reactos/drivers/filesystems/udfs/udfinit.cpp

890 lines
35 KiB
C++
Raw Permalink Normal View History

////////////////////////////////////////////////////////////////////
// Copyright (C) Alexander Telyatnikov, Ivan Keliukh, Yegor Anchishkin, SKIF Software, 1999-2013. Kiev, Ukraine
// All rights reserved
// This file was released under the GPLv2 on June 2015.
////////////////////////////////////////////////////////////////////
/*************************************************************************
*
* File: UDFinit.cpp
*
* Module: UDF File System Driver (Kernel mode execution only)
*
* Description:
* This file contains the initialization code for the kernel mode
* UDF FSD module. The DriverEntry() routine is called by the I/O
* sub-system to initialize the FSD.
*
*************************************************************************/
#include "udffs.h"
// define the file specific bug-check id
#define UDF_BUG_CHECK_ID UDF_FILE_INIT
// global variables are declared here
UDFData UDFGlobalData;
#define KD_PREFIX
struct UDF_MEDIA_CLASS_NAMES UDFMediaClassName[] = {
{MediaUnknown, REG_DEFAULT_UNKNOWN},
{MediaHdd , REG_DEFAULT_HDD},
{MediaCdr , REG_DEFAULT_CDR},
{MediaCdrw , REG_DEFAULT_CDRW},
{MediaCdrom , REG_DEFAULT_CDROM},
{MediaZip , REG_DEFAULT_ZIP},
{MediaFloppy , REG_DEFAULT_FLOPPY},
{MediaDvdr , REG_DEFAULT_DVDR},
{MediaDvdrw , REG_DEFAULT_DVDRW}
};
/*
ULONG MajorVersion = 0;
ULONG MinorVersion = 0;
ULONG BuildNumber = 0;
*/
ULONG FsRegistered = FALSE;
WORK_QUEUE_ITEM RemountWorkQueueItem;
//ptrFsRtlNotifyVolumeEvent FsRtlNotifyVolumeEvent = NULL;
HANDLE FsNotification_ThreadId = (HANDLE)(-1);
NTSTATUS
UDFCreateFsDeviceObject(
PCWSTR FsDeviceName,
PDRIVER_OBJECT DriverObject,
DEVICE_TYPE DeviceType,
PDEVICE_OBJECT *DeviceObject);
NTSTATUS
UDFDismountDevice(
PUNICODE_STRING unicodeCdRomDeviceName);
VOID
UDFRemountAll(
IN PVOID Context);
/*************************************************************************
*
* Function: DriverEntry()
*
* Description:
* This routine is the standard entry point for all kernel mode drivers.
* The routine is invoked at IRQL PASSIVE_LEVEL in the context of a
* system worker thread.
* All FSD specific data structures etc. are initialized here.
*
* Expected Interrupt Level (for execution) :
*
* IRQL_PASSIVE_LEVEL
*
* Return Value: STATUS_SUCCESS/Error (will cause driver to be unloaded).
*
*************************************************************************/
NTSTATUS
NTAPI
DriverEntry(
PDRIVER_OBJECT DriverObject, // created by the I/O sub-system
PUNICODE_STRING RegistryPath // path to the registry key
)
{
NTSTATUS RC = STATUS_SUCCESS;
UNICODE_STRING DriverDeviceName;
UNICODE_STRING unicodeDeviceName;
// BOOLEAN RegisteredShutdown = FALSE;
BOOLEAN InternalMMInitialized = FALSE;
// BOOLEAN DLDetectInitialized = FALSE;
// ULONG CdRomNumber;
// CCHAR deviceNameBuffer[MAXIMUM_FILENAME_LENGTH];
// ANSI_STRING deviceName;
// UNICODE_STRING unicodeCdRomDeviceName;
PUDFFS_DEV_EXTENSION FSDevExt;
HKEY hUdfRootKey;
LARGE_INTEGER delay;
// UDFPrint(("UDF: Entered " VER_STR_PRODUCT_NAME " UDF DriverEntry \n"));
// UDFPrint((KD_PREFIX "Build " VER_STR_PRODUCT "\n"));
_SEH2_TRY {
_SEH2_TRY {
/*
CrNtInit(DriverObject, RegistryPath);
//PsGetVersion(&MajorVersion, &MinorVersion, &BuildNumber, NULL);
UDFPrint(("UDF: OS Version Major: %x, Minor: %x, Build number: %d\n",
MajorVersion, MinorVersion, BuildNumber));
*/
#ifdef __REACTOS__
UDFPrint(("UDF Init: OS should be ReactOS\n"));
#endif
// initialize the global data structure
RtlZeroMemory(&UDFGlobalData, sizeof(UDFGlobalData));
// initialize some required fields
UDFGlobalData.NodeIdentifier.NodeType = UDF_NODE_TYPE_GLOBAL_DATA;
UDFGlobalData.NodeIdentifier.NodeSize = sizeof(UDFGlobalData);
// initialize the global data resource and remember the fact that
// the resource has been initialized
RC = UDFInitializeResourceLite(&(UDFGlobalData.GlobalDataResource));
ASSERT(NT_SUCCESS(RC));
UDFSetFlag(UDFGlobalData.UDFFlags, UDF_DATA_FLAGS_RESOURCE_INITIALIZED);
RC = UDFInitializeResourceLite(&(UDFGlobalData.DelayedCloseResource));
ASSERT(NT_SUCCESS(RC));
// UDFSetFlag(UDFGlobalData.UDFFlags, UDF_DATA_FLAGS_RESOURCE_INITIALIZED);
// keep a ptr to the driver object sent to us by the I/O Mgr
UDFGlobalData.DriverObject = DriverObject;
//SeEnableAccessToExports();
// initialize the mounted logical volume list head
InitializeListHead(&(UDFGlobalData.VCBQueue));
UDFPrint(("UDF: Init memory manager\n"));
// Initialize internal memory management
if(!MyAllocInit()) {
try_return(RC = STATUS_INSUFFICIENT_RESOURCES);
}
InternalMMInitialized = TRUE;
#ifdef USE_DLD
// Initialize Deadlock Detector
DLDInit(1280);
DLDetectInitialized = TRUE;
#endif
// before we proceed with any more initialization, read in
// user supplied configurable values ...
// Save RegistryPath
RtlCopyMemory(&(UDFGlobalData.SavedRegPath), RegistryPath, sizeof(UNICODE_STRING));
UDFGlobalData.SavedRegPath.Buffer = (PWSTR)MyAllocatePool__(NonPagedPool, RegistryPath->Length + 2);
if(!UDFGlobalData.SavedRegPath.Buffer) try_return (RC = STATUS_INSUFFICIENT_RESOURCES);
RtlCopyMemory(UDFGlobalData.SavedRegPath.Buffer, RegistryPath->Buffer, RegistryPath->Length + 2);
RegTGetKeyHandle(NULL, UDFGlobalData.SavedRegPath.Buffer, &hUdfRootKey);
RtlInitUnicodeString(&UDFGlobalData.UnicodeStrRoot, L"\\");
RtlInitUnicodeString(&UDFGlobalData.UnicodeStrSDir, L":");
RtlInitUnicodeString(&UDFGlobalData.AclName, UDF_SN_NT_ACL);
UDFPrint(("UDF: Init delayed close queues\n"));
#ifdef UDF_DELAYED_CLOSE
InitializeListHead( &UDFGlobalData.DelayedCloseQueue );
InitializeListHead( &UDFGlobalData.DirDelayedCloseQueue );
ExInitializeWorkItem( &UDFGlobalData.CloseItem,
UDFDelayedClose,
NULL );
UDFGlobalData.DelayedCloseCount = 0;
UDFGlobalData.DirDelayedCloseCount = 0;
#endif //UDF_DELAYED_CLOSE
// we should have the registry data (if any), allocate zone memory ...
// This is an example of when FSD implementations __try to pre-allocate
// some fixed amount of memory to avoid internal fragmentation and/or waiting
// later during run-time ...
UDFGlobalData.DefaultZoneSizeInNumStructs=10;
UDFPrint(("UDF: Init zones\n"));
if (!NT_SUCCESS(RC = UDFInitializeZones()))
try_return(RC);
UDFPrint(("UDF: Init pointers\n"));
// initialize the IRP major function table, and the fast I/O table
UDFInitializeFunctionPointers(DriverObject);
UDFGlobalData.CPU_Count = KeNumberProcessors;
// create a device object representing the driver itself
// so that requests can be targeted to the driver ...
// e.g. for a disk-based FSD, "mount" requests will be sent to
// this device object by the I/O Manager.
// For a redirector/server, you may have applications
// send "special" IOCTL's using this device object ...
RtlInitUnicodeString(&DriverDeviceName, UDF_FS_NAME);
UDFPrint(("UDF: Create Driver dev obj\n"));
if (!NT_SUCCESS(RC = IoCreateDevice(
DriverObject, // our driver object
sizeof(UDFFS_DEV_EXTENSION), // don't need an extension for this object
&DriverDeviceName, // name - can be used to "open" the driver
// see the book for alternate choices
FILE_DEVICE_CD_ROM_FILE_SYSTEM,
0, // no special characteristics
// do not want this as an exclusive device, though you might
FALSE,
&(UDFGlobalData.UDFDeviceObject)))) {
// failed to create a device object, leave ...
try_return(RC);
}
FSDevExt = (PUDFFS_DEV_EXTENSION)((UDFGlobalData.UDFDeviceObject)->DeviceExtension);
// Zero it out (typically this has already been done by the I/O
// Manager but it does not hurt to do it again)!
RtlZeroMemory(FSDevExt, sizeof(UDFFS_DEV_EXTENSION));
// Initialize the signature fields
FSDevExt->NodeIdentifier.NodeType = UDF_NODE_TYPE_UDFFS_DRVOBJ;
FSDevExt->NodeIdentifier.NodeSize = sizeof(UDFFS_DEV_EXTENSION);
RtlInitUnicodeString(&unicodeDeviceName, UDF_DOS_FS_NAME);
IoCreateSymbolicLink(&unicodeDeviceName, &DriverDeviceName);
UDFPrint(("UDF: Create CD dev obj\n"));
if (!NT_SUCCESS(RC = UDFCreateFsDeviceObject(UDF_FS_NAME_CD,
DriverObject,
FILE_DEVICE_CD_ROM_FILE_SYSTEM,
&(UDFGlobalData.UDFDeviceObject_CD)))) {
// failed to create a device object, leave ...
try_return(RC);
}
#ifdef UDF_HDD_SUPPORT
UDFPrint(("UDF: Create HDD dev obj\n"));
if (!NT_SUCCESS(RC = UDFCreateFsDeviceObject(UDF_FS_NAME_HDD,
DriverObject,
FILE_DEVICE_DISK_FILE_SYSTEM,
&(UDFGlobalData.UDFDeviceObject_HDD)))) {
// failed to create a device object, leave ...
try_return(RC);
}
#endif //UDF_HDD_SUPPORT
/* RtlInitUnicodeString(&DriverDeviceName, UDF_FS_NAME_OTHER);
if (!NT_SUCCESS(RC = IoCreateDevice(
DriverObject, // our driver object
0, // don't need an extension for this object
&DriverDeviceName, // name - can be used to "open" the driver
// see the book for alternate choices
FILE_DEVICE_FILE_SYSTEM,
0, // no special characteristics
// do not want this as an exclusive device, though you might
FALSE,
&(UDFGlobalData.UDFDeviceObject_OTHER)))) {
// failed to create a device object, leave ...
try_return(RC);
}
// register the driver with the I/O Manager, pretend as if this is
// a physical disk based FSD (or in order words, this FSD manages
// logical volumes residing on physical disk drives)
IoRegisterFileSystem(UDFGlobalData.UDFDeviceObject_OTHER);
RtlInitUnicodeString(&DriverDeviceName, UDF_FS_NAME_TAPE);
if (!NT_SUCCESS(RC = IoCreateDevice(
DriverObject, // our driver object
0, // don't need an extension for this object
&DriverDeviceName, // name - can be used to "open" the driver
// see the book for alternate choices
FILE_DEVICE_TAPE_FILE_SYSTEM,
0, // no special characteristics
// do not want this as an exclusive device, though you might
FALSE,
&(UDFGlobalData.UDFDeviceObject_TAPE)))) {
// failed to create a device object, leave ...
try_return(RC);
}
// register the driver with the I/O Manager, pretend as if this is
// a physical disk based FSD (or in order words, this FSD manages
// logical volumes residing on physical disk drives)
IoRegisterFileSystem(UDFGlobalData.UDFDeviceObject_TAPE);
*/
if (UDFGlobalData.UDFDeviceObject_CD) {
UDFPrint(("UDFCreateFsDeviceObject: IoRegisterFileSystem() for CD\n"));
IoRegisterFileSystem(UDFGlobalData.UDFDeviceObject_CD);
}
#ifdef UDF_HDD_SUPPORT
if (UDFGlobalData.UDFDeviceObject_HDD) {
UDFPrint(("UDFCreateFsDeviceObject: IoRegisterFileSystem() for HDD\n"));
IoRegisterFileSystem(UDFGlobalData.UDFDeviceObject_HDD);
}
#endif // UDF_HDD_SUPPORT
FsRegistered = TRUE;
UDFPrint(("UDF: IoRegisterFsRegistrationChange()\n"));
IoRegisterFsRegistrationChange( DriverObject, UDFFsNotification );
// delay.QuadPart = -10000000;
// KeDelayExecutionThread(KernelMode, FALSE, &delay); //10 microseconds
delay.QuadPart = -10000000; // 1 sec
KeDelayExecutionThread(KernelMode, FALSE, &delay);
#if 0
if(!WinVer_IsNT) {
/*ExInitializeWorkItem(&RemountWorkQueueItem, UDFRemountAll, NULL);
UDFPrint(("UDFDriverEntry: create remount thread\n"));
ExQueueWorkItem(&RemountWorkQueueItem, DelayedWorkQueue);*/
for(CdRomNumber = 0;true;CdRomNumber++) {
sprintf(deviceNameBuffer, "\\Device\\CdRom%d", CdRomNumber);
UDFPrint(( "UDF: DriverEntry : dismount %s\n", deviceNameBuffer));
RtlInitString(&deviceName, deviceNameBuffer);
RC = RtlAnsiStringToUnicodeString(&unicodeCdRomDeviceName, &deviceName, TRUE);
if (!NT_SUCCESS(RC)) {
RtlFreeUnicodeString(&unicodeCdRomDeviceName);
break;
}
RC = UDFDismountDevice(&unicodeCdRomDeviceName);
RtlFreeUnicodeString(&unicodeCdRomDeviceName);
if (!NT_SUCCESS(RC)) break;
}
PVOID ModuleBase = NULL;
// get NTOSKRNL.EXE exports
ModuleBase = CrNtGetModuleBase("NTOSKRNL.EXE");
if(ModuleBase) {
FsRtlNotifyVolumeEvent = (ptrFsRtlNotifyVolumeEvent)CrNtGetProcAddress(ModuleBase, "FsRtlNotifyVolumeEvent");
}
}
#endif
RC = STATUS_SUCCESS;
} _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER) {
// we encountered an exception somewhere, eat it up
UDFPrint(("UDF: exception\n"));
RC = _SEH2_GetExceptionCode();
} _SEH2_END;
InternalMMInitialized = FALSE;
try_exit: NOTHING;
} _SEH2_FINALLY {
// start unwinding if we were unsuccessful
if (!NT_SUCCESS(RC)) {
UDFPrint(("UDF: failed with status %x\n", RC));
// Now, delete any device objects, etc. we may have created
/* if (UDFGlobalData.UDFDeviceObject) {
IoDeleteDevice(UDFGlobalData.UDFDeviceObject);
UDFGlobalData.UDFDeviceObject = NULL;
}*/
#ifdef USE_DLD
if (DLDetectInitialized) DLDFree();
#endif
if (InternalMMInitialized) {
MyAllocRelease();
}
if (UDFGlobalData.UDFDeviceObject_CD) {
IoDeleteDevice(UDFGlobalData.UDFDeviceObject_CD);
UDFGlobalData.UDFDeviceObject_CD = NULL;
}
#ifdef UDF_HDD_SUPPORT
if (UDFGlobalData.UDFDeviceObject_HDD) {
IoDeleteDevice(UDFGlobalData.UDFDeviceObject_HDD);
UDFGlobalData.UDFDeviceObject_HDD = NULL;
}
#endif // UDF_HDD_SUPPORT
/*
if (UDFGlobalData.UDFDeviceObject_OTHER) {
IoDeleteDevice(UDFGlobalData.UDFDeviceObject_CD);
UDFGlobalData.UDFDeviceObject_CD = NULL;
}
if (UDFGlobalData.UDFDeviceObject_TAPE) {
IoDeleteDevice(UDFGlobalData.UDFDeviceObject_CD);
UDFGlobalData.UDFDeviceObject_CD = NULL;
}
*/
// free up any memory we might have reserved for zones/lookaside
// lists
if (UDFGlobalData.UDFFlags & UDF_DATA_FLAGS_ZONES_INITIALIZED) {
UDFDestroyZones();
}
// delete the resource we may have initialized
if (UDFGlobalData.UDFFlags & UDF_DATA_FLAGS_RESOURCE_INITIALIZED) {
// un-initialize this resource
UDFDeleteResource(&(UDFGlobalData.GlobalDataResource));
UDFClearFlag(UDFGlobalData.UDFFlags, UDF_DATA_FLAGS_RESOURCE_INITIALIZED);
}
// } else {
}
} _SEH2_END;
return(RC);
} // end DriverEntry()
/*************************************************************************
*
* Function: UDFInitializeFunctionPointers()
*
* Description:
* Initialize the IRP... function pointer array in the driver object
* structure. Also initialize the fast-io function ptr array ...
*
* Expected Interrupt Level (for execution) :
*
* IRQL_PASSIVE_LEVEL
*
* Return Value: None
*
*************************************************************************/
VOID
NTAPI
UDFInitializeFunctionPointers(
PDRIVER_OBJECT DriverObject // created by the I/O sub-system
)
{
PFAST_IO_DISPATCH PtrFastIoDispatch = NULL;
// initialize the function pointers for the IRP major
// functions that this FSD is prepared to handle ...
// NT Version 4.0 has 28 possible functions that a
// kernel mode driver can handle.
// NT Version 3.51 and before has only 22 such functions,
// of which 18 are typically interesting to most FSD's.
// The only interesting new functions that a FSD might
// want to respond to beginning with Version 4.0 are the
// IRP_MJ_QUERY_QUOTA and the IRP_MJ_SET_QUOTA requests.
// The code below does not handle quota manipulation, neither
// does the NT Version 4.0 operating system (or I/O Manager).
// However, you should be on the lookout for any such new
// functionality that the FSD might have to implement in
// the near future.
DriverObject->MajorFunction[IRP_MJ_CREATE] = UDFCreate;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = UDFClose;
DriverObject->MajorFunction[IRP_MJ_READ] = UDFRead;
#ifndef UDF_READ_ONLY_BUILD
DriverObject->MajorFunction[IRP_MJ_WRITE] = UDFWrite;
#endif //UDF_READ_ONLY_BUILD
DriverObject->MajorFunction[IRP_MJ_QUERY_INFORMATION] = UDFFileInfo;
#ifndef UDF_READ_ONLY_BUILD
DriverObject->MajorFunction[IRP_MJ_SET_INFORMATION] = UDFFileInfo;
#endif //UDF_READ_ONLY_BUILD
#ifndef UDF_READ_ONLY_BUILD
DriverObject->MajorFunction[IRP_MJ_FLUSH_BUFFERS] = UDFFlush;
#endif //UDF_READ_ONLY_BUILD
// To implement support for querying and modifying volume attributes
// (volume information query/set operations), enable initialization
// of the following two function pointers and then implement the supporting
// functions.
DriverObject->MajorFunction[IRP_MJ_QUERY_VOLUME_INFORMATION] = UDFQueryVolInfo;
#ifndef UDF_READ_ONLY_BUILD
DriverObject->MajorFunction[IRP_MJ_SET_VOLUME_INFORMATION] = UDFSetVolInfo;
#endif //UDF_READ_ONLY_BUILD
DriverObject->MajorFunction[IRP_MJ_DIRECTORY_CONTROL] = UDFDirControl;
// To implement support for file system IOCTL calls, enable initialization
// of the following function pointer and implement appropriate support.
DriverObject->MajorFunction[IRP_MJ_FILE_SYSTEM_CONTROL] = UDFFSControl;
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = UDFDeviceControl;
DriverObject->MajorFunction[IRP_MJ_SHUTDOWN] = UDFShutdown;
// For byte-range lock support, enable initialization of the following
// function pointer and implement appropriate support.
DriverObject->MajorFunction[IRP_MJ_LOCK_CONTROL] = UDFLockControl;
DriverObject->MajorFunction[IRP_MJ_CLEANUP] = UDFCleanup;
#ifdef UDF_HANDLE_EAS
DriverObject->MajorFunction[IRP_MJ_QUERY_EA] = UDFQuerySetEA;
#ifndef UDF_READ_ONLY_BUILD
DriverObject->MajorFunction[IRP_MJ_SET_EA] = UDFQuerySetEA;
#endif //UDF_READ_ONLY_BUILD
#endif //UDF_HANDLE_EAS
// If the FSD supports security attributes, we should provide appropriate
// dispatch entry points and initialize the function pointers as given below.
#ifdef UDF_ENABLE_SECURITY
DriverObject->MajorFunction[IRP_MJ_QUERY_SECURITY] = UDFGetSecurity;
#ifndef UDF_READ_ONLY_BUILD
DriverObject->MajorFunction[IRP_MJ_SET_SECURITY] = UDFSetSecurity;
#endif //UDF_READ_ONLY_BUILD
#endif //UDF_ENABLE_SECURITY
// if(MajorVersion >= 0x05) {
// w2k and higher
// DriverObject->MajorFunction[IRP_MJ_PNP] = UDFPnp;
// }
// Now, it is time to initialize the fast-io stuff ...
PtrFastIoDispatch = DriverObject->FastIoDispatch = &(UDFGlobalData.UDFFastIoDispatch);
// initialize the global fast-io structure
// NOTE: The fast-io structure has undergone a substantial revision
// in Windows NT Version 4.0. The structure has been extensively expanded.
// Therefore, if the driver needs to work on both V3.51 and V4.0+,
// we will have to be able to distinguish between the two versions at compile time.
RtlZeroMemory(PtrFastIoDispatch, sizeof(FAST_IO_DISPATCH));
PtrFastIoDispatch->SizeOfFastIoDispatch = sizeof(FAST_IO_DISPATCH);
PtrFastIoDispatch->FastIoCheckIfPossible = UDFFastIoCheckIfPossible;
PtrFastIoDispatch->FastIoRead = FsRtlCopyRead;
#ifndef UDF_READ_ONLY_BUILD
PtrFastIoDispatch->FastIoWrite = UDFFastIoCopyWrite /*FsRtlCopyWrite*/;
#endif //UDF_READ_ONLY_BUILD
PtrFastIoDispatch->FastIoQueryBasicInfo = UDFFastIoQueryBasicInfo;
PtrFastIoDispatch->FastIoQueryStandardInfo = UDFFastIoQueryStdInfo;
PtrFastIoDispatch->FastIoLock = UDFFastLock; // Lock
PtrFastIoDispatch->FastIoUnlockSingle = UDFFastUnlockSingle; // UnlockSingle
PtrFastIoDispatch->FastIoUnlockAll = UDFFastUnlockAll; // UnlockAll
PtrFastIoDispatch->FastIoUnlockAllByKey = (unsigned char (__stdcall *)(struct _FILE_OBJECT *,
PVOID ,unsigned long,struct _IO_STATUS_BLOCK *,struct _DEVICE_OBJECT *))UDFFastUnlockAllByKey; // UnlockAllByKey
PtrFastIoDispatch->AcquireFileForNtCreateSection = UDFFastIoAcqCreateSec;
PtrFastIoDispatch->ReleaseFileForNtCreateSection = UDFFastIoRelCreateSec;
// PtrFastIoDispatch->FastIoDeviceControl = UDFFastIoDeviceControl;
// the remaining are only valid under NT Version 4.0 and later
#if(_WIN32_WINNT >= 0x0400)
PtrFastIoDispatch->FastIoQueryNetworkOpenInfo = UDFFastIoQueryNetInfo;
PtrFastIoDispatch->AcquireForModWrite = UDFFastIoAcqModWrite;
PtrFastIoDispatch->ReleaseForModWrite = UDFFastIoRelModWrite;
PtrFastIoDispatch->AcquireForCcFlush = UDFFastIoAcqCcFlush;
PtrFastIoDispatch->ReleaseForCcFlush = UDFFastIoRelCcFlush;
/* // MDL functionality
PtrFastIoDispatch->MdlRead = UDFFastIoMdlRead;
PtrFastIoDispatch->MdlReadComplete = UDFFastIoMdlReadComplete;
PtrFastIoDispatch->PrepareMdlWrite = UDFFastIoPrepareMdlWrite;
PtrFastIoDispatch->MdlWriteComplete = UDFFastIoMdlWriteComplete;*/
// this FSD does not support compressed read/write functionality,
// NTFS does, and if we design a FSD that can provide such functionality,
// we should consider initializing the fast io entry points for reading
// and/or writing compressed data ...
#endif // (_WIN32_WINNT >= 0x0400)
// last but not least, initialize the Cache Manager callback functions
// which are used in CcInitializeCacheMap()
UDFGlobalData.CacheMgrCallBacks.AcquireForLazyWrite = UDFAcqLazyWrite;
UDFGlobalData.CacheMgrCallBacks.ReleaseFromLazyWrite = UDFRelLazyWrite;
UDFGlobalData.CacheMgrCallBacks.AcquireForReadAhead = UDFAcqReadAhead;
UDFGlobalData.CacheMgrCallBacks.ReleaseFromReadAhead = UDFRelReadAhead;
DriverObject->DriverUnload = UDFDriverUnload;
return;
} // end UDFInitializeFunctionPointers()
NTSTATUS
UDFCreateFsDeviceObject(
PCWSTR FsDeviceName,
PDRIVER_OBJECT DriverObject,
DEVICE_TYPE DeviceType,
PDEVICE_OBJECT *DeviceObject
)
{
NTSTATUS RC = STATUS_SUCCESS;
UNICODE_STRING DriverDeviceName;
PUDFFS_DEV_EXTENSION FSDevExt;
RtlInitUnicodeString(&DriverDeviceName, FsDeviceName);
*DeviceObject = NULL;
UDFPrint(("UDFCreateFsDeviceObject: create dev\n"));
if (!NT_SUCCESS(RC = IoCreateDevice(
DriverObject, // our driver object
sizeof(UDFFS_DEV_EXTENSION), // don't need an extension for this object
&DriverDeviceName, // name - can be used to "open" the driver
// see the book for alternate choices
DeviceType,
0, // no special characteristics
// do not want this as an exclusive device, though you might
FALSE,
DeviceObject))) {
// failed to create a device object, leave ...
return(RC);
}
FSDevExt = (PUDFFS_DEV_EXTENSION)((*DeviceObject)->DeviceExtension);
// Zero it out (typically this has already been done by the I/O
// Manager but it does not hurt to do it again)!
RtlZeroMemory(FSDevExt, sizeof(UDFFS_DEV_EXTENSION));
// Initialize the signature fields
FSDevExt->NodeIdentifier.NodeType = UDF_NODE_TYPE_UDFFS_DEVOBJ;
FSDevExt->NodeIdentifier.NodeSize = sizeof(UDFFS_DEV_EXTENSION);
// register the driver with the I/O Manager, pretend as if this is
// a physical disk based FSD (or in order words, this FSD manages
// logical volumes residing on physical disk drives)
/* UDFPrint(("UDFCreateFsDeviceObject: IoRegisterFileSystem()\n"));
IoRegisterFileSystem(*DeviceObject);*/
return(RC);
} // end UDFCreateFsDeviceObject()
NTSTATUS
UDFDismountDevice(
PUNICODE_STRING unicodeCdRomDeviceName
)
{
NTSTATUS RC;
IO_STATUS_BLOCK IoStatus;
HANDLE NtFileHandle = (HANDLE)-1;
OBJECT_ATTRIBUTES ObjectAttributes;
NOTIFY_MEDIA_CHANGE_USER_IN buffer = { 0 };
PFILE_FS_ATTRIBUTE_INFORMATION Buffer;
_SEH2_TRY {
Buffer = (PFILE_FS_ATTRIBUTE_INFORMATION)MyAllocatePool__(NonPagedPool,sizeof(FILE_FS_ATTRIBUTE_INFORMATION)+2*sizeof(UDF_FS_TITLE_DVDRAM));
if (!Buffer) try_return(RC = STATUS_INSUFFICIENT_RESOURCES);
InitializeObjectAttributes ( &ObjectAttributes,
unicodeCdRomDeviceName,
OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
NULL,
NULL );
UDFPrint(("\n*** UDFDismountDevice: Create\n"));
RC = ZwCreateFile( &NtFileHandle,
GENERIC_READ,
&ObjectAttributes,
&IoStatus,
NULL,
FILE_ATTRIBUTE_NORMAL,
FILE_SHARE_READ,
FILE_OPEN,
FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT,
NULL,
0 );
if (!NT_SUCCESS(RC)) try_return(RC);
UDFPrint(("\n*** UDFDismountDevice: QueryVolInfo\n"));
RC = ZwQueryVolumeInformationFile( NtFileHandle,
&IoStatus,
Buffer,
sizeof(FILE_FS_ATTRIBUTE_INFORMATION)+2*sizeof(UDF_FS_TITLE_DVDRAM),
FileFsAttributeInformation);
#define UDF_CHECK_FS_NAME(name) \
(Buffer->FileSystemNameLength+sizeof(WCHAR) == sizeof(name) && \
DbgCompareMemory(&Buffer->FileSystemName[0],name , sizeof(name)) == sizeof(name))
if (NT_SUCCESS(RC) &&
(UDF_CHECK_FS_NAME((PVOID)UDF_FS_TITLE_CDR) ||
UDF_CHECK_FS_NAME((PVOID)UDF_FS_TITLE_CDRW) ||
UDF_CHECK_FS_NAME((PVOID)UDF_FS_TITLE_DVDR) ||
UDF_CHECK_FS_NAME((PVOID)UDF_FS_TITLE_DVDRW) ||
UDF_CHECK_FS_NAME((PVOID)UDF_FS_TITLE_DVDpR) ||
UDF_CHECK_FS_NAME((PVOID)UDF_FS_TITLE_DVDpRW) ||
UDF_CHECK_FS_NAME((PVOID)UDF_FS_TITLE_DVDRAM) )) try_return(STATUS_SUCCESS);
UDFPrint(("\n*** UDFDismountDevice: LockVolume\n"));
RC = ZwFsControlFile(NtFileHandle,
NULL,
NULL,
NULL,
&IoStatus,
FSCTL_LOCK_VOLUME,
NULL,
NULL,
NULL,
NULL);
if (!NT_SUCCESS(RC)) try_return(RC);
UDFPrint(("\n*** UDFDismountDevice: DismountVolume\n"));
RC = ZwFsControlFile(NtFileHandle,
NULL,
NULL,
NULL,
&IoStatus,
FSCTL_DISMOUNT_VOLUME,
NULL,
NULL,
NULL,
NULL);
if (!NT_SUCCESS(RC)) try_return(RC);
UDFPrint(("\n*** UDFDismountDevice: NotifyMediaChange\n"));
RC = ZwDeviceIoControlFile(NtFileHandle,
NULL,
NULL,
NULL,
&IoStatus,
IOCTL_CDRW_NOTIFY_MEDIA_CHANGE,
&buffer,
sizeof(buffer),
&buffer,
sizeof(buffer));
if (!NT_SUCCESS(RC)) try_return(RC);
UDFPrint(("\n*** UDFDismountDevice: UnlockVolume\n"));
RC = ZwFsControlFile(NtFileHandle,
NULL,
NULL,
NULL,
&IoStatus,
FSCTL_UNLOCK_VOLUME,
NULL,
NULL,
NULL,
NULL);
UDFPrint(("\n*** UDFDismountDevice: Close\n"));
ZwClose( NtFileHandle );
NtFileHandle = (HANDLE)-1;
UDFPrint(("\n*** UDFDismountDevice: Create 2\n"));
RC = ZwCreateFile( &NtFileHandle,
GENERIC_READ,
&ObjectAttributes,
&IoStatus,
NULL,
FILE_ATTRIBUTE_NORMAL,
FILE_SHARE_READ,
FILE_OPEN,
FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT,
NULL,
0 );
try_exit: NOTHING;
} _SEH2_FINALLY {
if (Buffer) MyFreePool__(Buffer);
if (NtFileHandle != (HANDLE)-1) ZwClose( NtFileHandle );
} _SEH2_END;
UDFPrint(("\n*** UDFDismountDevice: RC=%x\n",RC));
return RC;
}
VOID
NTAPI
UDFFsNotification(
IN PDEVICE_OBJECT DeviceObject,
IN BOOLEAN FsActive
)
/*
Routine Description:
This routine is invoked whenever a file system has either registered or
unregistered itself as an active file system.
For the former case, this routine creates a device object and attaches it
to the specified file system's device object. This allows this driver
to filter all requests to that file system.
For the latter case, this file system's device object is located,
detached, and deleted. This removes this file system as a filter for
the specified file system.
Arguments:
DeviceObject - Pointer to the file system's device object.
FsActive - bolean indicating whether the file system has registered
(TRUE) or unregistered (FALSE) itself as an active file system.
Return Value:
None.
*/
{
// Begin by determine whether or not the file system is a cdrom-based file
// system. If not, then this driver is not concerned with it.
if (!FsRegistered ||
DeviceObject->DeviceType != FILE_DEVICE_CD_ROM_FILE_SYSTEM) {
return;
}
// Begin by determining whether this file system is registering or
// unregistering as an active file system.
if (FsActive
&& UDFGlobalData.UDFDeviceObject_CD != DeviceObject
#ifdef UDF_HDD_SUPPORT
&& UDFGlobalData.UDFDeviceObject_HDD != DeviceObject
#endif // UDF_HDD_SUPPORT
) {
UDFPrint(("\n*** UDFFSNotification \n\n"));
// Acquire GlobalDataResource
UDFAcquireResourceExclusive(&(UDFGlobalData.GlobalDataResource), TRUE);
if(FsNotification_ThreadId != PsGetCurrentThreadId()) {
FsNotification_ThreadId = PsGetCurrentThreadId();
IoUnregisterFileSystem(UDFGlobalData.UDFDeviceObject_CD);
IoRegisterFileSystem(UDFGlobalData.UDFDeviceObject_CD);
#ifdef UDF_HDD_SUPPORT
IoUnregisterFileSystem(UDFGlobalData.UDFDeviceObject_HDD);
IoRegisterFileSystem(UDFGlobalData.UDFDeviceObject_HDD);
#endif // UDF_HDD_SUPPORT
FsNotification_ThreadId = (HANDLE)(-1);
} else {
UDFPrint(("\n*** recursive UDFFSNotification call,\n can't become top-level UDF FSD \n\n"));
}
// Release the global resource.
UDFReleaseResource( &(UDFGlobalData.GlobalDataResource) );
}
}
/*VOID
UDFRemountAll(
IN PVOID Context
)
{
NTSTATUS RC = STATUS_SUCCESS;
ULONG CdRomNumber;
CCHAR deviceNameBuffer[MAXIMUM_FILENAME_LENGTH];
ANSI_STRING deviceName;
UNICODE_STRING unicodeCdRomDeviceName;
LARGE_INTEGER delay;
*/
/* delay.QuadPart = -80*10000000;
KeDelayExecutionThread(KernelMode, FALSE, &delay); //10 seconds*/
/* for(CdRomNumber = 0;true;CdRomNumber++) {
sprintf(deviceNameBuffer, "\\Device\\CdRom%d", CdRomNumber);
UDFPrint(( "UDF: UDFRemountAll : dismount %s\n", deviceNameBuffer));
RtlInitString(&deviceName, deviceNameBuffer);
RC = RtlAnsiStringToUnicodeString(&unicodeCdRomDeviceName, &deviceName, TRUE);
if (!NT_SUCCESS(RC)) {
RtlFreeUnicodeString(&unicodeCdRomDeviceName);
break;
}
RC = UDFDismountDevice(&unicodeCdRomDeviceName);
RtlFreeUnicodeString(&unicodeCdRomDeviceName);
if (!NT_SUCCESS(RC)) break;
}
}*/