORT:
usptr = (GLushort *) list;
return (GLuint) *(usptr+n);
case GL_INT:
iptr = (GLint *) list;
return (GLuint) *(iptr+n);
case GL_UNSIGNED_INT:
uiptr = (GLuint *) list;
return (GLuint) *(uiptr+n);
case GL_FLOAT:
fptr = (GLfloat *) list;
return (GLuint) *(fptr+n);
case GL_2_BYTES:
ubptr = ((GLubyte *) list) + 2*n;
return (GLuint) *ubptr * 256 + (GLuint) *(ubptr+1);
case GL_3_BYTES:
ubptr = ((GLubyte *) list) + 3*n;
return (GLuint) *ubptr * 65536
+ (GLuint) *(ubptr+1) * 256
+ (GLuint) *(ubptr+2);
case GL_4_BYTES:
ubptr = ((GLubyte *) list) + 4*n;
return (GLuint) *ubptr * 16777216
+ (GLuint) *(ubptr+1) * 65536
+ (GLuint) *(ubptr+2) * 256
+ (GLuint) *(ubptr+3);
default:
return 0;
}
}
/**********************************************************************/
/***** Public *****/
/**********************************************************************/
void gl_init_lists( void )
{
static int init_flag = 0;
if (init_flag==0) {
InstSize[OPCODE_ACCUM] = 3;
InstSize[OPCODE_ALPHA_FUNC] = 3;
InstSize[OPCODE_BEGIN] = 2;
InstSize[OPCODE_BIND_TEXTURE] = 3;
InstSize[OPCODE_BITMAP] = 8;
InstSize[OPCODE_BLEND_FUNC] = 3;
InstSize[OPCODE_CALL_LIST] = 2;
InstSize[OPCODE_CALL_LIST_OFFSET] = 2;
InstSize[OPCODE_CLEAR] = 2;
InstSize[OPCODE_CLEAR_ACCUM] = 5;
InstSize[OPCODE_CLEAR_COLOR] = 5;
InstSize[OPCODE_CLEAR_DEPTH] = 2;
InstSize[OPCODE_CLEAR_INDEX] = 2;
InstSize[OPCODE_CLEAR_STENCIL] = 2;
InstSize[OPCODE_CLIP_PLANE] = 6;
InstSize[OPCODE_COLOR_3F] = 4;
InstSize[OPCODE_COLOR_4F] = 5;
InstSize[OPCODE_COLOR_4UB] = 5;
InstSize[OPCODE_COLOR_MASK] = 5;
InstSize[OPCODE_COLOR_MATERIAL] = 3;
InstSize[OPCODE_COLOR_TABLE] = 4;
InstSize[OPCODE_COLOR_SUB_TABLE] = 4;
InstSize[OPCODE_COPY_PIXELS] = 6;
InstSize[OPCODE_COPY_TEX_IMAGE1D] = 8;
InstSize[OPCODE_COPY_TEX_IMAGE2D] = 9;
InstSize[OPCODE_COPY_TEX_SUB_IMAGE1D] = 7;
InstSize[OPCODE_COPY_TEX_SUB_IMAGE2D] = 9;
InstSize[OPCODE_CULL_FACE] = 2;
InstSize[OPCODE_DEPTH_FUNC] = 2;
InstSize[OPCODE_DEPTH_MASK] = 2;
InstSize[OPCODE_DEPTH_RANGE] = 3;
InstSize[OPCODE_DISABLE] = 2;
InstSize[OPCODE_DRAW_BUFFER] = 2;
InstSize[OPCODE_DRAW_PIXELS] = 6;
InstSize[OPCODE_ENABLE] = 2;
InstSize[OPCODE_EDGE_FLAG] = 2;
InstSize[OPCODE_END] = 1;
InstSize[OPCODE_EVALCOORD1] = 2;
InstSize[OPCODE_EVALCOORD2] = 3;
InstSize[OPCODE_EVALMESH1] = 4;
InstSize[OPCODE_EVALMESH2] = 6;
InstSize[OPCODE_EVALPOINT1] = 2;
InstSize[OPCODE_EVALPOINT2] = 3;
InstSize[OPCODE_FOG] = 6;
InstSize[OPCODE_FRONT_FACE] = 2;
InstSize[OPCODE_FRUSTUM] = 7;
InstSize[OPCODE_HINT] = 3;
InstSize[OPCODE_INDEX] = 2;
InstSize[OPCODE_INDEX_MASK] = 2;
InstSize[OPCODE_INIT_NAMES] = 1;
InstSize[OPCODE_LIGHT] = 7;
InstSize[OPCODE_LIGHT_MODEL] = 6;
InstSize[OPCODE_LINE_STIPPLE] = 3;
InstSize[OPCODE_LINE_WIDTH] = 2;
InstSize[OPCODE_LIST_BASE] = 2;
InstSize[OPCODE_LOAD_IDENTITY] = 1;
InstSize[OPCODE_LOAD_MATRIX] = 17;
InstSize[OPCODE_LOAD_NAME] = 2;
InstSize[OPCODE_LOGIC_OP] = 2;
InstSize[OPCODE_MAP1] = 7;
InstSize[OPCODE_MAP2] = 11;
InstSize[OPCODE_MAPGRID1] = 4;
InstSize[OPCODE_MAPGRID2] = 7;
InstSize[OPCODE_MATERIAL] = 7;
InstSize[OPCODE_MATRIX_MODE] = 2;
InstSize[OPCODE_MULT_MATRIX] = 17;
InstSize[OPCODE_NORMAL] = 4;
InstSize[OPCODE_ORTHO] = 7;
InstSize[OPCODE_PASSTHROUGH] = 2;
InstSize[OPCODE_PIXEL_MAP] = 4;
InstSize[OPCODE_PIXEL_TRANSFER] = 3;
InstSize[OPCODE_PIXEL_ZOOM] = 3;
InstSize[OPCODE_POINT_SIZE] = 2;
InstSize[OPCODE_POLYGON_MODE] = 3;
InstSize[OPCODE_POLYGON_STIPPLE] = 2;
InstSize[OPCODE_POLYGON_OFFSET] = 3;
InstSize[OPCODE_POP_ATTRIB] = 1;
InstSize[OPCODE_POP_MATRIX] = 1;
InstSize[OPCODE_POP_NAME] = 1;
InstSize[OPCODE_PRIORITIZE_TEXTURE] = 3;
InstSize[OPCODE_PUSH_ATTRIB] = 2;
InstSize[OPCODE_PUSH_MATRIX] = 1;
InstSize[OPCODE_PUSH_NAME] = 2;
InstSize[OPCODE_RASTER_POS] = 5;
InstSize[OPCODE_RECTF] = 5;
InstSize[OPCODE_READ_BUFFER] = 2;
InstSize[OPCODE_SCALE] = 4;
InstSize[OPCODE_SCISSOR] = 5;
InstSize[OPCODE_STENCIL_FUNC] = 4;
InstSize[OPCODE_STENCIL_MASK] = 2;
InstSize[OPCODE_STENCIL_OP] = 4;
InstSize[OPCODE_SHADE_MODEL] = 2;
InstSize[OPCODE_TEXCOORD2] = 3;
InstSize[OPCODE_TEXCOORD4] = 5;
InstSize[OPCODE_TEXENV] = 7;
InstSize[OPCODE_TEXGEN] = 7;
InstSize[OPCODE_TEXPARAMETER] = 7;
InstSize[OPCODE_TEX_IMAGE1D] = 9;
InstSize[OPCODE_TEX_IMAGE2D] = 10;
InstSize[OPCODE_TEX_SUB_IMAGE1D] = 8;
InstSize[OPCODE_TEX_SUB_IMAGE2D] = 10;
InstSize[OPCODE_TRANSLATE] = 4;
InstSize[OPCODE_VERTEX2] = 3;
InstSize[OPCODE_VERTEX3] = 4;
InstSize[OPCODE_VERTEX4] = 5;
InstSize[OPCODE_VIEWPORT] = 5;
InstSize[OPCODE_CONTINUE] = 2;
InstSize[OPCODE_END_OF_LIST] = 1;
}
init_flag = 1;
}
/*
* Display List compilation functions
*/
void gl_save_Accum( GLcontext *ctx, GLenum op, GLfloat value )
{
Node *n = alloc_instruction( ctx, OPCODE_ACCUM, 2 );
if (n) {
n[1].e = op;
n[2].f = value;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Accum)( ctx, op, value );
}
}
void gl_save_AlphaFunc( GLcontext *ctx, GLenum func, GLclampf ref )
{
Node *n = alloc_instruction( ctx, OPCODE_ALPHA_FUNC, 2 );
if (n) {
n[1].e = func;
n[2].f = (GLfloat) ref;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.AlphaFunc)( ctx, func, ref );
}
}
void gl_save_Begin( GLcontext *ctx, GLenum mode )
{
Node *n = alloc_instruction( ctx, OPCODE_BEGIN, 1 );
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Begin)( ctx, mode );
}
}
void gl_save_BindTexture( GLcontext *ctx, GLenum target, GLuint texture )
{
Node *n = alloc_instruction( ctx, OPCODE_BIND_TEXTURE, 2 );
if (n) {
n[1].e = target;
n[2].ui = texture;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.BindTexture)( ctx, target, texture );
}
}
void gl_save_Bitmap( GLcontext *ctx,
GLsizei width, GLsizei height,
GLfloat xorig, GLfloat yorig,
GLfloat xmove, GLfloat ymove,
const struct gl_image *bitmap )
{
Node *n = alloc_instruction( ctx, OPCODE_BITMAP, 7 );
if (n) {
n[1].i = (GLint) width;
n[2].i = (GLint) height;
n[3].f = xorig;
n[4].f = yorig;
n[5].f = xmove;
n[6].f = ymove;
n[7].data = (void *) bitmap;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Bitmap)( ctx, width, height,
xorig, yorig, xmove, ymove, bitmap );
}
}
void gl_save_BlendFunc( GLcontext *ctx, GLenum sfactor, GLenum dfactor )
{
Node *n = alloc_instruction( ctx, OPCODE_BLEND_FUNC, 2 );
if (n) {
n[1].e = sfactor;
n[2].e = dfactor;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.BlendFunc)( ctx, sfactor, dfactor );
}
}
void gl_save_CallList( GLcontext *ctx, GLuint list )
{
Node *n = alloc_instruction( ctx, OPCODE_CALL_LIST, 1 );
if (n) {
n[1].ui = list;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.CallList)( ctx, list );
}
}
void gl_save_CallLists( GLcontext *ctx,
GLsizei n, GLenum type, const GLvoid *lists )
{
GLuint i;
for (i=0;i<n;i++) {
GLuint list = translate_id( i, type, lists );
Node *n = alloc_instruction( ctx, OPCODE_CALL_LIST_OFFSET, 1 );
if (n) {
n[1].ui = list;
}
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.CallLists)( ctx, n, type, lists );
}
}
void gl_save_Clear( GLcontext *ctx, GLbitfield mask )
{
Node *n = alloc_instruction( ctx, OPCODE_CLEAR, 1 );
if (n) {
n[1].bf = mask;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Clear)( ctx, mask );
}
}
void gl_save_ClearAccum( GLcontext *ctx, GLfloat red, GLfloat green,
GLfloat blue, GLfloat alpha )
{
Node *n = alloc_instruction( ctx, OPCODE_CLEAR_ACCUM, 4 );
if (n) {
n[1].f = red;
n[2].f = green;
n[3].f = blue;
n[4].f = alpha;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ClearAccum)( ctx, red, green, blue, alpha );
}
}
void gl_save_ClearColor( GLcontext *ctx, GLclampf red, GLclampf green,
GLclampf blue, GLclampf alpha )
{
Node *n = alloc_instruction( ctx, OPCODE_CLEAR_COLOR, 4 );
if (n) {
n[1].f = red;
n[2].f = green;
n[3].f = blue;
n[4].f = alpha;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ClearColor)( ctx, red, green, blue, alpha );
}
}
void gl_save_ClearDepth( GLcontext *ctx, GLclampd depth )
{
Node *n = alloc_instruction( ctx, OPCODE_CLEAR_DEPTH, 1 );
if (n) {
n[1].f = (GLfloat) depth;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ClearDepth)( ctx, depth );
}
}
void gl_save_ClearIndex( GLcontext *ctx, GLfloat c )
{
Node *n = alloc_instruction( ctx, OPCODE_CLEAR_INDEX, 1 );
if (n) {
n[1].f = c;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ClearIndex)( ctx, c );
}
}
void gl_save_ClearStencil( GLcontext *ctx, GLint s )
{
Node *n = alloc_instruction( ctx, OPCODE_CLEAR_STENCIL, 1 );
if (n) {
n[1].i = s;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ClearStencil)( ctx, s );
}
}
void gl_save_ClipPlane( GLcontext *ctx, GLenum plane, const GLfloat *equ )
{
Node *n = alloc_instruction( ctx, OPCODE_CLIP_PLANE, 5 );
if (n) {
n[1].e = plane;
n[2].f = equ[0];
n[3].f = equ[1];
n[4].f = equ[2];
n[5].f = equ[3];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ClipPlane)( ctx, plane, equ );
}
}
void gl_save_Color3f( GLcontext *ctx, GLfloat r, GLfloat g, GLfloat b )
{
Node *n = alloc_instruction( ctx, OPCODE_COLOR_3F, 3 );
if (n) {
n[1].f = r;
n[2].f = g;
n[3].f = b;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Color3f)( ctx, r, g, b );
}
}
void gl_save_Color3fv( GLcontext *ctx, const GLfloat *c )
{
Node *n = alloc_instruction( ctx, OPCODE_COLOR_3F, 3 );
if (n) {
n[1].f = c[0];
n[2].f = c[1];
n[3].f = c[2];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Color3fv)( ctx, c );
}
}
void gl_save_Color4f( GLcontext *ctx, GLfloat r, GLfloat g,
GLfloat b, GLfloat a )
{
Node *n = alloc_instruction( ctx, OPCODE_COLOR_4F, 4 );
if (n) {
n[1].f = r;
n[2].f = g;
n[3].f = b;
n[4].f = a;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Color4f)( ctx, r, g, b, a );
}
}
void gl_save_Color4fv( GLcontext *ctx, const GLfloat *c )
{
Node *n = alloc_instruction( ctx, OPCODE_COLOR_4F, 4 );
if (n) {
n[1].f = c[0];
n[2].f = c[1];
n[3].f = c[2];
n[4].f = c[3];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Color4fv)( ctx, c );
}
}
void gl_save_Color4ub( GLcontext *ctx, GLubyte r, GLubyte g,
GLubyte b, GLubyte a )
{
Node *n = alloc_instruction( ctx, OPCODE_COLOR_4UB, 4 );
if (n) {
n[1].ub = r;
n[2].ub = g;
n[3].ub = b;
n[4].ub = a;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Color4ub)( ctx, r, g, b, a );
}
}
void gl_save_Color4ubv( GLcontext *ctx, const GLubyte *c )
{
Node *n = alloc_instruction( ctx, OPCODE_COLOR_4UB, 4 );
if (n) {
n[1].ub = c[0];
n[2].ub = c[1];
n[3].ub = c[2];
n[4].ub = c[3];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Color4ubv)( ctx, c );
}
}
void gl_save_ColorMask( GLcontext *ctx, GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha )
{
Node *n = alloc_instruction( ctx, OPCODE_COLOR_MASK, 4 );
if (n) {
n[1].b = red;
n[2].b = green;
n[3].b = blue;
n[4].b = alpha;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ColorMask)( ctx, red, green, blue, alpha );
}
}
void gl_save_ColorMaterial( GLcontext *ctx, GLenum face, GLenum mode )
{
Node *n = alloc_instruction( ctx, OPCODE_COLOR_MATERIAL, 2 );
if (n) {
n[1].e = face;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ColorMaterial)( ctx, face, mode );
}
}
void gl_save_ColorTable( GLcontext *ctx, GLenum target, GLenum internalFormat,
struct gl_image *table )
{
Node *n = alloc_instruction( ctx, OPCODE_COLOR_TABLE, 3 );
if (n) {
n[1].e = target;
n[2].e = internalFormat;
n[3].data = (GLvoid *) table;
if (table) {
/* must retain this image */
table->RefCount = 1;
}
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ColorTable)( ctx, target, internalFormat, table );
}
}
void gl_save_ColorSubTable( GLcontext *ctx, GLenum target,
GLsizei start, struct gl_image *data )
{
Node *n = alloc_instruction( ctx, OPCODE_COLOR_SUB_TABLE, 3 );
if (n) {
n[1].e = target;
n[2].i = start;
n[3].data = (GLvoid *) data;
if (data) {
/* must retain this image */
data->RefCount = 1;
}
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ColorSubTable)( ctx, target, start, data );
}
}
void gl_save_CopyPixels( GLcontext *ctx, GLint x, GLint y,
GLsizei width, GLsizei height, GLenum type )
{
Node *n = alloc_instruction( ctx, OPCODE_COPY_PIXELS, 5 );
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = (GLint) width;
n[4].i = (GLint) height;
n[5].e = type;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.CopyPixels)( ctx, x, y, width, height, type );
}
}
void gl_save_CopyTexImage1D( GLcontext *ctx,
GLenum target, GLint level,
GLenum internalformat,
GLint x, GLint y, GLsizei width,
GLint border )
{
Node *n = alloc_instruction( ctx, OPCODE_COPY_TEX_IMAGE1D, 7 );
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalformat;
n[4].i = x;
n[5].i = y;
n[6].i = width;
n[7].i = border;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.CopyTexImage1D)( ctx, target, level, internalformat,
x, y, width, border );
}
}
void gl_save_CopyTexImage2D( GLcontext *ctx,
GLenum target, GLint level,
GLenum internalformat,
GLint x, GLint y, GLsizei width,
GLsizei height, GLint border )
{
Node *n = alloc_instruction( ctx, OPCODE_COPY_TEX_IMAGE2D, 8 );
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalformat;
n[4].i = x;
n[5].i = y;
n[6].i = width;
n[7].i = height;
n[8].i = border;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.CopyTexImage2D)( ctx, target, level, internalformat,
x, y, width, height, border );
}
}
void gl_save_CopyTexSubImage1D( GLcontext *ctx,
GLenum target, GLint level,
GLint xoffset, GLint x, GLint y,
GLsizei width )
{
Node *n = alloc_instruction( ctx, OPCODE_COPY_TEX_SUB_IMAGE1D, 6 );
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = x;
n[5].i = y;
n[6].i = width;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.CopyTexSubImage1D)( ctx, target, level, xoffset, x, y, width );
}
}
void gl_save_CopyTexSubImage2D( GLcontext *ctx,
GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLint x, GLint y,
GLsizei width, GLint height )
{
Node *n = alloc_instruction( ctx, OPCODE_COPY_TEX_SUB_IMAGE2D, 8 );
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = x;
n[6].i = y;
n[7].i = width;
n[8].i = height;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.CopyTexSubImage2D)( ctx, target, level, xoffset, yoffset,
x, y, width, height );
}
}
void gl_save_CullFace( GLcontext *ctx, GLenum mode )
{
Node *n = alloc_instruction( ctx, OPCODE_CULL_FACE, 1 );
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.CullFace)( ctx, mode );
}
}
void gl_save_DepthFunc( GLcontext *ctx, GLenum func )
{
Node *n = alloc_instruction( ctx, OPCODE_DEPTH_FUNC, 1 );
if (n) {
n[1].e = func;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.DepthFunc)( ctx, func );
}
}
void gl_save_DepthMask( GLcontext *ctx, GLboolean mask )
{
Node *n = alloc_instruction( ctx, OPCODE_DEPTH_MASK, 1 );
if (n) {
n[1].b = mask;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.DepthMask)( ctx, mask );
}
}
void gl_save_DepthRange( GLcontext *ctx, GLclampd nearval, GLclampd farval )
{
Node *n = alloc_instruction( ctx, OPCODE_DEPTH_RANGE, 2 );
if (n) {
n[1].f = (GLfloat) nearval;
n[2].f = (GLfloat) farval;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.DepthRange)( ctx, nearval, farval );
}
}
void gl_save_Disable( GLcontext *ctx, GLenum cap )
{
Node *n = alloc_instruction( ctx, OPCODE_DISABLE, 1 );
if (n) {
n[1].e = cap;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Disable)( ctx, cap );
}
}
void gl_save_DrawBuffer( GLcontext *ctx, GLenum mode )
{
Node *n = alloc_instruction( ctx, OPCODE_DRAW_BUFFER, 1 );
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.DrawBuffer)( ctx, mode );
}
}
void gl_save_DrawPixels( GLcontext *ctx, GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid *pixels )
{
Node *n = alloc_instruction( ctx, OPCODE_DRAW_PIXELS, 5 );
if (n) {
n[1].i = (GLint) width;
n[2].i = (GLint) height;
n[3].e = format;
n[4].e = type;
n[5].data = (GLvoid *) pixels;
}
/* Special case: gl_DrawPixels takes care of GL_COMPILE_AND_EXECUTE case!
if (ctx->ExecuteFlag) {
(*ctx->Exec.DrawPixels)( ctx, width, height, format, type, pixels );
}
*/
}
void gl_save_EdgeFlag( GLcontext *ctx, GLboolean flag )
{
Node *n = alloc_instruction( ctx, OPCODE_EDGE_FLAG, 1 );
if (n) {
n[1].b = flag;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.EdgeFlag)( ctx, flag );
}
}
void gl_save_Enable( GLcontext *ctx, GLenum cap )
{
Node *n = alloc_instruction( ctx, OPCODE_ENABLE, 1 );
if (n) {
n[1].e = cap;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Enable)( ctx, cap );
}
}
void gl_save_End( GLcontext *ctx )
{
(void) alloc_instruction( ctx, OPCODE_END, 0 );
if (ctx->ExecuteFlag) {
(*ctx->Exec.End)( ctx );
}
}
void gl_save_EvalCoord1f( GLcontext *ctx, GLfloat u )
{
Node *n = alloc_instruction( ctx, OPCODE_EVALCOORD1, 1 );
if (n) {
n[1].f = u;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.EvalCoord1f)( ctx, u );
}
}
void gl_save_EvalCoord2f( GLcontext *ctx, GLfloat u, GLfloat v )
{
Node *n = alloc_instruction( ctx, OPCODE_EVALCOORD2, 2 );
if (n) {
n[1].f = u;
n[2].f = v;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.EvalCoord2f)( ctx, u, v );
}
}
void gl_save_EvalMesh1( GLcontext *ctx,
GLenum mode, GLint i1, GLint i2 )
{
Node *n = alloc_instruction( ctx, OPCODE_EVALMESH1, 3 );
if (n) {
n[1].e = mode;
n[2].i = i1;
n[3].i = i2;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.EvalMesh1)( ctx, mode, i1, i2 );
}
}
void gl_save_EvalMesh2( GLcontext *ctx,
GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2 )
{
Node *n = alloc_instruction( ctx, OPCODE_EVALMESH2, 5 );
if (n) {
n[1].e = mode;
n[2].i = i1;
n[3].i = i2;
n[4].i = j1;
n[5].i = j2;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.EvalMesh2)( ctx, mode, i1, i2, j1, j2 );
}
}
void gl_save_EvalPoint1( GLcontext *ctx, GLint i )
{
Node *n = alloc_instruction( ctx, OPCODE_EVALPOINT1, 1 );
if (n) {
n[1].i = i;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.EvalPoint1)( ctx, i );
}
}
void gl_save_EvalPoint2( GLcontext *ctx, GLint i, GLint j )
{
Node *n = alloc_instruction( ctx, OPCODE_EVALPOINT2, 2 );
if (n) {
n[1].i = i;
n[2].i = j;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.EvalPoint2)( ctx, i, j );
}
}
void gl_save_Fogfv( GLcontext *ctx, GLenum pname, const GLfloat *params )
{
Node *n = alloc_instruction( ctx, OPCODE_FOG, 5 );
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
n[5].f = params[3];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Fogfv)( ctx, pname, params );
}
}
void gl_save_FrontFace( GLcontext *ctx, GLenum mode )
{
Node *n = alloc_instruction( ctx, OPCODE_FRONT_FACE, 1 );
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.FrontFace)( ctx, mode );
}
}
void gl_save_Frustum( GLcontext *ctx, GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble nearval, GLdouble farval )
{
Node *n = alloc_instruction( ctx, OPCODE_FRUSTUM, 6 );
if (n) {
n[1].f = left;
n[2].f = right;
n[3].f = bottom;
n[4].f = top;
n[5].f = nearval;
n[6].f = farval;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Frustum)( ctx, left, right, bottom, top, nearval, farval );
}
}
void gl_save_Hint( GLcontext *ctx, GLenum target, GLenum mode )
{
Node *n = alloc_instruction( ctx, OPCODE_HINT, 2 );
if (n) {
n[1].e = target;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Hint)( ctx, target, mode );
}
}
void gl_save_Indexi( GLcontext *ctx, GLint index )
{
Node *n = alloc_instruction( ctx, OPCODE_INDEX, 1 );
if (n) {
n[1].i = index;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Indexi)( ctx, index );
}
}
void gl_save_Indexf( GLcontext *ctx, GLfloat index )
{
Node *n = alloc_instruction( ctx, OPCODE_INDEX, 1 );
if (n) {
n[1].i = (GLint) index;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Indexf)( ctx,index );
}
}
void gl_save_IndexMask( GLcontext *ctx, GLuint mask )
{
Node *n = alloc_instruction( ctx, OPCODE_INDEX_MASK, 1 );
if (n) {
n[1].ui = mask;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.IndexMask)( ctx, mask );
}
}
void gl_save_InitNames( GLcontext *ctx )
{
(void) alloc_instruction( ctx, OPCODE_INIT_NAMES, 0 );
if (ctx->ExecuteFlag) {
(*ctx->Exec.InitNames)( ctx );
}
}
void gl_save_Lightfv( GLcontext *ctx, GLenum light, GLenum pname,
const GLfloat *params, GLint numparams )
{
Node *n = alloc_instruction( ctx, OPCODE_LIGHT, 6 );
if (OPCODE_LIGHT) {
GLint i;
n[1].e = light;
n[2].e = pname;
for (i=0;i<numparams;i++) {
n[3+i].f = params[i];
}
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Lightfv)( ctx, light, pname, params, numparams );
}
}
void gl_save_LightModelfv( GLcontext *ctx,
GLenum pname, const GLfloat *params )
{
Node *n = alloc_instruction( ctx, OPCODE_LIGHT_MODEL, 5 );
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
n[5].f = params[3];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.LightModelfv)( ctx, pname, params );
}
}
void gl_save_LineStipple( GLcontext *ctx, GLint factor, GLushort pattern )
{
Node *n = alloc_instruction( ctx, OPCODE_LINE_STIPPLE, 2 );
if (n) {
n[1].i = factor;
n[2].us = pattern;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.LineStipple)( ctx, factor, pattern );
}
}
void gl_save_LineWidth( GLcontext *ctx, GLfloat width )
{
Node *n = alloc_instruction( ctx, OPCODE_LINE_WIDTH, 1 );
if (n) {
n[1].f = width;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.LineWidth)( ctx, width );
}
}
void gl_save_ListBase( GLcontext *ctx, GLuint base )
{
Node *n = alloc_instruction( ctx, OPCODE_LIST_BASE, 1 );
if (n) {
n[1].ui = base;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ListBase)( ctx, base );
}
}
void gl_save_LoadIdentity( GLcontext *ctx )
{
(void) alloc_instruction( ctx, OPCODE_LOAD_IDENTITY, 0 );
if (ctx->ExecuteFlag) {
(*ctx->Exec.LoadIdentity)( ctx );
}
}
void gl_save_LoadMatrixf( GLcontext *ctx, const GLfloat *m )
{
Node *n = alloc_instruction( ctx, OPCODE_LOAD_MATRIX, 16 );
if (n) {
GLuint i;
for (i=0;i<16;i++) {
n[1+i].f = m[i];
}
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.LoadMatrixf)( ctx, m );
}
}
void gl_save_LoadName( GLcontext *ctx, GLuint name )
{
Node *n = alloc_instruction( ctx, OPCODE_LOAD_NAME, 1 );
if (n) {
n[1].ui = name;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.LoadName)( ctx, name );
}
}
void gl_save_LogicOp( GLcontext *ctx, GLenum opcode )
{
Node *n = alloc_instruction( ctx, OPCODE_LOGIC_OP, 1 );
if (n) {
n[1].e = opcode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.LogicOp)( ctx, opcode );
}
}
void gl_save_Map1f( GLcontext *ctx,
GLenum target, GLfloat u1, GLfloat u2, GLint stride,
GLint order, const GLfloat *points, GLboolean retain )
{
Node *n = alloc_instruction( ctx, OPCODE_MAP1, 6 );
if (n) {
n[1].e = target;
n[2].f = u1;
n[3].f = u2;
n[4].i = stride;
n[5].i = order;
n[6].data = (void *) points;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Map1f)( ctx, target, u1, u2, stride, order, points, GL_TRUE );
}
}
void gl_save_Map2f( GLcontext *ctx, GLenum target,
GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
const GLfloat *points, GLboolean retain )
{
Node *n = alloc_instruction( ctx, OPCODE_MAP2, 10 );
if (n) {
n[1].e = target;
n[2].f = u1;
n[3].f = u2;
n[4].f = v1;
n[5].f = v2;
n[6].i = ustride;
n[7].i = vstride;
n[8].i = uorder;
n[9].i = vorder;
n[10].data = (void *) points;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Map2f)( ctx, target,
u1, u2, ustride, uorder,
v1, v2, vstride, vorder, points, GL_TRUE );
}
}
void gl_save_MapGrid1f( GLcontext *ctx, GLint un, GLfloat u1, GLfloat u2 )
{
Node *n = alloc_instruction( ctx, OPCODE_MAPGRID1, 3 );
if (n) {
n[1].i = un;
n[2].f = u1;
n[3].f = u2;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.MapGrid1f)( ctx, un, u1, u2 );
}
}
void gl_save_MapGrid2f( GLcontext *ctx,
GLint un, GLfloat u1, GLfloat u2,
GLint vn, GLfloat v1, GLfloat v2 )
{
Node *n = alloc_instruction( ctx, OPCODE_MAPGRID2, 6 );
if (n) {
n[1].i = un;
n[2].f = u1;
n[3].f = u2;
n[4].i = vn;
n[5].f = v1;
n[6].f = v2;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.MapGrid2f)( ctx, un, u1, u2, vn, v1, v2 );
}
}
void gl_save_Materialfv( GLcontext *ctx,
GLenum face, GLenum pname, const GLfloat *params )
{
Node *n = alloc_instruction( ctx, OPCODE_MATERIAL, 6 );
if (n) {
n[1].e = face;
n[2].e = pname;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Materialfv)( ctx, face, pname, params );
}
}
void gl_save_MatrixMode( GLcontext *ctx, GLenum mode )
{
Node *n = alloc_instruction( ctx, OPCODE_MATRIX_MODE, 1 );
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.MatrixMode)( ctx, mode );
}
}
void gl_save_MultMatrixf( GLcontext *ctx, const GLfloat *m )
{
Node *n = alloc_instruction( ctx, OPCODE_MULT_MATRIX, 16 );
if (n) {
GLuint i;
for (i=0;i<16;i++) {
n[1+i].f = m[i];
}
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.MultMatrixf)( ctx, m );
}
}
void gl_save_NewList( GLcontext *ctx, GLuint list, GLenum mode )
{
/* It's an error to call this function while building a display list */
gl_error( ctx, GL_INVALID_OPERATION, "glNewList" );
}
void gl_save_Normal3fv( GLcontext *ctx, const GLfloat norm[3] )
{
Node *n = alloc_instruction( ctx, OPCODE_NORMAL, 3 );
if (n) {
n[1].f = norm[0];
n[2].f = norm[1];
n[3].f = norm[2];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Normal3fv)( ctx, norm );
}
}
void gl_save_Normal3f( GLcontext *ctx, GLfloat nx, GLfloat ny, GLfloat nz )
{
Node *n = alloc_instruction( ctx, OPCODE_NORMAL, 3 );
if (n) {
n[1].f = nx;
n[2].f = ny;
n[3].f = nz;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Normal3f)( ctx, nx, ny, nz );
}
}
void gl_save_Ortho( GLcontext *ctx, GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble nearval, GLdouble farval )
{
Node *n = alloc_instruction( ctx, OPCODE_ORTHO, 6 );
if (n) {
n[1].f = left;
n[2].f = right;
n[3].f = bottom;
n[4].f = top;
n[5].f = nearval;
n[6].f = farval;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Ortho)( ctx, left, right, bottom, top, nearval, farval );
}
}
void gl_save_PixelMapfv( GLcontext *ctx,
GLenum map, GLint mapsize, const GLfloat *values )
{
Node *n = alloc_instruction( ctx, OPCODE_PIXEL_MAP, 3 );
if (n) {
n[1].e = map;
n[2].i = mapsize;
n[3].data = (void *) malloc( mapsize * sizeof(GLfloat) );
MEMCPY( n[3].data, (void *) values, mapsize * sizeof(GLfloat) );
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PixelMapfv)( ctx, map, mapsize, values );
}
}
void gl_save_PixelTransferf( GLcontext *ctx, GLenum pname, GLfloat param )
{
Node *n = alloc_instruction( ctx, OPCODE_PIXEL_TRANSFER, 2 );
if (n) {
n[1].e = pname;
n[2].f = param;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PixelTransferf)( ctx, pname, param );
}
}
void gl_save_PixelZoom( GLcontext *ctx, GLfloat xfactor, GLfloat yfactor )
{
Node *n = alloc_instruction( ctx, OPCODE_PIXEL_ZOOM, 2 );
if (n) {
n[1].f = xfactor;
n[2].f = yfactor;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PixelZoom)( ctx, xfactor, yfactor );
}
}
void gl_save_PointSize( GLcontext *ctx, GLfloat size )
{
Node *n = alloc_instruction( ctx, OPCODE_POINT_SIZE, 1 );
if (n) {
n[1].f = size;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PointSize)( ctx, size );
}
}
void gl_save_PolygonMode( GLcontext *ctx, GLenum face, GLenum mode )
{
Node *n = alloc_instruction( ctx, OPCODE_POLYGON_MODE, 2 );
if (n) {
n[1].e = face;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PolygonMode)( ctx, face, mode );
}
}
void gl_save_PolygonStipple( GLcontext *ctx, const GLubyte *mask )
{
Node *n = alloc_instruction( ctx, OPCODE_POLYGON_STIPPLE, 1 );
if (n) {
void *data;
n[1].data = malloc( 32 * 4 );
data = n[1].data; /* This needed for Acorn compiler */
MEMCPY( data, mask, 32 * 4 );
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PolygonStipple)( ctx, mask );
}
}
void gl_save_PolygonOffset( GLcontext *ctx, GLfloat factor, GLfloat units )
{
Node *n = alloc_instruction( ctx, OPCODE_POLYGON_OFFSET, 2 );
if (n) {
n[1].f = factor;
n[2].f = units;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PolygonOffset)( ctx, factor, units );
}
}
void gl_save_PopAttrib( GLcontext *ctx )
{
(void) alloc_instruction( ctx, OPCODE_POP_ATTRIB, 0 );
if (ctx->ExecuteFlag) {
(*ctx->Exec.PopAttrib)( ctx );
}
}
void gl_save_PopMatrix( GLcontext *ctx )
{
(void) alloc_instruction( ctx, OPCODE_POP_MATRIX, 0 );
if (ctx->ExecuteFlag) {
(*ctx->Exec.PopMatrix)( ctx );
}
}
void gl_save_PopName( GLcontext *ctx )
{
(void) alloc_instruction( ctx, OPCODE_POP_NAME, 0 );
if (ctx->ExecuteFlag) {
(*ctx->Exec.PopName)( ctx );
}
}
void gl_save_PrioritizeTextures( GLcontext *ctx,
GLsizei num, const GLuint *textures,
const GLclampf *priorities )
{
GLint i;
for (i=0;i<num;i++) {
Node *n = alloc_instruction( ctx, OPCODE_PRIORITIZE_TEXTURE, 2 );
if (n) {
n[1].ui = textures[i];
n[2].f = priorities[i];
}
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PrioritizeTextures)( ctx, num, textures, priorities );
}
}
void gl_save_PushAttrib( GLcontext *ctx, GLbitfield mask )
{
Node *n = alloc_instruction( ctx, OPCODE_PUSH_ATTRIB, 1 );
if (n) {
n[1].bf = mask;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PushAttrib)( ctx, mask );
}
}
void gl_save_PushMatrix( GLcontext *ctx )
{
(void) alloc_instruction( ctx, OPCODE_PUSH_MATRIX, 0 );
if (ctx->ExecuteFlag) {
(*ctx->Exec.PushMatrix)( ctx );
}
}
void gl_save_PushName( GLcontext *ctx, GLuint name )
{
Node *n = alloc_instruction( ctx, OPCODE_PUSH_NAME, 1 );
if (n) {
n[1].ui = name;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PushName)( ctx, name );
}
}
void gl_save_RasterPos4f( GLcontext *ctx,
GLfloat x, GLfloat y, GLfloat z, GLfloat w )
{
Node *n = alloc_instruction( ctx, OPCODE_RASTER_POS, 4 );
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
n[4].f = w;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.RasterPos4f)( ctx, x, y, z, w );
}
}
void gl_save_PassThrough( GLcontext *ctx, GLfloat token )
{
Node *n = alloc_instruction( ctx, OPCODE_PASSTHROUGH, 1 );
if (n) {
n[1].f = token;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.PassThrough)( ctx, token );
}
}
void gl_save_ReadBuffer( GLcontext *ctx, GLenum mode )
{
Node *n = alloc_instruction( ctx, OPCODE_READ_BUFFER, 1 );
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ReadBuffer)( ctx, mode );
}
}
void gl_save_Rectf( GLcontext *ctx,
GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2 )
{
Node *n = alloc_instruction( ctx, OPCODE_RECTF, 4 );
if (n) {
n[1].f = x1;
n[2].f = y1;
n[3].f = x2;
n[4].f = y2;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Rectf)( ctx, x1, y1, x2, y2 );
}
}
void gl_save_Rotatef( GLcontext *ctx, GLfloat angle,
GLfloat x, GLfloat y, GLfloat z )
{
GLfloat m[16];
gl_rotation_matrix( angle, x, y, z, m );
gl_save_MultMatrixf( ctx, m ); /* save and maybe execute */
}
void gl_save_Scalef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
{
Node *n = alloc_instruction( ctx, OPCODE_SCALE, 3 );
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Scalef)( ctx, x, y, z );
}
}
void gl_save_Scissor( GLcontext *ctx,
GLint x, GLint y, GLsizei width, GLsizei height )
{
Node *n = alloc_instruction( ctx, OPCODE_SCISSOR, 4 );
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = width;
n[4].i = height;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Scissor)( ctx, x, y, width, height );
}
}
void gl_save_ShadeModel( GLcontext *ctx, GLenum mode )
{
Node *n = alloc_instruction( ctx, OPCODE_SHADE_MODEL, 1 );
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.ShadeModel)( ctx, mode );
}
}
void gl_save_StencilFunc( GLcontext *ctx, GLenum func, GLint ref, GLuint mask )
{
Node *n = alloc_instruction( ctx, OPCODE_STENCIL_FUNC, 3 );
if (n) {
n[1].e = func;
n[2].i = ref;
n[3].ui = mask;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.StencilFunc)( ctx, func, ref, mask );
}
}
void gl_save_StencilMask( GLcontext *ctx, GLuint mask )
{
Node *n = alloc_instruction( ctx, OPCODE_STENCIL_MASK, 1 );
if (n) {
n[1].ui = mask;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.StencilMask)( ctx, mask );
}
}
void gl_save_StencilOp( GLcontext *ctx,
GLenum fail, GLenum zfail, GLenum zpass )
{
Node *n = alloc_instruction( ctx, OPCODE_STENCIL_OP, 3 );
if (n) {
n[1].e = fail;
n[2].e = zfail;
n[3].e = zpass;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.StencilOp)( ctx, fail, zfail, zpass );
}
}
void gl_save_TexCoord2f( GLcontext *ctx, GLfloat s, GLfloat t )
{
Node *n = alloc_instruction( ctx, OPCODE_TEXCOORD2, 2 );
if (n) {
n[1].f = s;
n[2].f = t;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.TexCoord2f)( ctx, s, t );
}
}
void gl_save_TexCoord4f( GLcontext *ctx, GLfloat s, GLfloat t,
GLfloat r, GLfloat q )
{
Node *n = alloc_instruction( ctx, OPCODE_TEXCOORD4, 4 );
if (n) {
n[1].f = s;
n[2].f = t;
n[3].f = r;
n[4].f = q;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.TexCoord4f)( ctx, s, t, r, q );
}
}
void gl_save_TexEnvfv( GLcontext *ctx,
GLenum target, GLenum pname, const GLfloat *params )
{
Node *n = alloc_instruction( ctx, OPCODE_TEXENV, 6 );
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.TexEnvfv)( ctx, target, pname, params );
}
}
void gl_save_TexGenfv( GLcontext *ctx,
GLenum coord, GLenum pname, const GLfloat *params )
{
Node *n = alloc_instruction( ctx, OPCODE_TEXGEN, 6 );
if (n) {
n[1].e = coord;
n[2].e = pname;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.TexGenfv)( ctx, coord, pname, params );
}
}
void gl_save_TexParameterfv( GLcontext *ctx, GLenum target,
GLenum pname, const GLfloat *params )
{
Node *n = alloc_instruction( ctx, OPCODE_TEXPARAMETER, 6 );
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.TexParameterfv)( ctx, target, pname, params );
}
}
void gl_save_TexImage1D( GLcontext *ctx, GLenum target,
GLint level, GLint components,
GLsizei width, GLint border,
GLenum format, GLenum type,
struct gl_image *teximage )
{
Node *n = alloc_instruction( ctx, OPCODE_TEX_IMAGE1D, 8 );
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = components;
n[4].i = (GLint) width;
n[5].i = border;
n[6].e = format;
n[7].e = type;
n[8].data = teximage;
if (teximage) {
/* this prevents gl_TexImage2D() from freeing the image */
teximage->RefCount = 1;
}
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.TexImage1D)( ctx, target, level, components, width,
border, format, type, teximage );
}
}
void gl_save_TexImage2D( GLcontext *ctx, GLenum target,
GLint level, GLint components,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type,
struct gl_image *teximage )
{
Node *n = alloc_instruction( ctx, OPCODE_TEX_IMAGE2D, 9 );
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = components;
n[4].i = (GLint) width;
n[5].i = (GLint) height;
n[6].i = border;
n[7].e = format;
n[8].e = type;
n[9].data = teximage;
if (teximage) {
/* this prevents gl_TexImage2D() from freeing the image */
teximage->RefCount = 1;
}
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.TexImage2D)( ctx, target, level, components, width,
height, border, format, type, teximage );
}
}
void gl_save_TexSubImage1D( GLcontext *ctx,
GLenum target, GLint level, GLint xoffset,
GLsizei width, GLenum format, GLenum type,
struct gl_image *image )
{
Node *n = alloc_instruction( ctx, OPCODE_TEX_SUB_IMAGE1D, 7 );
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = (GLint) width;
n[5].e = format;
n[6].e = type;
n[7].data = image;
if (image)
image->RefCount = 1;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.TexSubImage1D)( ctx, target, level, xoffset, width,
format, type, image );
}
}
void gl_save_TexSubImage2D( GLcontext *ctx,
GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLenum format, GLenum type,
struct gl_image *image )
{
Node *n = alloc_instruction( ctx, OPCODE_TEX_SUB_IMAGE2D, 9 );
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = (GLint) width;
n[6].i = (GLint) height;
n[7].e = format;
n[8].e = type;
n[9].data = image;
if (image)
image->RefCount = 1;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.TexSubImage2D)( ctx, target, level, xoffset, yoffset,
width, height, format, type, image );
}
}
void gl_save_Translatef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
{
Node *n = alloc_instruction( ctx, OPCODE_TRANSLATE, 3 );
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Translatef)( ctx, x, y, z );
}
}
void gl_save_Vertex2f( GLcontext *ctx, GLfloat x, GLfloat y )
{
Node *n = alloc_instruction( ctx, OPCODE_VERTEX2, 2 );
if (n) {
n[1].f = x;
n[2].f = y;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Vertex2f)( ctx, x, y );
}
}
void gl_save_Vertex3f( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
{
Node *n = alloc_instruction( ctx, OPCODE_VERTEX3, 3 );
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Vertex3f)( ctx, x, y, z );
}
}
void gl_save_Vertex4f( GLcontext *ctx,
GLfloat x, GLfloat y, GLfloat z, GLfloat w )
{
Node *n = alloc_instruction( ctx, OPCODE_VERTEX4, 4 );
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
n[4].f = w;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Vertex4f)( ctx, x, y, z, w );
}
}
void gl_save_Vertex3fv( GLcontext *ctx, const GLfloat v[3] )
{
Node *n = alloc_instruction( ctx, OPCODE_VERTEX3, 3 );
if (n) {
n[1].f = v[0];
n[2].f = v[1];
n[3].f = v[2];
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Vertex3fv)( ctx, v );
}
}
void gl_save_Viewport( GLcontext *ctx,
GLint x, GLint y, GLsizei width, GLsizei height )
{
Node *n = alloc_instruction( ctx, OPCODE_VIEWPORT, 4 );
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = (GLint) width;
n[4].i = (GLint) height;
}
if (ctx->ExecuteFlag) {
(*ctx->Exec.Viewport)( ctx, x, y, width, height );
}
}
/**********************************************************************/
/* Display list execution */
/**********************************************************************/
/*
* Execute a display list. Note that the ListBase offset must have already
* been added before calling this function. I.e. the list argument is
* the absolute list number, not relative to ListBase.
* Input: list - display list number
*/
static void execute_list( GLcontext *ctx, GLuint list )
{
Node *n;
GLboolean done;
OpCode opcode;
if (!gl_IsList(ctx,list))
return;
ctx->CallDepth++;
n = (Node *) HashLookup(ctx->Shared->DisplayList, list);
done = GL_FALSE;
while (!done) {
opcode = n[0].opcode;
switch (opcode) {
/* Frequently called functions: */
case OPCODE_VERTEX2:
(*ctx->Exec.Vertex2f)( ctx, n[1].f, n[2].f );
break;
case OPCODE_VERTEX3:
(*ctx->Exec.Vertex3f)( ctx, n[1].f, n[2].f, n[3].f );
break;
case OPCODE_VERTEX4:
(*ctx->Exec.Vertex4f)( ctx, n[1].f, n[2].f, n[3].f, n[4].f );
break;
case OPCODE_NORMAL:
ctx->Current.Normal[0] = n[1].f;
ctx->Current.Normal[1] = n[2].f;
ctx->Current.Normal[2] = n[3].f;
ctx->VB->MonoNormal = GL_FALSE;
break;
case OPCODE_COLOR_4UB:
(*ctx->Exec.Color4ub)( ctx, n[1].ub, n[2].ub, n[3].ub, n[4].ub );
break;
case OPCODE_COLOR_3F:
(*ctx->Exec.Color3f)( ctx, n[1].f, n[2].f, n[3].f );
break;
case OPCODE_COLOR_4F:
(*ctx->Exec.Color4f)( ctx, n[1].f, n[2].f, n[3].f, n[4].f );
break;
case OPCODE_INDEX:
ctx->Current.Index = n[1].ui;
ctx->VB->MonoColor = GL_FALSE;
break;
case OPCODE_BEGIN:
gl_Begin( ctx, n[1].e );
break;
case OPCODE_END:
gl_End( ctx );
break;
case OPCODE_TEXCOORD2:
ctx->Current.TexCoord[0] = n[1].f;
ctx->Current.TexCoord[1] = n[2].f;
if (ctx->VB->TexCoordSize==4) {
ctx->Current.TexCoord[2] = 0.0F;
ctx->Current.TexCoord[3] = 1.0F;
}
break;
case OPCODE_TEXCOORD4:
ctx->Current.TexCoord[0] = n[1].f;
ctx->Current.TexCoord[1] = n[2].f;
ctx->Current.TexCoord[2] = n[3].f;
ctx->Current.TexCoord[3] = n[4].f;
if (ctx->VB->TexCoordSize==2) {
/* Switch to 4-component texcoords */
ctx->VB->TexCoordSize = 4;
gl_set_vertex_function(ctx);
}
break;
/* Everything Else: */
case OPCODE_ACCUM:
gl_Accum( ctx, n[1].e, n[2].f );
break;
case OPCODE_ALPHA_FUNC:
gl_AlphaFunc( ctx, n[1].e, n[2].f );
break;
case OPCODE_BIND_TEXTURE:
gl_BindTexture( ctx, n[1].e, n[2].ui );
break;
case OPCODE_BITMAP:
gl_Bitmap( ctx, (GLsizei) n[1].i, (GLsizei) n[2].i,
n[3].f, n[4].f,
n[5].f, n[6].f,
(struct gl_image *) n[7].data );
break;
case OPCODE_BLEND_FUNC:
gl_BlendFunc( ctx, n[1].e, n[2].e );
break;
case OPCODE_CALL_LIST:
/* Generated by glCallList(), don't add ListBase */
if (ctx->CallDepth<MAX_LIST_NESTING) {
execute_list( ctx, n[1].ui );
}
break;
case OPCODE_CALL_LIST_OFFSET:
/* Generated by glCallLists() so we must add ListBase */
if (ctx->CallDepth<MAX_LIST_NESTING) {
execute_list( ctx, ctx->List.ListBase + n[1].ui );
}
break;
case OPCODE_CLEAR:
gl_Clear( ctx, n[1].bf );
break;
case OPCODE_CLEAR_COLOR:
gl_ClearColor( ctx, n[1].f, n[2].f, n[3].f, n[4].f );
break;
case OPCODE_CLEAR_ACCUM:
gl_ClearAccum( ctx, n[1].f, n[2].f, n[3].f, n[4].f );
break;
case OPCODE_CLEAR_DEPTH:
gl_ClearDepth( ctx, (GLclampd) n[1].f );
break;
case OPCODE_CLEAR_INDEX:
gl_ClearIndex( ctx, n[1].ui );
break;
case OPCODE_CLEAR_STENCIL:
gl_ClearStencil( ctx, n[1].i );
break;
case OPCODE_CLIP_PLANE:
{
GLfloat equ[4];
equ[0] = n[2].f;
equ[1] = n[3].f;
equ[2] = n[4].f;
equ[3] = n[5].f;
gl_ClipPlane( ctx, n[1].e, equ );
}
break;
case OPCODE_COLOR_MASK:
gl_ColorMask( ctx, n[1].b, n[2].b, n[3].b, n[4].b );
break;
case OPCODE_COLOR_MATERIAL:
gl_ColorMaterial( ctx, n[1].e, n[2].e );
break;
case OPCODE_COLOR_TABLE:
gl_ColorTable( ctx, n[1].e, n[2].e, (struct gl_image *) n[3].data);
break;
case OPCODE_COLOR_SUB_TABLE:
gl_ColorSubTable( ctx, n[1].e, n[2].i,
(struct gl_image *) n[3].data);
break;
case OPCODE_COPY_PIXELS:
gl_CopyPixels( ctx, n[1].i, n[2].i,
(GLsizei) n[3].i, (GLsizei) n[4].i, n[5].e );
break;
case OPCODE_COPY_TEX_IMAGE1D:
gl_CopyTexImage1D( ctx, n[1].e, n[2].i, n[3].e, n[4].i,
n[5].i, n[6].i, n[7].i );
break;
case OPCODE_COPY_TEX_IMAGE2D:
gl_CopyTexImage2D( ctx, n[1].e, n[2].i, n[3].e, n[4].i,
n[5].i, n[6].i, n[7].i, n[8].i );
break;
case OPCODE_COPY_TEX_SUB_IMAGE1D:
gl_CopyTexSubImage1D( ctx, n[1].e, n[2].i, n[3].i, n[4].i,
n[5].i, n[6].i );
break;
case OPCODE_COPY_TEX_SUB_IMAGE2D:
gl_CopyTexSubImage2D( ctx, n[1].e, n[2].i, n[3].i, n[4].i,
n[5].i, n[6].i, n[7].i, n[8].i );
break;
case OPCODE_CULL_FACE:
gl_CullFace( ctx, n[1].e );
break;
case OPCODE_DEPTH_FUNC:
gl_DepthFunc( ctx, n[1].e );
break;
case OPCODE_DEPTH_MASK:
gl_DepthMask( ctx, n[1].b );
break;
case OPCODE_DEPTH_RANGE:
gl_DepthRange( ctx, (GLclampd) n[1].f, (GLclampd) n[2].f );
break;
case OPCODE_DISABLE:
gl_Disable( ctx, n[1].e );
break;
case OPCODE_DRAW_BUFFER:
gl_DrawBuffer( ctx, n[1].e );
break;
case OPCODE_DRAW_PIXELS:
gl_DrawPixels( ctx, (GLsizei) n[1].i, (GLsizei) n[2].i,
n[3].e, n[4].e, n[5].data );
break;
case OPCODE_EDGE_FLAG:
ctx->Current.EdgeFlag = n[1].b;
break;
case OPCODE_ENABLE:
gl_Enable( ctx, n[1].e );
break;
case OPCODE_EVALCOORD1:
gl_EvalCoord1f( ctx, n[1].f );
break;
case OPCODE_EVALCOORD2:
gl_EvalCoord2f( ctx, n[1].f, n[2].f );
break;
case OPCODE_EVALMESH1:
gl_EvalMesh1( ctx, n[1].e, n[2].i, n[3].i );
break;
case OPCODE_EVALMESH2:
gl_EvalMesh2( ctx, n[1].e, n[2].i, n[3].i, n[4].i, n[5].i );
break;
case OPCODE_EVALPOINT1:
gl_EvalPoint1( ctx, n[1].i );
break;
case OPCODE_EVALPOINT2:
gl_EvalPoint2( ctx, n[1].i, n[2].i );
break;
case OPCODE_FOG:
{
GLfloat p[4];
p[0] = n[2].f;
p[1] = n[3].f;
p[2] = n[4].f;
p[3] = n[5].f;
gl_Fogfv( ctx, n[1].e, p );
}
break;
case OPCODE_FRONT_FACE:
gl_FrontFace( ctx, n[1].e );
break;
case OPCODE_FRUSTUM:
gl_Frustum( ctx, n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f );
break;
case OPCODE_HINT:
gl_Hint( ctx, n[1].e, n[2].e );
break;
case OPCODE_INDEX_MASK:
gl_IndexMask( ctx, n[1].ui );
break;
case OPCODE_INIT_NAMES:
gl_InitNames( ctx );
break;
case OPCODE_LIGHT:
{
GLfloat p[4];
p[0] = n[3].f;
p[1] = n[4].f;
p[2] = n[5].f;
p[3] = n[6].f;
gl_Lightfv( ctx, n[1].e, n[2].e, p, 4 );
}
break;
case OPCODE_LIGHT_MODEL:
{
GLfloat p[4];
p[0] = n[2].f;
p[1] = n[3].f;
p[2] = n[4].f;
p[3] = n[5].f;
gl_LightModelfv( ctx, n[1].e, p );
}
break;
case OPCODE_LINE_STIPPLE:
gl_LineStipple( ctx, n[1].i, n[2].us );
break;
case OPCODE_LINE_WIDTH:
gl_LineWidth( ctx, n[1].f );
break;
case OPCODE_LIST_BASE:
gl_ListBase( ctx, n[1].ui );
break;
case OPCODE_LOAD_IDENTITY:
gl_LoadIdentity( ctx );
break;
case OPCODE_LOAD_MATRIX:
if (sizeof(Node)==sizeof(GLfloat)) {
gl_LoadMatrixf( ctx, &n[1].f );
}
else {
GLfloat m[16];
GLuint i;
for (i=0;i<16;i++) {
m[i] = n[1+i].f;
}
gl_LoadMatrixf( ctx, m );
}
break;
case OPCODE_LOAD_NAME:
gl_LoadName( ctx, n[1].ui );
break;
case OPCODE_LOGIC_OP:
gl_LogicOp( ctx, n[1].e );
break;
case OPCODE_MAP1:
gl_Map1f( ctx, n[1].e, n[2].f, n[3].f,
n[4].i, n[5].i, (GLfloat *) n[6].data, GL_TRUE );
break;
case OPCODE_MAP2:
gl_Map2f( ctx, n[1].e,
n[2].f, n[3].f, /* u1, u2 */
n[6].i, n[8].i, /* ustride, uorder */
n[4].f, n[5].f, /* v1, v2 */
n[7].i, n[9].i, /* vstride, vorder */
(GLfloat *) n[10].data,
GL_TRUE);
break;
case OPCODE_MAPGRID1:
gl_MapGrid1f( ctx, n[1].i, n[2].f, n[3].f );
break;
case OPCODE_MAPGRID2:
gl_MapGrid2f( ctx, n[1].i, n[2].f, n[3].f, n[4].i, n[5].f, n[6].f);
break;
case OPCODE_MATERIAL:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
gl_Materialfv( ctx, n[1].e, n[2].e, params );
}
break;
case OPCODE_MATRIX_MODE:
gl_MatrixMode( ctx, n[1].e );
break;
case OPCODE_MULT_MATRIX:
if (sizeof(Node)==sizeof(GLfloat)) {
gl_MultMatrixf( ctx, &n[1].f );
}
else {
GLfloat m[16];
GLuint i;
for (i=0;i<16;i++) {
m[i] = n[1+i].f;
}
gl_MultMatrixf( ctx, m );
}
break;
case OPCODE_ORTHO:
gl_Ortho( ctx, n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f );
break;
case OPCODE_PASSTHROUGH:
gl_PassThrough( ctx, n[1].f );
break;
case OPCODE_PIXEL_MAP:
gl_PixelMapfv( ctx, n[1].e, n[2].i, (GLfloat *) n[3].data );
break;
case OPCODE_PIXEL_TRANSFER:
gl_PixelTransferf( ctx, n[1].e, n[2].f );
break;
case OPCODE_PIXEL_ZOOM:
gl_PixelZoom( ctx, n[1].f, n[2].f );
break;
case OPCODE_POINT_SIZE:
gl_PointSize( ctx, n[1].f );
break;
case OPCODE_POLYGON_MODE:
gl_PolygonMode( ctx, n[1].e, n[2].e );
break;
case OPCODE_POLYGON_STIPPLE:
gl_PolygonStipple( ctx, (GLubyte *) n[1].data );
break;
case OPCODE_POLYGON_OFFSET:
gl_PolygonOffset( ctx, n[1].f, n[2].f );
break;
case OPCODE_POP_ATTRIB:
gl_PopAttrib( ctx );
break;
case OPCODE_POP_MATRIX:
gl_PopMatrix( ctx );
break;
case OPCODE_POP_NAME:
gl_PopName( ctx );
break;
case OPCODE_PRIORITIZE_TEXTURE:
gl_PrioritizeTextures( ctx, 1, &n[1].ui, &n[2].f );
break;
case OPCODE_PUSH_ATTRIB:
gl_PushAttrib( ctx, n[1].bf );
break;
case OPCODE_PUSH_MATRIX:
gl_PushMatrix( ctx );
break;
case OPCODE_PUSH_NAME:
gl_PushName( ctx, n[1].ui );
break;
case OPCODE_RASTER_POS:
gl_RasterPos4f( ctx, n[1].f, n[2].f, n[3].f, n[4].f );
break;
case OPCODE_READ_BUFFER:
gl_ReadBuffer( ctx, n[1].e );
break;
case OPCODE_RECTF:
gl_Rectf( ctx, n[1].f, n[2].f, n[3].f, n[4].f );
break;
case OPCODE_SCALE:
gl_Scalef( ctx, n[1].f, n[2].f, n[3].f );
break;
case OPCODE_SCISSOR:
gl_Scissor( ctx, n[1].i, n[2].i, n[3].i, n[4].i );
break;
case OPCODE_SHADE_MODEL:
gl_ShadeModel( ctx, n[1].e );
break;
case OPCODE_STENCIL_FUNC:
gl_StencilFunc( ctx, n[1].e, n[2].i, n[3].ui );
break;
case OPCODE_STENCIL_MASK:
gl_StencilMask( ctx, n[1].ui );
break;
case OPCODE_STENCIL_OP:
gl_StencilOp( ctx, n[1].e, n[2].e, n[3].e );
break;
case OPCODE_TEXENV:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
gl_TexEnvfv( ctx, n[1].e, n[2].e, params );
}
break;
case OPCODE_TEXGEN:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
gl_TexGenfv( ctx, n[1].e, n[2].e, params );
}
break;
case OPCODE_TEXPARAMETER:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
gl_TexParameterfv( ctx, n[1].e, n[2].e, params );
}
break;
case OPCODE_TEX_IMAGE1D:
gl_TexImage1D( ctx,
n[1].e, /* target */
n[2].i, /* level */
n[3].i, /* components */
n[4].i, /* width */
n[5].e, /* border */
n[6].e, /* format */
n[7].e, /* type */
(struct gl_image *) n[8].data );
break;
case OPCODE_TEX_IMAGE2D:
gl_TexImage2D( ctx,
n[1].e, /* target */
n[2].i, /* level */
n[3].i, /* components */
n[4].i, /* width */
n[5].i, /* height */
n[6].e, /* border */
n[7].e, /* format */
n[8].e, /* type */
(struct gl_image *) n[9].data );
break;
case OPCODE_TEX_SUB_IMAGE1D:
gl_TexSubImage1D( ctx, n[1].e, n[2].i, n[3].i, n[4].i, n[5].e,
n[6].e, (struct gl_image *) n[7].data );
break;
case OPCODE_TEX_SUB_IMAGE2D:
gl_TexSubImage2D( ctx, n[1].e, n[2].i, n[3].i, n[4].i, n[5].e,
n[6].i, n[7].e, n[8].e,
(struct gl_image *) n[9].data );
break;
case OPCODE_TRANSLATE:
gl_Translatef( ctx, n[1].f, n[2].f, n[3].f );
break;
case OPCODE_VIEWPORT:
gl_Viewport( ctx,
n[1].i, n[2].i, (GLsizei) n[3].i, (GLsizei) n[4].i );
break;
case OPCODE_CONTINUE:
n = (Node *) n[1].next;
break;
case OPCODE_END_OF_LIST:
done = GL_TRUE;
break;
default:
{
char msg[1000];
sprintf(msg, "Error in execute_list: opcode=%d", (int) opcode);
gl_problem( ctx, msg );
}
done = GL_TRUE;
}
/* increment n to point to next compiled command */
if (opcode!=OPCODE_CONTINUE) {
n += InstSize[opcode];
}
}
ctx->CallDepth--;
}
/**********************************************************************/
/* GL functions */
/**********************************************************************/
/*
* Test if a display list number is valid.
*/
GLboolean gl_IsList( GLcontext *ctx, GLuint list )
{
if (list > 0 && HashLookup(ctx->Shared->DisplayList, list)) {
return GL_TRUE;
}
else {
return GL_FALSE;
}
}
/*
* Delete a sequence of consecutive display lists.
*/
void gl_DeleteLists( GLcontext *ctx, GLuint list, GLsizei range )
{
GLuint i;
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glDeleteLists" );
return;
}
if (range<0) {
gl_error( ctx, GL_INVALID_VALUE, "glDeleteLists" );
return;
}
for (i=list;i<list+range;i++) {
gl_destroy_list( ctx, i );
}
}
/*
* Return a display list number, n, such that lists n through n+range-1
* are free.
*/
GLuint gl_GenLists( GLcontext *ctx, GLsizei range )
{
GLuint base;
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glGenLists" );
return 0;
}
if (range<0) {
gl_error( ctx, GL_INVALID_VALUE, "glGenLists" );
return 0;
}
if (range==0) {
return 0;
}
base = HashFindFreeKeyBlock(ctx->Shared->DisplayList, range);
if (base) {
/* reserve the list IDs by with empty/dummy lists */
GLuint i;
for (i=0; i<range; i++) {
HashInsert(ctx->Shared->DisplayList, base+i, make_empty_list());
}
}
return base;
}
/*
* Begin a new display list.
*/
void gl_NewList( GLcontext *ctx, GLuint list, GLenum mode )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glNewList" );
return;
}
if (list==0) {
gl_error( ctx, GL_INVALID_VALUE, "glNewList" );
return;
}
if (mode!=GL_COMPILE && mode!=GL_COMPILE_AND_EXECUTE) {
gl_error( ctx, GL_INVALID_ENUM, "glNewList" );
return;
}
if (ctx->CurrentListPtr) {
/* already compiling a display list */
gl_error( ctx, GL_INVALID_OPERATION, "glNewList" );
return;
}
/* Allocate new display list */
ctx->CurrentListNum = list;
ctx->CurrentListPtr = ctx->CurrentBlock = (Node *) malloc( sizeof(Node) * BLOCK_SIZE );
ctx->CurrentPos = 0;
ctx->CompileFlag = GL_TRUE;
if (mode==GL_COMPILE) {
ctx->ExecuteFlag = GL_FALSE;
}
else {
/* Compile and execute */
ctx->ExecuteFlag = GL_TRUE;
}
ctx->API = ctx->Save; /* Switch the API function pointers */
}
/*
* End definition of current display list.
*/
void gl_EndList( GLcontext *ctx )
{
Node *n;
/* Check that a list is under construction */
if (!ctx->CurrentListPtr) {
gl_error( ctx, GL_INVALID_OPERATION, "glEndList" );
return;
}
n = alloc_instruction( ctx, OPCODE_END_OF_LIST, 0 );
(void)n;
/* Destroy old list, if any */
gl_destroy_list(ctx, ctx->CurrentListNum);
/* Install the list */
HashInsert(ctx->Shared->DisplayList, ctx->CurrentListNum, ctx->CurrentListPtr);
ctx->CurrentListNum = 0;
ctx->CurrentListPtr = NULL;
ctx->ExecuteFlag = GL_TRUE;
ctx->CompileFlag = GL_FALSE;
ctx->API = ctx->Exec; /* Switch the API function pointers */
}
void gl_CallList( GLcontext *ctx, GLuint list )
{
/* VERY IMPORTANT: Save the CompileFlag status, turn it off, */
/* execute the display list, and restore the CompileFlag. */
GLboolean save_compile_flag;
save_compile_flag = ctx->CompileFlag;
ctx->CompileFlag = GL_FALSE;
execute_list( ctx, list );
ctx->CompileFlag = save_compile_flag;
}
/*
* Execute glCallLists: call multiple display lists.
*/
void gl_CallLists( GLcontext *ctx,
GLsizei n, GLenum type, const GLvoid *lists )
{
GLuint i, list;
GLboolean save_compile_flag;
/* Save the CompileFlag status, turn it off, execute display list,
* and restore the CompileFlag.
*/
save_compile_flag = ctx->CompileFlag;
ctx->CompileFlag = GL_FALSE;
for (i=0;i<n;i++) {
list = translate_id( i, type, lists );
execute_list( ctx, ctx->List.ListBase + list );
}
ctx->CompileFlag = save_compile_flag;
}
/*
* Set the offset added to list numbers in glCallLists.
*/
void gl_ListBase( GLcontext *ctx, GLuint base )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glListBase" );
return;
}
ctx->List.ListBase = base;
}